Programmable Industrial Control Using The NCL Programming Language Telemetry And Control System Engineering Series

Version 2.06 03 March 2013

© 1995-2013 Navionics Research, Inc. All Rights Reserved

Saint Louis, Missouri USA wireless-telemetry.com

TABLE OF CONTENTS

<u>Chapter</u>	<u>Title</u>	Page
1	Introduction	2
2	The "LOGIC.NPP" File	5
3	"LOGIC.NPP" File Header Structure	6
4	NCL Register Names	12
5	Basic Programming Techniques	14
6	NCL Command Summary	15
7	Using Macros To Simplify NCL Programs	21
8	Converting Relay-Ladder-Logic To NCL	36
9	Loading The "LOGIC.NPP" File Into The RTU	38
10	Debugging With "NDB": The NCL Debugger	39
11	Debugging With The Advanced Realtime Display	44
12	Concluding Remarks	46

Title	<u>Page</u>
Dimensional Limits	47
Example Program Source	48
Advanced Example I – Water Tower	56
Advanced Example II – Pump Station	60
	Title Dimensional Limits Example Program Source Advanced Example I – Water Tower Advanced Example II – Pump Station

1 INTRODUCTION

In 1995, Navionics Research introduced the **WiSTAR** Network, an acronym derived from <u>Wi</u>reless <u>System</u> <u>T</u>elemetry <u>And</u> <u>R</u>emote-Control. This product was designed to solve the problems posed by the complex distributed control and monitoring requirements of the rural water and wastewater industries. Early in the development stages, it became apparent that the WiSTAR RTU should support a control language which offered the flexibility of field programming and interactive debugging. This meant that, in addition to its wireless communication and telemetry functions, the WiSTAR RTU should offer the power and flexibility of programmable industrial control logic. Furthermore, because the control decisions of rural water systems are optimally made across the wireless link, the control language would be most effective if it contained a library of functions which specifically address inter-site control, data-sharing, and radio-link status evaluation. As a result of these demanding requirements, NCL, an acronym derived from <u>N</u>etwork <u>C</u>ontrol Language, was developed. It is offered as Navionics Research's open control language with a focus on solving difficult distributed wireless control problems.

This reference and tutorial is designed for electricians, technicians, and engineers who wish to learn the art and science of NCL programming. It is assumed that the reader already has a modest amount of programming experience in a language such as C++, BASIC, FORTRAN, Assembly Language, or PLC (Programmable Logic Controller) Relay Ladder Logic.

Although NCL is a very simple programming language, it can be used to develop sophisticated applications. In structure, the language contains many familiar features, which have been borrowed from other high-level programming languages. At the same time, Navionics' implementation of the integrated compiler/interpreter/debugger, which is a component of Navionics Research's RTU firmware, is lean and compact.

The design of the NCL programming language has been focused on programming simplicity in every possible instance. In the C++ programming language, variables and registers are must be predefined by the programmer as belonging to a certain data type. These data types can be either characters (1 byte), short-integers (2 bytes), long-integers (4 bytes), floating-points (4 bytes), or double-precision floating-points (8 bytes). NCL, on the other hand, uses a data stack whose members are all defined as the same data type – 8-byte double-precision floating-point numbers. With this generalized, "over-precision" data stack, the programmer conveniently does not need to define variable data types. And as long as floating-point data types do not exceed 8-byte precision and integer data types do not exceed 4-byte precision, conversion and rounding errors are eliminated.

The inter-site control functionality of NCL is accomplished through "status-sharing". Every RTU maintains its own status-file, which contains a description of its status. It is up to the NCL programmer to decide what to put in this status-file. The wireless networking protocol ensures that each site contains updated copies of the status-files of the other network RTU's. Therefore, an RTU can incorporate the status of another RTU site (or sites) into its control decisions. For example, a pump station may primarily turn its pumps ON and OFF based upon what a remote water tower desires (as conveyed through the sharing of its status-file). However, if the wireless link fails, then the pump station will not be able to receive an up-to-date copy of the water tower's status-file. In this case, the programmer may wish to turn the pumps OFF, or he may wish to fail over the pump control into another mode of operation, such as ON/OFF control based upon local-pressure readings, timer, or an external control device.

In addition to the status-file, each site also holds a setpoints-file, which contains a description of its setpoints. Again, it is up to the NCL programmer to decide what to put into this setpoints-file. The wireless networking protocol contains provisions that enable a system operator to request, view, and modify the setpoints of any remote RTU from any RTU in the system. This functionality is at the very core of a WiSTAR system's powerful capabilities. In the example case of this manual, it will be demonstrated how setpoint modifications can (and should) be used to implement remote-control capabilities. As the NCL programmer, you will be tasked with deciding which parameters will be "hard-wired" into the program, and which will be designated as customer-modifiable setpoints. However, keep in mind that Navionics Research's NCL programming philosophy strongly suggests that you should provide the customer with an abundance of setpoints. The philosophy is simple: *When in doubt as to whether a number should be "hard-wired", make it a setpoint, and let the customer decide where to set it.*

Navionics Research has created a single, multitasking executable; and this program is embedded within an IBM-compatible CPU. This program is named: *WINCOM.EXE*. *WINCOM* services three (3) concurrent processes: communication, control, and the user-interface.

With the single-executable approach, the overall number of hardware components within the system is reduced; and greater reliability is achieved. However, with this approach, it is also imperative that adequate safeguards be constructed around the NCL control process to protect the operations of the communication and user-interface functions. Toward achieving this purpose, a software "firewall" has been built around the NCL interpreter to isolate the effects of any stray NCL programming errors. Although such errors are not acceptable, the "firewall" traps NCL coding errors, and prevents them from corrupting the concurrent communication and user-interface operations. At the same time, the firewall provides assistance to the programmer in locating certain NCL errors.

As with any language, the best way to learn programming is to program. And therefore, the techniques taught in this document are based upon an actual program, which is in operation in the "Village Of Walnut Hill (IL) Public Water District". Although the example is a relatively short program, it exercises many of the most important aspects of NCL. This program contains logic to control a pump station to the following specifications:

1. Control and monitor one (1) pump based upon one of the following modes of operation:

- a. Water tower control (customer-modifiable setpoints at the water tower)
- **b.** Local pressure (customer-modifiable pressure setpoints)
- **c.** Local timer (customer-modifiable time period setpoints)
- d. Manual override (customer selectable ON or OFF)

2. Enable the pump station to automatically fail over to a local-pressure-mode operation in the case of: (1.) a communication failure with the water tower, or (2.) a pressure transducer failure at the water tower.

3. Monitor 3-phase power status, and force pump OFF in the case of a phase fault.

- 4. Monitor suction and discharge pressures.
- **5.** Automatically turn OFF the pump in case of low suction pressure.
- 6. Automatically turn ON the pump in case of low discharge pressure.
- 7. Monitor the discharge and suction pressure transducers for failures.
- 8. Monitor station for flood condition, and force pump OFF in the case of a flood.
- 9. Monitor room temperature and pump motor bearing temperature differential.
- **10.** Accumulate pump runtime.

2 THE "LOGIC.NPP" FILE

NCL programs are contained in a single file, and they are always given the same name: **LOGIC.NPP** (the NCL program file). The extension "**.NPP**" stands for: <u>NCL Plus</u> <u>Plus</u>. The file is stored as a simple ASCII text file, and therefore it can be produced using a text editor. Windows "Notepad" and Windows "Wordpad" are both examples of appropriate text editors.

The "LOGIC.NPP" file is logically divided into two parts: The "Header" and the "Control Logic".

The "Header" contains setup information, network definitions, and the aliases of the memory registers and I/O modules. For example, the alias of "Solid-State-Relay #1" may be defined as "Pump Starter Relay". The use of aliases, rather than register addresses and I/O module-numbers makes programs more readable and easier to debug. Also, the use of aliases makes programs easier to port to different clients. Although strictly optional, their use is highly encouraged. Also, the first part of the "Header" section is strictly formatted. In other words, blank lines cannot be inserted where they are not expected; and all fields must be filled in according to the specifications set forth in this document. The second part of the "Header" allows an unformatted structure, and also allows for programmer comments.

The "Control Logic", which is typically much larger than the "Header", contains sequences of commands which describe the control decision-making process. The "Control Logic" must contain at least one main subroutine (always named "main"); and "main" may call other subroutines (which may also call subroutines, and so on...).

Throughout the example program, there are numerous embedded comments. It is good programming practice to document your program with comments for several reasons. First, it makes your program easier for others to understand; and second, it will make your job easier when you are trying to modify one of your old programs months (or years) later. Comments are delimited with the '#' character. Any text after and including the "#' character is ignored by the NCL compiler. Also, to make your programs more readable, blank lines may be freely used to separate functional blocks of code in your "LOGIC.NPP" file.

LOGIC.NPP File Structure:

\$HEADER

<All Formatted "Header" Information Here>

<All Unformatted "Header" Information Here>

\$NCL

<All Unformatted "Control Logic" Here>

3 "LOGIC.NPP" FILE HEADER STRUCTURE

The header of the "LOGIC.NPP" file contains two sections. The first section (blocked off in RED) contains setup information and network parameters. This first section must be written to a strict format as defined in this tutorial. The second section (blocked off in BLUE) contains alias definitions, and the programmer may create this section to a more relaxed format. Let's analyze the header file of our example program:

<pre># Heade 1 16 2 4 4 0 16 4 2 1 0 # Remot 1 001</pre>	rr (Setup) Info: UPS Station at Walnu # Number of Digital Setpoints # Number of Analog Setpoints # Number of Integer Setpoints # Number of Digital Input Modules # Number of Analog Input Modules # Number of Integer Input Modules # Number of Digital Flag States # Number of Analog Flag States # Number of Integer Flag States # Number of Relay Output Modules # Number of Analog Output Modules # Number of Analog Output Modules # Number of Digital flag States # Number of Relay Output Modules # Number of Dependent Sites (Depen # Index 0 (Zero): Walnut Hill W	t Hill, nes All dent Si ater Tc	IL owed) tes Follow) ower		
# Varia	ble Name Definitions (Blank Line	s Allow	red)		
ALIAS	FAILOVER_TO_PRESSURE_MODE	LDS	0		
ALTAS	LOW SUCTION CUTOUT PSI	LAS	0		
ALIAS	LOW SUCTION RELEASE PSI	LAS	1		
ALIAS	HIGH SUCTION CUTIN PSI	LAS	2		
ALIAS	HIGH SUCTION RELEASE PSI	LAS	3		
ALIAS	HIGH DISCHARGE CUTOUT PSI	LAS	4		
ALIAS	HIGH DISCHARGE RELEASE PSI	LAS	5		
ALIAS	LOW DISCHARGE CUTIN PSI	LAS	6		
ALIAS	LOW_DISCHARGE_RELEASE_PSI	LAS	7		
ALIAS	PRESSURE MODE PUMP OFF PSI	LAS	8		
ALIAS	PRESSURE_MODE_PUMP_ON_PSI	LAS	9		
ALIAS	TIMER_1_START_HOUR	LAS	10		
ALIAS	TIMER_1_STOP_HOUR	LAS	11		
ALIAS	TIMER_2_START_HOUR	LAS	12		
ALIAS	TIMER_2_STOP_HOUR	LAS	13		
ALIAS	TIMER_3_START_HOUR	LAS	14		
ALIAS	TIMER_3_STOP_HOUR	LAS	15		
ALIAS	PUMP_MODE{AUTO-ON-OFF}	LIS	0		
ALIAS	STATION_MODE{RADIO-PRESSURE-TIMER}	LIS	1		
ALIAS	POWER_MODULE	LDM	0		
ALIAS	PUMP_POSITIVE_INDICATOR_MODULE	LDM	1		
ALIAS	PHASE_FAULT_DETECT_MODULE LDM 2		2		
ALIAS	FLOOD_DETECT_MODULE	LDM	3		
ALIAS	DISCHARGE_PSI_MODULE	LAM	0		
ALIAS	SUCTION_PSI_MODULE	LAM	1		
ALIAS	PUMP_TEMP_DEGF_MODULE	LAM	2		
ALIAS PUMP_ROOM_TEMP_DEGF_MODULE LAM 3					

λΤΤΛΟ	DICCUADCE WORKING		0		
ALIAS AT.TAG	SUCTION WORKING	T.ZMV	1		
ATTY	Sociion_working		Ŧ		
DISPL	POWER ON	LDF	0		
DISPL	PUMP RELAY	LDF	1		
DISPL	PUMPON	LDF	2		
DISPL	PHASE FAULT DETECT	LDF	3		
DISPL		LDF	4		
DISPL	PIMP FAIL	LDF	5		
DISPL	COMM FAILURE	LDF	6		
DISPL	RADIO MODE	LDF	7		
DIGPI.	DRESSIRE MODE	T.D.F.	, 8		
DIGDI.	TIMER MODE	T.D.F.	9		
DIGPI.	LOW SUCTION CUTOUT	T.D.F.	10		
		יוסם יוסם	11		
DIGEL		ייסם ייסת	10		
DIGEL	I OW DISCHARGE CUITIN	TDE	12 12		
DISPL	DISCHARGE_CUIIN	דחם דחב	14		
DISPL	DISCHARGE_IRANSDUCER_FAIL	црг трг	15 15		
DISPL	SUCTION_TRANSDUCER_FAIL	LDF	15		
DISPL	DISCHARGE PSI	LAF	0		
DISPL	SUCTION PSI	LAF	1		
DISPL	PUMP TEMP DEGE	LAF	2		
DISPL	PUMP ROOM TEMP DEGF	LAF	3		
DIGIL			5		
DISPL	UP TIME MIN	LIF	0		
DISPL	PUMP RUNTIME MIN	LIF	1		
ALIAS	PUMP_SSR	LDR	0		
DISPL	COMM_TO_WATER_TOWER	VLD	0		
DISPL	TOWER_LEVEL_FT	RAF	0	0	
DISPL	TOWER_CALL_PUMP	RDF	0	2	
DISPL	TOWER_TRANSDUCER_FAIL	RDF	0	6	
7 T T 7 C	I ON CUCUTON TIMED		0		
ALIAS	LOW_SUCTION_TIMER	TMR	1		
ALIAS	LOW_SUCTION_OK_TIMER	TMR	T		
ALIAS	HIGH_DISCHARGE_TIMER	TMR	2		
ALIAS	HIGH_DISCHARGE_OK_TIMER	TMR	3		
ALIAS	HIGH_SUCTION_TIMER	TMR	4		
ALIAS	HIGH_SUCTION_OK_TIMER	TMR	5		
ALIAS	LOW_DISCHARGE_TIMER	TMR	6		
ALIAS	LOW DISCHARGE OK TIMER	TMR	7		
ALIAS	PHASES OK TIMER	TMR	8		
ALIAS	POWER OK TIMER	TMR	9		
ALIAS	FLOOD OK TIMER	TMR	10		
ALTAS	PIMP FAIL TIMER	TMR	11		
ALLAD		11.110			
ALIAS	PUMP_RUNTIME_SECS	USR	0		
ALIAS	LASTCALL TIME	USR	1		
ALIAS	DELTA TIME	USR	2		
ALIAS	AOK _	USR	3		
ALTAS	EMERGENCY CUTIN	USR	4		
ALTAC	PRESSURE DIMP	USP	5		
AT'LYQ	TIMER DIMP	USP	5		
AT.TAC	TOWER DIMD	TICD	0 7		
ATTAS		TICD	/ 0		
ALIAS		USK	ō		

\$NCL

(CONTROL LOGIC FOLLOWS...)

Header Deconstruction:

Line Number	Content and Purpose
1	Comment Line
2	Define the number of Digital Setpoints (Setpoints which are
	defined as either a one (1) or a zero (0)). Stored in LDS registers.
3	Define the number of Analog Setpoints (Setpoints which are
	defined as a 4-byte floating point.) Stored in LAS registers.
4	Define the number of Integer Setpoints (Setpoints which are
	defined as one of a small selection of choices - also referred to as
	Radiobutton Setpoints). Stored in LAS registers.
5	Define the number of Digital Input Modules (Modules which read
	eitner a TRUE of FALSE state, such as power-detect of flood-
C	detect). Stored in LDM registers.
0	an analog lovel such as pressure, temporature, or chlorination)
	Stored in LAM registers
7	Define the number of Integer Input Modules (Modules which
1	count events, such as those generated by the outputs of high-
	speed pickup meters. These modules automatically calculate
	totalization and rate information. The maximum integer reading is
	999,999,999 after which the integer "rolls-over" to zero). Stored in
	LIM registers.
8	Define the number of Digital Flag States (Digital states which are
	to be placed in this RTU's status-file). Stored in LDF registers.
9	Define the number of Analog Flag States (Analog states which
	are to be placed in this RTU's status-file). Stored in LAF registers.
10	Define the number of Integer Flag States (Integer states which
	are to be placed in this RTU's status-file). Stored in LIF registers.
11	Define the number of Relay Output Modules (SSR's or Solid-
	State Relays. Writing a zero (0) to a SSR opens the contact, and
	whiling a one (1) to a SSR closes the contact. Stored in LDR
12	Define the number of Analog Output Modules Stored in LAOM
12	registers
13	Comment line You may put anything on this line that you wish
14	Define the Number of Dependent Sites (whose status-files will be
	integrated into the control decisions of this RTU
Next Lines	Network Addresses of Dependent Sites are placed on the
	subsequent lines if the Number of Dependent Sites is greater than
	zero (0). The first site will be known as Dependent Site #0, the
	second site will be Dependent Site #1, etc
Next Line	Comment line. You may put anything on this line that you wish.
Next Line(s)	Alias definitions of the registers, input modules, and relays.

Alias Variable Declarations:

When creating an alias, the following syntax is used:

ALIAS AliasName RegisterName

The AliasName must be different from all of the acceptable RegisterNames, and the AliasName must be between 1 and 48 characters long. An AliasName may contain alphabetic characters, numbers, brackets, parentheses, underscores, and dashes. However, the first character of an AliasName cannot be a number. The summary of available Register Names is given in the next chapter.

Legal Characters For AliasNames: **A–Z**, **a–z**, **0–9**, _, **–**, {, }, [,], (,)

Radiobutton Setpoint – Standard Naming Conventions:

When creating a Radiobutton Setpoint (A setpoint which represents an integer selector), it is highly-recommended that the NCL programmer use the following naming convention:

An example:

```
ALIAS PUMP_1{AUTO - ON - OFF} LIS 0
```

In this example, each of the three possible numeric settings corresponds to one of the selectors. The selectors are contained within curly brackets, and are separated by dashes.

Numeric Setting	<u>Action</u>
1	AUTO
2	ON
3	OFF

By following these naming convention guidelines, the programmer will benefit from the automatic detection and configuration capabilities built into the Navionics Research GUI (Graphical User Interface) software; and therefore simplify the setup of the GUI.

Realtime Display Customized Configuration:

Note that certain Aliases are declared using the "DISPL" identifier, rather than the "ALIAS" identifier. Aliases that are declared in this manner will be placed in the "Realtime Display" of the *WINCOM* program. The compiler will automatically decide whether the a DISPL register should be displayed as a digital, analog, or counter register. If you wish to override the compiler defaults, then replace DISPL explicitly with DISPL_D (digital), DISPL_A (analog), or DISPL_C (counter).

The following syntax describes the use of the DISPL identifier:

AliasName	RegisterName
AliasName	RegisterName
AliasName	RegisterName
AliasName	RegisterName
	AliasName AliasName AliasName AliasName

Advanced Serial Display Customized Configuration:

The WiSTAR RTU supports a Serial Display (eg VFD420 by SEETRON) on its Terminal Port. Variables whose DISPL parameter are preceded with an 'S' will be displayed on the Serial Display:

SDISPL	AliasName	RegisterName
SDISPL_D	AliasName	RegisterName
SDISPL_A	AliasName	RegisterName
SDISPL_C	AliasName	RegisterName

Advanced Alarm Display Customized Configuration:

For Color Terminals attached to the Terminal Port, the WiSTAR RTU can display discrete states in color to denote an alarm state:

(S)DISPL_D1	ON=GREEN	OFF=BLANK
(S)DISPL_D1	ON=RED/BLINKING	OFF=BLANK
(S)DISPL_D1	ON=GREEN	OFF=RED/BLINKING
(S)DISPL_D1	ON=GREEN/BLINKING	OFF=BLANK

In order to provide for customized spacings and page designs within the REALTIME DISPLAY pages, the following compiler directives are allowed in the NCL file:

\$BLANK	Places a blank line after the previously-declared variable.
\$BLANK n	Places 'n' blank lines after the previously-declared variable.
\$PAGE	Inserts a page break after the previously-declared variable.

Realtime Display Default Configuration:

In order to minimize the work of the NCL programmer, the Realtime Display is automatically configured by default. In the absence of any specified DISPL identifiers, the compiler will automatically assign DISPL identifiers to the following register variables:

All LDF's	(Local Digital Flags)
All LAF's	(Local Analog Flags)
All LIF's	(Local Integer Flags)
All RDF's	(Remote Digital Flags)
All RAF's	(Remote Analog Flags)
All RIF's	(Remote Integer Flags)
All VLD's	(Remote Communication Status Flags)

4 NCL REGISTER NAMES

The NCL registers which are used as memory and I/O locations within NCL programs, are listed below. (Note: n denotes the index number; and j denotes the dependent site index. All indices are referenced from zero, as in the C++ programming language.)

LDS n	า	Local Digital Setpoint (Read-only from program)
LAS n	۱	Local Analog Setpoint (Read-only from program)
LIS r	۱	Local Integer Setpoint (Read-only from program)
LDM n	۱	Local Digital Input Module (Read-only from program)
LAM n	۱	Local Analog Input Module (Read-only from program)
LAMV n	۱	Local Analog Module Validity
		(1 if module/transducer working, 0 if failure detected)
		(Read-only from program)
LIM n	1	Local Integer Input Module (Read/write from program)
LARM n	ו	Local Analog Rate Module (Fixed Delta-T Method)
		(Ist derivative with respect to time of LAW T) (Units = LAM/minute) (Read only from program)
l IRM n	<u>ו</u>	Local Integer Rate Module
	•	(1st derivative with respect to time of LIM n)
		(Read-only from program)
LDF n	ו	Local Digital Flag State (Read/write from program)
LAF n	า	Local Analog Flag State (Read/write from program)
LIF n	ו	Local Integer Flag State (Read/write from program)
LDR r	ı	Local Digital Output Relay (Read/write from program)
LAOM r	ı	Local Analog Output Module (Read/write from program)
RDF j	n	Remote Digital Flag State (Read-only from program)
RAF j	n	Remote Analog Flag State (Read-only from program)
RIF j	n	Remote Integer Flag State (Read-only from program)
VLD j		Valid Status File (1 if valid, 0 if stale)
		(Read-only from program)
MIS j		Number Of Comm Misses To j Since Retrieving Status File
TMP n	•	(Read-only non program)
	1 N	Liser Memory Register (Read/write from program)
	<u> </u>	Local Sancus Total Modulo (Road only from program)
	M n	Local Sensus Flow Module (Read-only from program)
		Local Sensus Motor Module (Read-only non program)
	v n	(1 if module working, 0 if failure detected)
		(Read-only from program)
M_SIU	jn	Modbus Input: Short Integer Unsigned (j=devid, n=zero-based reg)
_	•	(Read-only from program)
M_SIS	jn	Modbus Input: Short Integer Signed (j=devid, n=zero-based reg)
	<u> </u>	(Read-only from program)
M_LIU	jn	Niodbus Input: Long Integer Unsigned (j=devid, n=zero-based reg)
	in	Modbus Input: Long Integer Signed (i=devid_n=zero-based reg)
	, i, i	(Read-only from program)

M_FI	jn	Modbus Input: 32-bit Floating Point (j=devid, n=zero-based reg)
		(Read-only from program)
M_DI	jn	Modbus Input: Discrete Input (j=devid, n=zero-based reg)
	-	(Read-only from program)
M_SOU	jn	Modbus Output: Short Integer Unsigned (j=devid, n=zero-based reg)
_	-	(Read-only from program)
M_SOS	jn	Modbus Output: Short Integer Signed (j=devid, n=zero-based reg)
_	-	(Read-only from program)
M_DO	jn	Modbus Output: Discrete Output
_	-	(Read-only from program)
V SIU	j n	Toshiba VFD Input: Short Integer Unsigned
-		(j=devid, n=zero-based reg)
		(Read-only from program)
V SOU	jn	Toshiba VFD Output: Short Integer Unsigned
-	-	(j=devid, n=zero-based reg)
		(Read-only from program)
ADM_DI	jn	ADAM4000 Discrete Input (j=devid, n=zero-based reg)
_	-	(Read-only from program)
ADM DO	in	ADAM4000 Discrete Output (j=devid, n=zero-based reg)
		(Read/Write from program)
	in	ADAM4000 Analog Input (i=devid_n=zero-based reg)
,	,	(Read-only from program)
	in	ADAM4000 Analog Output (i-devid n-zero based reg)
	J 11	(Dood/Write from program)
	jn	ADAW4000 Integer Input (j=devid, n=zero-based reg)
		(Read-only from program)

5 BASIC PROGRAMMING TECHNIQUES

Before proceeding further, it is necessary to become acquainted with the elementary techniques of NCL programming.

A NCL program is made up of a "main" routine, which is capable of calling other subroutines (and which are also capable of calling subroutines, and so on ...). The deepest level of subroutine calling or recursion allowed is 16 (including the "main"). This should be more than sufficient for even the most demanding applications.

A NCL "main" or subroutine consists of a sequence of commands, each of which is typed on its own separate line in the **"LOGIC.NPP"** file. There are basically four (4) types of commands:

Memory Management -	These commands are used to read/write numbers from/to: a. the memory registers b. the data stack c. the address stack d. the industrial I/O modules
Data Stack Arithmetic -	These commands are used to perform arithmetic operations on the members of the data stack.
Execution Branching -	These commands are used to control the instruction pointer of the program.
Macros -	These commands are used to perform complex calculations using data on the data stack, or using data referenced by the addresses on the address stack. The Macros are provided as a library of predefined subroutines for the convenience of the NCL programmer.

The Data Stack and The Address Stack.

There are two (2) stacks available for use by the NCL programmer. The first stack is called the "Data Stack". The Data Stack is used as a workspace for holding numbers which are needed for control logic calculations. The second stack is called the "Address Stack". The Address Stack is used as a workspace for holding addresses of registers (or constants) which are needed for control logic calculations. It was decided to create separate stacks: one for numbers and one for addresses, so that programming and debugging would be simplified.

A "stack" is a data buffer that has been created for the convenience of the programmer. It is called a stack because it behaves as if the programmer is stacking numbers on top of each other. Numbers can be "loaded" on top of the stack, or they can be "popped" off the stack. Arithmetic operations can be performed on members of the Data Stack (usually the top number, or the top pair of numbers). In the Data Stack, the top of the stack is called the "X-Register" and the second from the top is called the "Y-Register".

Here is a simple example of how a NCL programmer may utilize the Data Stack to perform the addition of two numbers $(3.0 + 2.0) \dots$

NCL Command	Data Stack	Description
LOAD 3.0	{empty}	The stack contains no numbers initially.
	{ X=3.0 }	"3" has been loaded onto the data stack.
LOAD 2.0	{ X=2.0 , Y=3.0 }	"2" has been loaded on top of the data stack. The "3" is <i>underneath</i> the "2".
+	{ X=5.0 }	The top two numbers (2.0 and 3.0) have been popped off of the data stack and added together. The result, "5.0", is loaded onto the top of the data stack.

6 NCL COMMAND SUMMARY

In the NCL programming language, there are approximately 80 available commands. The complete list of commands is shown below, and each is grouped according to its functionality. You do not need to memorize all of the commands at this time (or really at any time); but you should become familiar with the available functionality of the command set.

Memory Management

LOAD	register_id or f	Load the contents of a register or input module onto the data stack. Or Load a number onto the data stack.
POP	n	Pop (discard) n numbers from the data stack. (Default: n=1)
STORE	register_id	Store a copy of the X-Register (data stack) to a register or output module.
PSTORE	register_id	Same as STORE, except followed by POP
COPY	n	Load a duplicate copy of a data stack register onto the top of the data stack. "n" denotes stack position relative to the top, with zero (0) indexing the top stack element (the X-Register). If "n" is not specified, then n defaults to zero (0).
SWAP		Swap the contents of the X-Register and the Y-Register (data stack).
SDELAY	delay_register_id	Set The Delay For "delay_register_id" To the value held in the X-Register.
PSDELAY	delay_register_id	Same as SDELAY, except followed by a POP.
TIMEOUT	delay_register_id	Force the output of "delay_register_id" to one (1).
LOADA	register_id	Load the address of register_id onto the address stack.
LOADV	n	Load the value of the variable, whose address is "element n" on the address stack (the top address has an index of zero), onto the top of the data stack.
ΡΟΡΑ	n	Pop (discard) n addresses from the address stack. (Default: n=1)
STOREV	n	Store a copy of the X-Register (data stack) to the register pointed to by element n on the address stack.
PSTOREV	n	Same as STOREV, except followed by a POP.

Data Stack Arithmetic

+	Pop X and Y, Load (Y+X)
-	Pop X and Y, Load (Y-X)
*	Pop X and Y, Load (Y*X)
1	Pop X and Y, Load (Y/X)
MOD	Pop X and Y, Load (Remainder of Y/X)
%	
OR	Pop X and Y, If X OR Y is non-ZERO, Load 1.0.
1	Otherwise Load 0.0.
XOR	Pop X and Y, If X#0 and Y=0, Load 1.0; If X=0 and
	Y<>0, Load 1.0. Otherwise Load 0.0.
AND	Pop X and Y, If X AND Y are both non-ZERO,
&	Load 1.0. Otherwise Load 0.0.
NOT	Pop X, If X is equal to ZERO, Load 1.0.
!	Otherwise, Load 0.0.
X=0?	
X<>0?	Pop X. If X is not equal to ZERO, Load 1.0.
X><0?	Otherwise Load 0.0.
Y>X?	Pop X and Y. If Y is greater than X, Load 1.0.
X <y?< th=""><th>Otherwise Load 0.0.</th></y?<>	Otherwise Load 0.0.
Y>=X?	Pop X and Y. If Y is greater than or equal to X,
X<=Y?	Load 1.0. Otherwise Load 0.0.
Y=X?	Pop X and Y. If Y is equal to X, Load 1.0.
X=Y?	Otherwise Load 0.0.
Y<>X?	Pop X and Y. If Y is not equal to X, Load 1.0.
Y> <x?< th=""><th>Otherwise Load 0.0.</th></x?<>	Otherwise Load 0.0.
X<>Y?	
	Dan V and V If V is less than V Load 1.0
	Otherwise Load 0.0
	Den X and X If X is less than or equal to X I and
1 - A ? V - V 2	10 Otherwise Load 0.0
	Pop X and X Load MIN(X X)
MAY	Pop X and Y. Load MAX (X, Y)
	$\begin{array}{c} Fop \land all u \uparrow . \ Loau \mid MAX(\land, \uparrow) \end{array}$
BETWEEN_SECS	Otherwise Load 0.0
BETWEEN HOUDS	Pop X and X If V <davtime hours<x="" load<="" th=""></davtime>
BETWEEN_HOOKS	1.0 Otherwise Load 0.0
INCR	Pop X Load $(X+1)$
++	
DECR	Pop X Load (X-1)
ABS	Pop X, Load (X)
INT	Pop X, Load (INT(X))
SIN	Pop X Load (SIN(X)) where X is in radians

COS	Pop X, Load (COS(X)) , where X is in radians.
TAN	Pop X, Load (TAN(X)) , where X is in radians.
Y^X	Pop X and Y, Load (Y^X)
X^2	Pop X, Load (X*X)
SQRT	Pop X, Load (SQRT(X))
CHS	Pop X, Load (-X)
LOG	Pop X, Load (LOG10(X))
LN	Pop X, Load (LN(X))
10^X	Pop X, Load (10 [^] (X))
E^X	Pop X, Load (E [^] (X))
ASIN	Pop X, Load (ASIN(X)) in radians
ACOS	Pop X, Load (ACOS(X)) in radians
ATAN	Pop X, Load (ATAN(X)) in radians
1/X	Pop X, Load (1/X)

Utility Functions

UPTIME	Load {Seconds Since RTU Execution Started}
SYSTIME	Load {Seconds Since 01 Jan 1970 GMT}
DAYTIME_SECS	Load {Seconds Since Midnight (Takes Into
_	Account Daylight Savings Time)}
DAYTIME_HOURS	Load {Hours Since Midnight (Takes Into Account
	Daylight Savings Time)}
DAY_OF_WEEK	Load {Day Of Week (1=Sunday 7=Saturday)}
FIRSTRUN?	If First Call Of NCL Program, Load 1.0.
	Otherwise, Load 0.0.
NEW_SETPOINTS?	If Setpoints Modified Since The Last Call, Load
	1.0. Otherwise, Load 0.0.
ANNOUNCE	Generate Status Announcements To All Sites On
	Announce-List. Stacks Unaffected.
FLUSH	Store Status and USR Variables To Disk.
	(Win32/64 Only: Flush History Point To Disk.)
W32_ONLINE	Win32/64 Only: If Desktop/Notebook Has A
	Compatible UPS And 120VAC Power, Load 1.0.
	Otherwise, Load 0.0.
CHG%_nn	If one or more local analog flags (LAFs) has
	changed by more than nn%, then signal to the
	program that a STATUS_ANNOUNCEMENT
	should be made all remote sites defined within the
	announcement list.
W32_BATT_PERCENT	Win32/64 Only: If Desktop/Notebook Has A
	Compatible UPS, Load Battery Strength (0-100%).
	Utherwise, LOAD: -1.0%.
	IT last module read was successful or it last
	iviolobus read is a valid cached value, then a '1' is

	placed on the stack. Otherwise, a '0'.
MA_CACHED	If last Modbus read was unsuccessful, but the last Modbus read is a valid cached value, then a '1' is placed on the stack. Otherwise, a '0'.
MA_TIMEOUT	If last Modbus read was unsuccessful AND the Modbus channel has timed out (a valid cached value is not available), then a '1' is placed on the stack. Otherwise, a '0'.
LOADM j n	Load 'n' words (16-bit) from Modbus device_id 'j' into the Modbus data stack.
CAST_INT n	Copies a 16-bit word from the Modbus data stack onto the data stack, source location based upon index 'n'. Casts the value as a 16-bit signed integer.
CAST_UINT n	Copies a 16-bit word from the Modbus data stack onto the data stack, source location based upon index 'n'. Casts the value as a 16-bit unsigned integer.
CAST_LONG n	Copies a 32-bit word from the Modbus data stack onto the data stack, source location based upon index 'n'. Casts the value as a 32-bit signed integer.
CAST_ULONG n	Copies a 32-bit word from the Modbus data stack onto the data stack, source location based upon index 'n'. Casts the value as a 32-bit unsigned integer.
CAST_FLOAT n	Copies a 32-bit word from the Modbus data stack onto the data stack, source location based upon index 'n'. Casts the value as a 32-bit floating point.
BITMASK n	Tests the 'nth' bit of the element on the top of the stack. Replaces top stack element with the result (1 or 0).

Execution Branching

I BI	RoutineName	Defines Subroutine Name And Labels The
		Beginning Of The Subroutine.
GOSUB	RoutineName	Sends Execution To Top Of "RoutineName"
GOTO	LineNumber	Sends Execution To "LineNumber"
MACRO	MacroName	Sends Execution To A Pre-Defined Macro
CONTINUE		Does Nothing. Useful As The Target Of A GOTO
		Statement.
RTN		Returns Execution To The Line Below The Calling
		GOSUB Statement
END		Ends NCL Program Execution. Returns Execution
		To Top Of "Main"
IF_TRUE		If X is non-zero, continue execution; otherwise skip
		over the next command
IF_FALSE		If X is zero, continue execution; otherwise skip
		over the next command
CHG%_nn		If one or more local analog flags (LAFs) has
		changed by more than nn%, then signal to the
		program that a STATUS_ANNOUNCEMENT
		should be made all remote sites defined within the
		announcement list.

Example Program Analysis

At this point, you have the necessary background to examine the example program listed in Appendix B. Notice that a large number of comments are interspersed throughout the program. This will assist in debugging, future modifications, and code re-use. Also, notice that both the data stack and address stacks are kept "clean" throughout the program. In other words, when a set of calculations has been completed, all remaining data on the data stack is removed, and all remaining data on the address stack is removed. Again, this optional programming practice simplifies the debugging process, if debugging is required.

7 USING MACROS TO SIMPLIFY NCL PROGRAMS

In addition to the core NCL commands, a group of 12 predefined "Macros" is provided with the compiler. The Macros are analogous to subroutines in C++, and each has been tailored to solve a common control logic problem. A typical NCL program will consist of both Macros and core commands. Each Macro has been optimized and field-tested, so the NCL programmer may use them with confidence.

Built-In Macros

HYSTERESIS_HI	A Simple Hi-Level Cutoff Switch
HYSTERESIS_LO	A Simple Lo-Level Cutoff Switch
HYSTERESIS_HI_W_TIMER	A Hi-Level Cutoff Switch with time delay
HYSTERESIS_LO_W_TIMER	A Lo-Level Cutoff Switch with time delay
HYBRID_PRESSURE_HI	A Hybrid-Level/Timer Hi-Level Cutoff Switch
HYBRID_PRESSURE_LO	A Hybrid-Level/Timer Lo-Level Cutoff Switch
SYMMETRIC_DEADBAND	An ON/OFF Analog Switch With A Symmetric
	Deadband Around The Setpoint.
BOUNDS_CHECK	An "Upper and Lower Bounds Checker" for
	radiobutton setpoints.
VFD_SPEED	A Proportional-Feedback Analog Controller.
	Error function a combination of a Hi-Level
	Boundary and a Lo-Level Boundary.
BPS_MODE_CALC	Calculates The Appropriate Pump Station Mode
	From The Following Choices: Radio, Pressure,
	Timer, External.
PUMP_SEQUENCE_SETUP2	Sets Up Pump Alternation / No Alternation For A
	2-Pump Station.
PUMP_SEQUENCE_SETUP3	Sets Up Pump Alternation / No Alternation For A
	3-Pump Station.
SPHEROID_STATS	Approximate Tank Level In Spheroid Tank
CUBIC_SOLVER	Solve for X: AX^3 + BX^2 + CX + D = 0

MACRO: HYSTERESIS_HI

Example Usage:

LOADA	LINE_PRESSURE
LOADA	HI_THRESHOLD_SETTING_PSI
LOADA	HI_THRESHOLD_RELEASE_SETTING_PSI
LOADA	HI_CUTOFF_STATUS
MACRO	HYSTERESIS_HI
PSTORE	HI_CUTOFF_STATUS

LBL	HYSTERESIS_HI
LOADV LOADV Y>=X?	3 2
LOADV LOADV Y>=X? LOADV AND	3 1 0
OR POPA RTN	4

MACRO: HYSTERESIS_LO

Example Usage:

LOADA	LINE_PRESSURE
LOADA	LO_THRESHOLD_SETTING_PSI
LOADA	LO_THRESHOLD_RELEASE_SETTING_PSI
LOADA	LO_CUTOFF_STATUS
MACRO	HYSTERESIS_LO
PSTORE	LO_CUTOFF_STATUS

LBL	HYSTERESIS_LO
LOADV LOADV Y<=X?	3 2
LOADV LOADV Y<=X? LOADV AND	3 1 0
or Popa Rtn	4

MACRO: HYSTERESIS_HI_W_TIMER

Example Usage:

LOADA	LINE_PRESSURE
LOADA	HI_THRESHOLD_SETTING_PSI
LOADA	HI_THRESHOLD_RELEASE_SETTING_PSI
LOADA	HI_CUTOFF_TIMER
LOADA	HI_RELEASE_TIMER
LOADA	HI_CUTOFF_STATUS
MACRO	HYSTERESIS_HI_W_TIMER
PSTORE	HI_CUTOFF_STATUS

LBL	HYSTERESIS_HI_W_TIMER
LOADV LOADV X>=X2	5 4
PSTOREV	2
LOADV LOADV Y<=X?	5 3
PSTOREV	1
LOADV LOADV NOT	2 1
LOADV AND OR	0
POPA RTN	6

MACRO: HYSTERESIS_LO_W_TIMER

Example Usage:

LOADA	LINE_PRESSURE
LOADA	LO_THRESHOLD_SETTING_PSI
LOADA	LO_THRESHOLD_RELEASE_SETTING_PSI
LOADA	LO_CUTOFF_TIMER
LOADA	LO_RELEASE_TIMER
LOADA	LO_CUTOFF_STATUS
MACRO	HYSTERESIS_LO_W_TIMER
PSTORE	LO_CUTOFF_STATUS

LBL	HYSTERESIS_LO_W_TIMER
LOADV LOADV Y<=X?	5 4
PSTOREV	2
LOADV LOADV Y>=X?	5 3
PSTOREV	1
LOADV LOADV NOT	2 1
LOADV AND OR	0
POPA RTN	6

MACRO: HYBRID_PRESSURE_HI

Example Usage:

LOADA	DISCHARGE_PRESSURE
LOADA	HI_DISCHARGE_THRESHOLD_PSI
LOADA	HI_DISCHARGE_TIMER
LOADA	HI_DISCHARGE_RELEASE_TIMER
MACRO	HYBRID_PRESSURE_HI
PSTORE	HI DISCHARGE CUTOUT

LBL	HYBRID_PRESSURE_HI
LOADV	3
LOADV	2
Y>=X?	
PSTOREV	1
LOADV	1
NOT	
PSTOREV	0
LOADV	0
NOT	
POPA	4
RTN	

MACRO: HYBRID_PRESSURE_LO

Example Usage:

LOADA	SUCTION_PRESSURE
LOADA	LO_SUCTION_THRESHOLD_PSI
LOADA	LO_SUCTION_TIMER
LOADA	LO_SUCTION_RELEASE_TIMER
MACRO	HYBRID_PRESSURE_LO
PSTORE	LO_SUCTION_CUTOUT

Internal Compiler Implementation:

HYBRID_PRESSURE_LO LBL LOADV 3 2 LOADV Y<=X? PSTOREV 1 LOADV 1 NOT PSTOREV 0 LOADV 0 NOT POPA 4 RTN

MACRO: SYMMETRIC_DEADBAND

Example Usage:

LOADA	HEATER_ON
LOADA	RTU_TEMPERATURE
LOADA	RTU_THERMOSTAT
LOAD	5.0
MACRO	SYMMETRIC_DEADBAND
STORE	HEATER_ON
PSTORE	HEATER RELAY

LBL	SYMMETRIC_DEADBAND
COPY	—
LOADV	0
+	
LOADV	1
Y>X?	
LOADV	2
AND	
SWAP	
CHS	
LOADV	0
+	
LOADV	1
Y>X?	
OR	
POPA	3
RTN	

MACRO: BOUNDS_CHECK

Example Usage:

LOADA VALVE{AUTO-OPEN-CLOSED} LOAD 3 LOAD 1 MACRO BOUNDS_CHECK

Internal Compiler Implementation:

LBL BOUNDS_CHECK LOADV 0 MAX MIN PSTOREV 0 POPA RTN

MACRO: FEEDBACK_CONTROL

Example Usage:

LOAD	SPEED_PERCENT
LOAD	FEEDBACK_GAIN
LOAD	SPEED_MAXSTEP_PERCENT
LOAD	SUCTION_PRESSURE
LOAD	DISCHARGE_PRESSURE
LOAD	SUCTION_LIMIT_PSI
LOAD	DISCHARGE_LIMIT_PSI
MACRO	FEEDBACK_CONTROL
STORE	SPEED_PERCENT
LOAD	100.0
/	
PSTORE	SPEED_CONTROL_MODULE

Internal Compiler Implementation (C++):

```
FEEDBACK_GAIN * ( DISCHARGE_LIMIT_PSI – DISCHARGE_PRESSURE )
ERR1
       =
ERR2
      =
              FEEDBACK GAIN * (SUCTION PRESSURE - SUCTION LIMIT PSI)
IF (ERR1 < 0)
       ÌF (ERR2 < 0)
              // both negative...
              ERR = ERR1 + ERR2
              }
       ELSE
              // only one negative...
              ERR = ERR1
              }
       }
ELSE
       IF (ERR2 < 0)
              i one negative...
              ERR = ERR2
              }
       ELSE
              // both positive...
              ERR = ERR1 + ERR2
              }
       }
ERR = MIN ( ERR , SPEED_MAXSTEP_PERCENT )
ERR = MAX ( ERR , -SPEED_MAXSTEP_PERCENT )
SPEED = SPEED + ERR
```

[POP ALL SEVEN (7) VALUES OFF THE DATA STACK; AND ADD ONE (1) ELEMENT TO THE DATA STACK: VFD_SPEED_PERCENT.]

MACRO: BPS_MODE_CALC

Example Usage:

LOADA	MODE{RADIO-PRESS-TIMER-EXT}
LOADA	FAILOVER{PRESS-TIMER-EXT}
LOADA	COMM_TO_TOWER
LOADA	TOWER_TRANSDUCER_FAIL
MACRO	BPS_MODE_CALC
PSTORE	EXTERNAL_MODE
PSTORE	TIMER_MODE
PSTORE PSTORE	EXTERNAL_MODE
PSTORE	PRESSURE_MODE
PSTORE	RADIO_MODE

LBL	BPS_MODE_CALC	LOAD X=Y?	2.0
# TOWER_	CONTROL_FAIL	OR	
LOADV	1		
NOT		# TIMER_N	IODE
LOADV	0	LOADV4	
OR		LOADV2	
LOADV	3	LOAD	2.0
LOAD	1.0	X=Y?	
X=Y?		AND	
AND		LOADV3	
PSTOREV	4	LOAD	3.0
		X=Y?	
# RADIO MODE		OR	
LOADV	4		
NOT		# EXT_MOI	DE CALC
LOADV	3	LOADV4	
LOAD	1.0	LOADV2	
X=Y?		LOAD	3.0
AND		X=Y?	
		AND	
# PRESSURE_MODE		LOADV3	
LOADV	4	LOAD	4.0
LOADV	2	X=Y?	
LOAD	1.0	OR	
X=Y?			
AND		POPA	5
LOADV	3	RTN	

MACRO: PUMP_SEQUENCE_SETUP2

Example Usage:

ALTERNATE_PUMPS
SEQUENCE_POINTER
LEAD_PUMP{P1-P2}
LAG_PUMP{P1-P2}
LEAD_PUMP_DEF
LAG_PUMP_DEF
PUMP_SEQUENCE_SETUP2

Internal Compiler Implementation (C++):

```
IF ( ! ALTERNATE_PUMPS )
{
    SEQUENCE_POINTER = 1
}
IF ( SEQUENCE_POINTER = 1)
    {
    LEAD_PUMP_DEF = LEAD_PUMP{P1-P2}
    LAG_PUMP_DEF = LAG_PUMP{P1-P2}
}
ELSE IF ( SEQUENCE_POINTER = 2 )
    {
    LEAD_PUMP_DEF = LAG_PUMP{P1-P2}
    LAG_PUMP_DEF = LAG_PUMP{P1-P2}
    }
}
```

[Data Stack Pointer: Unchanged. Pop 6 Addresses Off The Address Stack.]

MACRO: PUMP_SEQUENCE_SETUP3

Example Usage:

LOADA	ALTERNATE_PUMPS
LOADA	SEQUENCE_POINTER
LOADA	LEAD_PUMP{P1-P2-P3}
LOADA	LAG_PUMP{P1-P2-P3}
LOADA	TRAIL_PUMP{P1-P2-P3}
LOADA	LEAD_PUMP_DEF
LOADA	LAG_PUMP_DEF
LOADA	TRAIL_PUMP_DEF
MACRO	PUMP_SEQUENCE_SETUP3

Internal Compiler Implementation (C++):

IF (! ALTERNATE_PUMPS)				
	{ SEQUENCE_POINTER	=	1	
} IF (SEQUENCE_POINTER = 1)				
	{ LEAD_PUMP_DEF LAG_PUMP_DEF LAG_PUMP_DEF	= = =	LEAD_PUMP{P1-P2-P3} LAG_PUMP{P1-P2-P3} TRAIL_PUMP{P1-P2-P3}	
ELSE IF	/ (SEQUENCE_POINTER	= 2)		
	{ LEAD_PUMP_DEF LAG_PUMP_DEF TRAIL_PUMP_DEF	= = =	LAG_PUMP{P1-P2-P3} TRAIL_PUMP{P1-P2-P3} LEAD_PUMP{P1-P2-P3}	
ELSE IF	SEQUENCE_POINTER	= 3)		
	{ LEAD_PUMP_DEF LAG_PUMP_DEF TRAIL_PUMP_DEF }	= = =	TRAIL_PUMP{P1-P2-P3} LEAD_PUMP{P1-P2-P3} LAG_PUMP{P1-P2-P3}	

[Data Stack Pointer: Unchanged. Pop 6 Addresses Off The Address Stack.]

MACRO: SPHEROID_STATS

Example Usage:

TANK_LEVEL_FT
TANK_FLOW_FT_PER_MINUTE
TOP_OF_BOWL_HEIGHT
BOTTOM_OF_BOWL_HEIGHT
TANK_VOLUME_GAL
SPHEROID_STATS
CURRENT_VOLUME_GAL
CURRENT_FLOW_GPM
CURRENT_FLOW_FEET_PER_HOUR
CURRENT_DIAMETER

Internal Compiler Implementation (C++):

// Volume (spheroid) = 7.48 x PI x DIAM**2 x HEIGHT / 6 // Diameter (spheroid) = SQRT{ 6 x VOLUME GAL / 7.48 / PI / HEIGHT } = dStack[dSP-4]; tank level ft current flow fpm = dStack[dSP-3]; = dStack[dSP-2]; top of bowl ft bottom_of_bowl_ft = dStack[dSP-1]; tank_capacity_gal= dStack[dSP]; delta height ft = top of bowl ft - bottom of bowl ft; delta height ft = MAX(delta height ft,(double)0.001); = (double)0.5 * delta height ft; rz rz2 = rz * rz ; tank capacity ft3 = tank_capacity_gal / (double)7.48 ; tank max diameter ft = (double)6.0 * tank capacity ft3 / DPI / delta height ft; tank_max_diameter_ft = sqrt(fabs(tank max diameter ft)); rx = (double)0.5 * tank max diameter ft; rx2 = pow(rx,2);// Tank Level Limiter ... // (Do not allow tank level to be above/below bowl)... tank_level_limited = min(tank_level_ft,top_of_bowl_ft); tank level_limited = max(tank_level_limited,bottom_of_bowl_ft); // Current Diameter ... // 2 * sqrt(fabs(rx2 - pow(rx*(tank lev lim-bot ht-rz)/rz, 2))) current_diameter_ft = (double)2 * sqrt(fabs(rx2-pow(rx*(tank_level_limited-bottom_of_bowl_ft-rz)/rz,2))); // Flow Rate ... current flow gpm= 7.48 * DPI * pow(current diameter ft,2) * 0.25 * current flow fpm ; current flow fph = current flow fpm * 60; // Current Tank Volume ... current volume gal = 7.48 * DPI * rx2 ; current volume gal *= (tank level limited-bottom of bowl ft-rz) + (double)0.666666666667 * rz - 0.33333333 * pow(tank level limited - bottom of bowl ft - rz , 3)/rz2 ; dSP = ((dSP-1) & DATA STACK MASK); ElementsOnStack--; dStack[dSP] = current_volume_gal ; dStack[dSP-1] = current_flow_gpm ; dStack[dSP-2] = current_flow_fph ; dStack[dSP-3] = current diameter ft;
MACRO: CUBIC_SOLVER

Example Usage:

LOAD	A_PARAMETER
LOAD	B_PARAMETER
LOAD	C_PARAMETER
LOAD	D_PARAMETER
LOAD	LOWER_BOUND
LOAD	UPPER_BOUND
LOAD	ACCEPTABLE_ERROR
MACRO	CUBIC_SOLVER
PSTORE	X_ROOT

Internal Compiler Implementation (C++):

Solves for the first located root of the polynomial equation:

 $Y = 0 = A * X^3 + B * X^2 + C * X + D$

First, the program searches 20 evenly-spaced values for X between LOWER_BOUND and UPPER_BOUND for an approximate zero-crossing point Y.

Second, the program refines the search using the SECANT method to derive the root within precision determined by ACCEPTABLE_ERROR.

The program returns the root to the stack.

8 CONVERTING RELAY-LADDER-LOGIC TO NCL

RLL (Relay-Ladder-Logic) diagrams can play a useful part in the creation of NCL programs. In a situation where a WiSTAR RTU is installed as a replacement to an obsolete control panel (which may contain complex groups of relays, timers, and transducers), the panel diagram can be implemented as the control logic for the WiSTAR RTU. This provides the benefit of familiar operating characteristics for the system.

NCL offers all of the capabilities of RLL as well as the capabilities of complex logic blocks in one easy-to-use language. This single-language solution provides the benefits of simplified programming and troubleshooting combined with a compact, high-performance interpreter and debugger.

To get acquainted with the basic methods of RLL conversion to NCL, let's start with a simple example of regulating a heater:

For this example, let us assume that the thermostat temperature is set at 50degF. When the temperature drops to 45degF or below, then the heater relay will be energized by both the upper and lower rungs of the ladder. After the heater relay is activated, it is assumed that the temperature will begin to climb. When the temperature rises above 45degF, the upper rung will not pass energy to the relay, but the lower rung will continue to pass energy until the temperature climbs above 55degF. This type of 10 degF hysteresis (deadband) is common in level control, as it reduces the wear on the switch and the equipment which it controls.

This heater control example can be implemented in NCL with the following program:

Core Command Implementation:

LBLMAIN # Logic For Upper Rung ... LOAD ROOM_TEMP LOAD THERMOSTAT_TEMP LOAD 5.0 _ $Y \le X?$ # Logic For Lower Rung ... LOAD ROOM_TEMP LOAD THERMOSTAT_TEMP LOAD 5.0 + $Y \le X?$ LOAD HEATER_RELAY AND # Add Them Together And Energize # (or De-Energize) The Relay ... OR STORE HEATER ON PSTORE HEATER RELAY END

Macro Implemtation:

LBL	MAIN
LOADA	HEATER ON
LOADA	ROOM_TEMP
LOADA	THERMOSTAT_TEMP
LOAD	5.0
MACRO	SYMMETRIC_DEADBAND
STORE	HEATER_ON
PSTORE	HEATER_RELAY
END	

9 LOADING THE "LOGIC.NPP" FILE INTO THE RTU

After the **"LOGIC.NPP"** program file has been written using the text editor of your choice, the next step is to download the program to the target RTU:

A. Copy your **"LOGIC.NPP"** file onto your palmtop (or notebook) computer, if it is not already on it.

B. Make a serial port connection between your palmtop computer and the RS232-DTE port of the RTU using a null modem cable. The palmtop (or notebook) terminal emulation program should be configured with the following communication settings :

- * 19200 bps
- * NoParity
- * 8 DataBits
- * 1 StopBit
- * "ANSI" Terminal Emulation

C. Press <ENTER> on the palmtop to activate the "Login" screen, and log in as **"FACTORY**". Type the **"<X>"** hotkey to "Exit To DOS".

D. <u>Download LOGIC.NPP:</u> At the DOS prompt, type the following command:

D: <ENTER> CD RT <ENTER> TRANSFER /R LOGIC.NPP <ENTER>

E. Escape back to the terminal emulation program and send the **"LOGIC.NPP"** file using the XMODEM protocol. When the transfer is complete, you will see the DOS prompt on the terminal display again.

F. <u>Execute *WINCOM*</u>: At the DOS prompt, type the following command:

GO <ENTER>

(This will restart the *WINCOM* software and compile the new NCL program. If there are any compilation errors, *WINCOM* will tell you which line contains the error, what the error is, and halt execution and exit to DOS. If there are any errors, then you will need to edit and fix the flawed **"LOGIC.NPP"** file on your palmtop. After the fix, download the new file to the RTU (Repeat steps D-F.).

G. After successfully compiling the program, you are now ready to evaluate and debug your new program using "**NDB**", the NCL Debugger, which is described in detail in the next chapter.

10 DEBUGGING WITH "NDB": THE NCL DEBUGGER

The *NDB* debugger may be invoked at any time from the "Login" screen of the *WINCOM* program when the user logs in using the "control"-level password:

Enter Password : CONTROL <ENTER>

After a few seconds, the following message should appear on your screen:

Begin NCL Debugger At Line 1. 1: LBL MAIN NDB>

As a programmer, you may have defined separate logic branches, depending upon certain conditions. For example, during program startup (the "first run"), it is customary to initialize registers and timers. Also, after a setpoint change has occurred, certain registers and timers must be re-initialized. In order to debug these logic branches, the following commands are available to simulate these conditions:

NDB> FIRSTRUN <ENTER> Toggle "First Run" Simulation ON/OFF

NDB> NEWSETPOINTS <ENTER> Toggle "New Setpoints" Simulation ON/OFF

Note: When the *NDB* debugger is invoked, all communication functions are disabled. For this reason, you can be assured that the status-file(s) retrieved from a remote site(s) will be stable for the duration of your debugging session.

LISTING THE SOURCE CODE

At this point, the first program line has not yet been executed. *NDB* always displays the next line of the program that will be executed. Therefore, upon debugger startup, *NDB* displays the first line of the control logic. Also notice that *NDB* numbers the lines (ignoring any blank lines). This will prove useful should you locate a "bug" (programming error) during the debugging session, as it will help to pinpoint the line(s) that need fixing when you return to your text editor.

Sometimes while debugging, it is useful to "look ahead" several lines so as to anticipate the next commands. This capability is provided by using the "LIST" command at the NDB> prompt. Here is an example of its usage:

NDB> LIS	T <enter></enter>	"Lists the next 10 (default) lines in the prog	gram"	
1:	LBL	MAIN		
2:	FIRSTRUN?			
3:	IF_FALSE			
4:	GOTO	10		
5:	LOAD	0.0		
6:	STORE	DELTA_TIME	(USR	16)
7:	STORE	PUMP_START_TIME	(USR	12)
8:	PSTORE	PUMP_STOP_TIME	(USR	13)
9:	SYSTIME			
10:	PSTORE	LOW_SUCTION_BEG_TIME	(USR	22)

If you type: **LIST** *n* **<ENTER>**, then the next *n* lines of the program will be displayed.

Notice that when a command uses an "alias" for a register name, *NDB* also displays the actual register name as well. For example, on line 6, DELTA_TIME is the alias name for the "USR 16" register. To provide you with the most possible information during your debugging session, *NDB* displays both actual and alias names of all registers.

<u>"STEPPING THROUGH" THE CONTROL LOGIC</u>

Stepping through the control logic is accomplished by using the "STEP" command at the NDB> prompt. Since this is the most used command, you can simply hit the <ENTER> key, as well, to accomplish a "STEP":

NDB>	STEP <enter></enter>	"Executes one (1) line of NCL code."
	Or	
NDB>	<enter></enter>	"Executes one (1) line of NCL code."

For many *NDB* commands, you can simply type the first letter as an abbreviated form of the command, if this first letter identifies the command without ambiguity. However, the "STEP" command is the exception, as the "S" is reserved as an abbreviation for the "STACK" command defined below. The "<ENTER>" key should be used as the abbreviated version of "STEP".

If you wish to execute "n" lines of the NCL program, then use the "RUN" command at the prompt:

NDB> RUN 20 <ENTER> "Execute the next 20 lines of code."

If you wish to execute the entire program, non-stop, until the END is reached, then use the "RUN" command at the prompt without specifying the number of lines of code:

NDB> **RUN <ENTER>** "Execute code from present location until the end."

When you reach the END of the program (by using either the "RUN" command or by using "STEP" commands), *NDB* will pause and display the new values of the digital, analog, and integer FLAG registers.

DISPLAYING THE DATA STACK ELEMENTS

By default, the elements on the data stack are printed to the screen, but none will be displayed if the data stack is empty. If you wish for *NDB* to re-print the data stack elements to the screen, use the "STACK" command at the prompt:

NDB> **STACK <ENTER>** "Display the elements of the data stack."

NDB will also interpret "S" as the "STACK" command.

It is considered good programming practice to pop numbers from the data stack after they are no longer needed by the program. However, this is not strictly required, as the data stack may be overflowed without causing an error condition. When the data stack length exceeds 32, the excess numbers are simply discarded. However, if you choose not to follow this stern recommendation, then your debugging sessions will be much more difficult, as you will be constantly trying to determine which data stack members are of active interest, and which are not.

DISPLAYING THE ADDRESS STACK ELEMENTS

By default, the elements on the address stack are printed to the screen, but none will be displayed if the address stack is empty. If you wish for *NDB* to re-print the stack elements to the screen, use the "ASTACK" command at the prompt:

NDB> **ASTACK <ENTER>** "Display the elements of the address stack."

It is considered good programming practice to pop numbers from the address stack after they are no longer needed by the program. However, this is not strictly required, as the address stack may be overflowed without causing an error condition. When the address stack length exceeds 32, the excess numbers are simply discarded. However, if you choose not to follow this stern recommendation, then your debugging sessions will be much more difficult, as you will be constantly trying to determine which address stack members are of active interest, and which are not.

DISPLAYING THE CONTENTS OF REGISTERS AND INPUT MODULES

NDB provides the capability to view the contents of all registers and input modules with the "PRINT" command. "PRINT" is invoked from the command line in the following manner:

NDB> **PRINT** "RegisterName" "Display contents of RegisterName."

Some possible examples would be:

NDB>	PRINT POWER_MODULE	"Display status of the power module."
	Or	
NDB>	PRINT TOWER_CALL_PUMP	"Display one of the water tower's flags."

MODIFYING THE CONTENTS OF REGISTERS AND OUTPUT MODULES

NDB provides the capability to modify the contents of certain registers and all output modules with the "ASSIGN" command. "ASSIGN" is invoked from the command line in the following manner:

NDB> ASSIGN "RegisterName" Value "Assign Value To RegisterName."

A possible example would be ...

NDB> ASSIGN DISCHARGE_PSI 60.0 "Change Discharge_Psi flag to 60.0"

The following example is not acceptable, and *NDB* will display an error if you attempt to perform this command:

NDB> ASSIGN DISCHARGE_PSI_MODULE 60.0 "Illegal! - Read Only Register"

The DISCHARGE_PSI_MODULE cannot be modified because it is an "input module", and therefore it is "read-only". All registers that are "read-only" cannot be modified with the "ASSIGN" command. When in doubt, refer back to the table in **Chapter 4**, which specifies whether a register or module is "read-only".

MODIFYING THE TIMEOUT OF A TIME-DELAY REGISTER

NDB provides the capability to modify the timeout delay of a time-delay register with the "SETDELAY" command. "SETDELAY" is invoked from the command line in the following manner:

NDB> SETDELAY "Time-Delay-RegisterName" Value

... "Change The Timeout Of "Time-Delay-RegisterName" To "Value" seconds.

A possible example would be ...

NDB> SETDELAY LOW_SUCTION_TIMER 25.0

... "Change Low Suction Timeout To 25 seconds."

EDITING THE NCL HEADER FILE OR LOGIC FILE DURING EXECUTION

NDB provides the capability to edit the header file and/or the logic file from within the debugger environment. The editor is invoked from the command line in the following manner:

NDB> **EDITNPP** "Edit the NCL Program File."

It is important to note that any changes made to the NCL Program File do not take effect immediately. After the editing changes are made, a recompilation of the LOGIC.NPP file must follow. The recompilation is invoked from the command line in the following manner:

NDB> **REC** "Recompile the .NPP Program File."

EXITING THE DEBUGGER AND CONTINUING WINCOM EXECUTION

In order to exit from *NDB* but continue with *WINCOM* execution, use the "EXIT" (or "X") command at the prompt. The "Login" screen will appear, and *WINCOM* execution will continue normally.

NDB> X "Exit The Debugger, And Resume Normal Execution."

EXITING BOTH THE DEBUGGER AND WINCOM

In order to exit from both *NDB* and *WINCOM*, use the "QUIT" (or "Q") command at the prompt. Warming: The program will halt execution and exit to a DOS prompt.

NDB> **Q** "Exit The Debugger and WINCOM, Return To A DOS system prompt."

11 DEBUGGING WITH THE ADVANCED REALTIME DISPLAY

1. In addition to *NDB*, the NCL debugger that is documented in the previous chapter, there exists another technique for debugging the control logic of an RTU. This alternative method uses an extended feature of the "Realtime Display", and is available to personnel who are logged into the RTU with the "factory"-level password.

2. While logged in at the "factory"-level, and from the "Main Menu", press the <8> hotkey to enter the "Realtime Display". The standard "Realtime Display" is shown:

🇞 Carlyle-North-Dialup - HyperTerminal		- 🗆 🗵
<u>Eile Edit View Call Iransfer H</u> elp		
Realtime Display p.01		1
	26429 PUMP_2_RUNTIME_MIN	
	2 NEAT_LEHD_FUMP 1 HP TIME MIN	
PUMP_2_FAIL	82.2135 TOWER_LEVEL_FT	
	49.3153 TOWER_RTU_TEMP_DEGF	
RADIO_MODE	1.57719 TOWER_FLOW_RATE_FPH	
TTMED NODE	TOWER_CHLL_LEHD	
	TOWER TRANSDUCER FATI	
LOW SUCTION CUTOUT	48763 TOWER UPTIME MIN	
DISCHARGE_TRANSDUCER_FAIL	TOWER_RTU_HEATER	
SUCTION_TRANSDUCER_FAIL	TOWER_RTU_FAN_	
67.3260 DISCHHKGE_PSI		
84 0681 RTU TEMP DEGE		
7.85515 FLOW_RATE_GPM		
334850414 METER_GAL		
55668 PUMP_1_RUNTIME_MIN	101 x	
LI (IN) OF LESCI = RETURN TO MHIN MEN	VU >	<u> </u>
Connected 0:20:02 ANSI 19200 8-N-1 SCROLL CAPS NU	IM Capture Print echo	

3. When the user presses the <TAB> key, a "Realtime Display" of internal control logic registers is shown. Notice that the page number is incremented to page #2:

Carlyle-North-Dialup - HyperTerminal
ne cot view cai transfer Hep
Realtime Display p.02 Image: Solution Control of the second se
Connected 0:20:59 ANSI 19200 8-N-1 [SCROLL CAPS NUM [Capture Print echo

4. When the user presses the <TAB> key again, the more internal control logic registers are shown. For user reference, the page number of each screen is shown. Notice the "POWER_OK_TIMER" register, and those of similar type. These are "Time-Delay" Registers. The left block denotes the input signal; and the right block denotes the output signal. The left number denotes the "time since energized"; and the left number denotes the "time output signal the "timeout" of the timer.

Carlyle-North-Dialup - HyperTerminal	×
Ele Edit Yew Gal Iransfer Help	
	•
Realtime Display p.03	
PRESSURE_MODE TOWER_CALL_LEAD TIMER_MODE TOWER_CALL_LAG EXT_MODE TOWER_TRANSDUCER_FAIL LOW_SUCTION_CUTOUT 48763 DISCHARGE_TRANSDUCER_FAIL TOWER_RTU_HEATER SUCTION_TRANSDUCER_FAIL TOWER_RTU_HEATER SUCTION_TRANSDUCER_FAIL TOWER_RTU_HEATER SUCTION_PSI / 300 S4.5845 RTU_TEMP_DEGF 336.666 FLOW_RATE_GPM 336.666 FLOW_RATE_GPM S26429 PUMP_2_RUNTIME_MIN 2 NEXT_LEAD_DUMP /200 3 UP_TIME_MIN /200 2 NEXT_LEAD_PUMP /200 3 UP_TIME_MIN /200 2 NEXT_LEAD_PUMP /200 3 UP_TIME_MIN /200 2 NEXT_LEAD_PUMP /200 3 UP_TIME_MIN /200 /200 DELAY_TIMER 300/300 FLOOD_OK_TIMER 49.3153 TOWER_FLEVEL_FT 49.3153 TOWER_FLEVEL_FFH 49.3153 TOWER_FLEWEL FFH 49.3153 TEWR 40 or [ESU] = RETURN TO MAIN MENU	
Connected 0:21:17 ANSI 19200 8-N-1 SCROLL CAPS NUM Capture Print echo	-

5. When the user presses the <TAB> key again, the final page of internal control logic registers is shown. Note that the number of displayed registers is application-specific, and therefore the number of display pages will vary between applications.

Carlyle-North-Dialup - HyperTerminal
Realtime Display p.04 2.00000 LEAD_PUMP_DEF 0.0 TRY_1_FAIL 1.00000 LAG_PUMP_DEF 0.0 TRY_2_FAIL 104.0087717 LASTCALL_TIME 1.00000 A0K 5.00000 DELTA_TIME 2.00000 NUM_PUMPS 1.00000 TOWER_LEAD 1.00000 FLOW_DETECT 0.0 PWER_LAG 0.0 TRMER_LEAD 0.0 PRESSURE_LAG 0.0 TIMER_LEAD 0.0 PRESSURE_LAG 0.0 TIMER_LEAD 0.0 TIMER_LEAD 1.00000 FLOW_DETECT 0.0 PRESSURE_LAG 0.0 TIMER_LEAD 0.0 TIMER_LEAD 1.00000 NEW_LEAD_STATE 0.0 TIMER_LEAD 0.0 TIMER_LAG 1.00000 NEW_LEAD_STATE 0.0 LEAD_TURNING_OFF 1.00000 LEAD_STATE 0.0 LEAD_TURNING_OFF 0.0 LEAD_TURNING_OFF 1.00000 LEAD_STATE 0.0 LCAG_STATE 0.0 LCAG_STATE 0.0 LCAG_STATE 0.0 LCAG_P1 1.00000 LCAL_P2 0.0383333 LEAD_TIMER 2.00000 SEQUENCE_POINTER EB1 or LESCI = RETURN TO MAIN MENU >
Connected 0:21:39 ANSI 19200 8-N-1 SCROLL CAPS NUM Capture Print echo

6. If the user presses the <TAB> key again, the display will return to the standard "Realtime Display" page.

12 CONCLUDING REMARKS

Over the past 18 years, the rural water and wastewater industries have been moving toward wireless telemetry networks for their reduced costs and increased effectiveness. In an almost parallel time period, the move toward the use of industrial PC's for high-performance industrial control has been equally rapid and consistent. The development of the NCL-programmable WiSTAR RTU represents the natural marriage of these two technologies in a single, integrated product.

The goal of this tutorial has been to provide you with the knowledge and the tools to build innovative and useful distributed control programs for the rural water and wastewater industries. After the first reading, the techniques may seem difficult to master; but this should not deter you – You will get it eventually.

NCL empowers the programmer to tap into the expertise of the operators and engineers of water and wastewater systems; and in turn provide them with control and information networks that perform exactly as desired, and in ways in which no other RTU or PLC could compare.

You now have what you need to build the great NCL applications of tomorrow!

APPENDIX A: DIMENSIONAL LIMITS

The following list documents the present dimensional limits of the most recent NCL firmware (Navionics Research RTU firmware as of 03 December 2002). In a few instances, the limits are based upon computer memory provisions. However, in most cases, it is simply a matter of supporting the industrial I/O hardware of the standard RTU. For example, the standard unit allows 48 digital input modules, 48 relay output modules, 24 analog input modules, 24 analog output modules, and 3 integer input modules (event counters). The dimensional limitations thereby prevent the programmer from attempting to address more modules than the standard hardware configuration will support. However, for special hardware configurations with additional I/O capacity, upgraded software versions can be easily created upon request.

Maximum Usable Data Stack Length	32 Numbers
Maximum Usable Address Stack Length	32 Numbers
Maximum Number Of Aliases	300 Aliases
Maximum Alias Name Length	48 Characters
Maximum "In-Core" NCL Program Length	1000 Lines
Maximum "Out-Of-Core" NCL Program Length	5000+ Lines
Maximum Number Of Digital Setpoints	48
Maximum Number Of Analog Setpoints	40
Maximum Number Of Integer (Radiobutton)	40
Setpoints	
Maximum Number Of Time-Delay Registers	64
Maximum Number Of Digital Flags	48
Maximum Number Of Analog Flags	40
Maximum Number Of Integer Flags	40
Maximum Number Of Digital Input Modules	48
Maximum Number Of Relay Output Modules	48
Maximum Number Of Analog Input Modules	24
Maximum Number Of Analog Output Modules	24
Maximum Number Of Integer Input (Counter)	3
Modules	
Maximum Modbus/ADAM/Toshiba Variable Names	32
Maximum Number Of Remote Dependent Sites	10
Maximum Number Of USR Registers	128
Maximum Number of Subroutines	32 Subroutines,
	Including Main
Maximum Recursion Or Subroutine Calling Depth	16 Subroutines,
	Including Main
Maximum Subroutine Name Length	36 characters

APPENDIX B: EXAMPLE PROGRAM SOURCE

\$NCH - H	Header Info: UPS Station at Walnut H	ill, IL	
1	# Number of Digital Setpoints		
16	# Number of Analog Setpoints		
2	# Number of Integer Setpoints		
4	# Number of Digital Input Modules		
4	# Number of Analog Input Modules		
0	# Number of Integer Input Modules		
16	# Number of Digital Flag States		
4	# Number of Analog Flag States		
2	# Number of Integer Flag States		
1	# Number of Relay Output Modules		
0	# Number of Analog Output Modules		
# Remote	e Setup Information (No Blank Li	nes All	owed)
1	# Number of Dependent Sites (Depen	dent Si	tes Follow)
001	# Index 0 (Zero) · Walnut Hill W	ater To	wer
# Varia	ole Name Definitions (Blank Line	a Allow	ed)
T Varia		5 IIIIOW	cu,
ALTAS	FAILOVER TO PRESSURE MODE	LDS	0
111110			Ū
ALTAS	LOW SUCTION CUTOUT PSI	LAS	0
ALTAS	LOW SUCTION RELEASE PSI	LAS	1
ALTAS	HIGH SUCTION CUTIN PSI	LAS	2
ALIAD ALIAD	HIGH_BUCTION_COTIN_IDI	T'V C	3
ALIAS ALIAS	HIGH_DISCHARCE CUTCUT DET	TVC	7
ALIAS	UICU DISCHARGE_COTOOI_FSI	TVG	5
ALIAS	ION DISCHARGE_RELEASE_PSI		5
ALIAS	LOW_DISCHARGE_CUIIN_PSI	LAS	0
ALIAS	LOW_DISCHARGE_RELEASE_PSI	LAS	/
λΤΤΛΟ	DECCIDE MODE DIMD OFF DCT	тлс	0
ALIAS	DREGUIDE MODE DUMD ON DOI		0
ALIAS	PRESSURE_MODE_POMP_ON_PS1	LAS	9
אד דא מ		тъс	1.0
ALIAS	TIMER_I_START_HOUR	LAS	10
ALIAS	TIMER_I_STOP_HOUR		10
ALIAS	TIMER_2_START_HOUR	LAS	12
ALIAS	TIMER_2_STOP_HOUR		14
ALIAS	TIMER_3_START_HOUR	LAS	14
ALIAS	TIMER_3_STOP_HOUR	LAS	15
λττλΟ		тте	0
ALIAS	PUMP_MODE {AUTO-ON-OFF }	LIS	0
ALIAS	STATION_MODE { RADIO-PRESSURE-TIMER }	LIS	T
		TDM	0
ALIAS	POWER_MODULE		0
ALIAS	PUMP_POSITIVE_INDICATOR_MODULE	LDM	l
ALIAS	PHASE_FAULT_DETECT_MODULE	LDM	2
ALIAS	FLOOD_DETECT_MODULE	LDM	3
		T 7 16	0
ALIAS	DISCHARGE_PSI_MODULE		0
ALIAS	SUCTION_PSI_MODULE	LAM	1
ALIAS	PUMP_TEMP_DEGF_MODULE		2
ALIAS	PUMP_ROOM_TEMP_DEGF_MODULE	LAM	3
ALIAS	DISCHARGE_WORKING	LAMV	0
ALIAS	SUCTION_WORKING	LAMV	1
DIGEI		TDE	0
DISPL	POWER_ON	LDF	U
DISPL	POMP_RELAY	LDF	1
DISPL	PUMP_ON	LDF	2
DISPL	PHASE_FAULT_DETECT	LDF	3
DISPL	FLOOD_DETECT	LDF	4
DISPL	PUMP_FAIL	LDF	5

DISPL DISPL DISPL	COMM_F RADIO_ PRESSI	'AILURE MODE IRE MODE	LDF LDF LDF	6 7 8	
DISPL	TIMER	MODE		9	
DISPL	LOW ST	ICTION CUTOUT		10	
DISPL	HIGH S	SUCTION CUTIN		11	
DISPL	HIGH T	TSCHARGE CUTOUT		12	
DIGDI.		SCHARGE CUTTN		13	
		DCE TRANSDUCER FAIL	יוסם שתו	11	
DISPL	SUCTIC	N_TRANSDUCER_FAIL	LDF	15	
, זספדת	птесил	DOF DOT	T. A F	0	
	SUCTIC			1	
				1 2	
DIGDI	PUMP_I	EMP_DEGF		2	
DISPL	POMP_F	.OOM_IEMP_DEGF	LAP	3	
DISPL	UP_TIM	IE_MIN	LIF	0	
DISPL	PUMP_F	UNTIME_MIN	LIF	1	
ALIAS	PUMP_S	SR	LDR	0	
DISPL	COMM_1	'O_WATER_TOWER	VLD	0	
DISPL	TOWER_	LEVEL_FT	RAF	0	0
DISPL	TOWER_	_CALL_PUMP	RDF	0	2
DISPL	TOWER_	TRANSDUCER_FAIL	RDF	0	6
ALIAS	LOW_SU	JCTION_TIMER	TMR	0	
ALIAS	LOW_SU	ICTION_OK_TIMER	TMR	1	
ALIAS	HIGH_I	ISCHARGE_TIMER	TMR	2	
ALIAS	HIGH_I	ISCHARGE_OK_TIMER	TMR	3	
ALIAS	HIGH_S	UCTION_TIMER	TMR	4	
ALIAS	HIGH_S	UCTION_OK_TIMER	TMR	5	
ALIAS	LOW_DI	SCHARGE_TIMER	TMR	6	
ALIAS	LOW_DI	SCHARGE_OK_TIMER	TMR	7	
ALIAS	PHASES	_OK_TIMER	TMR	8	
ALIAS	POWER_	OK_TIMER	TMR	9	
ALIAS	FLOOD_	OK_TIMER	TMR	10	
ALIAS	PUMP_F	'AIL_TIMER	TMR	11	
ALIAS	PUMP_F	UNTIME_SECS	USR	0	
ALIAS	LASTCA	LL_TIME	USR	1	
ALIAS	DELTA_	TIME	USR	2	
ALIAS	AOK		USR	3	
ALIAS	EMERGE	NCY_CUTIN	USR	4	
ALIAS	PRESSU	IRE_PUMP	USR	5	
ALIAS	TIMER_	PUMP	USR	6	
ALIAS	TOWER_	PUMP	USR	7	
ALIAS	LOCAL_	PUMP	USR	8	
\$NCL					
# NCL #	Program				
# Stat # Auth # Date #	tion : UE nor : Ji e : 30	'S Pump Station (Villa m Mimlitz, Navionics R September 1997	ge of Walnut esearch Inc.	Hill	PWD)
# TRAI	NSFER MOD	ULE INPUTS TO FLAG INP	UTS		
	LBL	MAIN			
	LOAD	PUMP_POSITIVE_INDICAT	OR_MODULE		

PSTORE PUMP ON LOAD DISCHARGE PSI MODULE PSTORE DISCHARGE PSI LOAD SUCTION PSI MODULE PSTORE SUCTION PSI LOAD DISCHARGE WORKING NOT PSTORE DISCHARGE TRANSDUCER FAIL LOAD SUCTION WORKING NOT SUCTION_TRANSDUCER FAIL PSTORE LOAD PUMP ROOM TEMP DEGF MODULE PSTORE PUMP ROOM TEMP DEGF LOAD PUMP TEMP DEGF MODULE LOAD PUMP ROOM TEMP DEGF

FIRSTRUN HANDLER & DELTA-TIME HANDLER ...

PUMP TEMP DEGF

PSTORE

FIRSTRUN? IF FALSE GOTO 10 SYSTIME PSTORE LASTCALL TIME LOAD 5.0 SDELAY LOW SUCTION TIMER SDELAY HIGH SUCTION TIMER PSDELAY LOW DISCHARGE TIMER 12.0 LOAD PSDELAY HIGH DISCHARGE_TIMER 300.0 LOAD SDELAY LOW SUCTION OK TIMER SDELAY HIGH_SUCTION_OK_TIMER SDELAY LOW DISCHARGE_OK_TIMER SDELAY HIGH_DISCHARGE_OK_TIMER SDELAY PHASES_OK_TIMER SDELAY POWER_OK_TIMER POWER_OK_TIMER PSDELAY FLOOD_OK_TIMER LOAD 180.0 PSDELAY PUMP FAIL_TIMER

GOSUB SANITY_CHECKS

10 POP

SYSTIME LOAD LASTCALL_TIME -PSTORE DELTA_TIME SYSTIME PSTORE LASTCALL TIME # IF NEW SETPOINTS, SANITY CHECK THE SETPOINTS ...

NEW_SETPOINTS? IF_FALSE GOTO 20 GOSUB SANITY_CHECKS POP

CALCULATE SYSTEM UPTIME ...

20

UPTIME LOAD 60.0 / PSTORE UP_TIME_MIN

CHECK COMMUNICATION STATUS & PRESSURE_MODE CALC ...

COMM_TO_WATER_TOWER
COMM_FAILURE
TOWER_TRANSDUCER_FAIL
<pre>STATION_MODE{RADIO-PRESSURE-TIMER}</pre>
1.0
FAILOVER_TO_PRESSURE_MODE
<pre>STATION_MODE{RADIO-PRESSURE-TIMER}</pre>
2.0
PRESSURE_MODE

TIMER_MODE CALC ...

LOAD STATION_MODE{RADIO-PRESSURE-TIMER} LOAD 3.0 X=Y? PSTORE TIMER_MODE

RADIO MODE CALC ...

LOAD	COMM FAILURE
NOT	_
LOAD	STATION_MODE { RADIO - PRESSURE - TIMER }
LOAD	1.0
X=Y?	
AND	
PSTORE	RADIO_MODE

LOW SUCTION CALC (W/ DELAY TIMER) ...

LOAD SUCTION_PSI LOAD LOW_SUCTION_CUTOUT_PSI Y<=X? PSTORE LOW SUCTION TIMER LOAD LOW_SUCTION_TIMER NOT PSTORE LOW_SUCTION_OK_TIMER LOAD LOW_SUCTION_OK_TIMER NOT LOAD SUCTION_PSI LOAD LOW_SUCTION_RELEASE_PSI Y<X? LOAD LOW_SUCTION_CUTOUT AND OR PSTORE LOW_SUCTION_CUTOUT

HIGH DISCHARGE CALC (W/ DELAY TIMER) ...

DISCHARGE PSI
HIGH_DISCHARGE_CUTOUT_PSI
HIGH_DISCHARGE_TIMER
HIGH_DISCHARGE_TIMER
HIGH_DISCHARGE_OK_TIMER
UTCH DISCURDER OF TIMED
HIGH_DISCHARGE_OK_IIMER
DISCUNDER DET
DISCHARGE_FSI
high_Discharge_renease_fsi
HIGH DISCHARGE CUTOUT
DISCHARGE TRANSDUCER FAIL
HIGH_DISCHARGE_CUTOUT

HIGH SUCTION CALC (W/ DELAY TIMER) ...

LOAD	SUCTION_PSI
LOAD	HIGH_SUCTION_CUTIN_PSI
Y >= X?	
PSTORE	HIGH_SUCTION_TIMER
LOAD	HIGH_SUCTION_TIMER
NO.I.	
PSTORE	HIGH_SUCTION_OK_TIMER
LOAD	HIGH SUCTION OK TIMER
NOT	
LOAD	SUCTION PSI
LOAD	HIGH SUCTION RELEASE PSI
Y>X?	
LOAD	HIGH_SUCTION_CUTIN
AND	
OR	
LOAD	SUCTION_TRANSDUCER_FAIL
NOT	
AND	
PSTORE	HIGH_SUCTION_CUTIN

LOW DISCHARGE CALC (W/ DELAY TIMER) ...

LOAD DISCHARGE PSI LOAD LOW_DISCHARGE_CUTIN_PSI $Y \le X?$ PSTORE LOW_DISCHARGE_TIMER LOAD LOW DISCHARGE TIMER NOT PSTORE LOW DISCHARGE OK TIMER LOAD LOW DISCHARGE OK TIMER NOT LOAD DISCHARGE PSI LOAD LOW DISCHARGE RELEASE PSI Y < X?LOAD LOW DISCHARGE CUTIN AND OR LOAD DISCHARGE_TRANSDUCER_FAIL NOT AND PSTORE LOW_DISCHARGE_CUTIN LOAD PHASE FAULT DETECT MODULE PSTORE PHASES OK TIMER LOAD PHASES OK TIMER NOT PSTORE PHASE FAULT DETECT LOAD POWER MODULE PSTORE POWER OK TIMER LOAD POWER OK TIMER PSTORE POWER ON FLOOD DETECT MODULE LOAD PSTORE FLOOD OK TIMER FLOOD OK TIMER LOAD NOT PSTORE FLOOD DETECT

EQUIPMENT FAILURE CALC (W/ RELEASE TIMER) ...

LOAD	LOW_SUCTION_CUTOUT
NOT	
LOAD	HIGH_DISCHARGE_CUTOUT
NOT	
AND	
LOAD	PHASE_FAULT_DETECT
NOT	
AND	
LOAD	FLOOD_DETECT
NOT	
AND	
LOAD	POWER_ON
AND	
PSTORE	AOK

EMERGENCY_CUTIN CALC ...

LOAD	LOW_DISCHARGE_CUTIN
LOAD	HIGH_SUCTION_CUTIN
OR	
PSTORE	EMERGENCY_CUTIN

TIMER-MODE HANDLER ...

LOAD TIMER_1_START_HOUR LOAD TIMER_1_STOP_HOUR BETWEEN_HOURS LOAD TIMER_2_START_HOUR LOAD TIMER_2_STOP_HOUR BETWEEN_HOURS LOAD TIMER_3_START_HOUR LOAD TIMER_3_STOP_HOUR BETWEEN_HOURS OR OR LOAD TIMER_MODE AND PSTORE TIMER_PUMP

PRESSURE-MODE HANDLER ...

DISCHARGE_PSI
PRESSURE MODE PUMP ON PSI
DISCHARGE_PSI
PRESSURE_MODE_PUMP_OFF_PSI
PRESSURE_PUMP
PRESSURE_MODE
_
PRESSURE_PUMP

TOWER-MODE HANDLER ...

LOAD	TOWER	CALL	PUMP
LOAD	RADIO	MODE	
AND	_	_	
PSTORE	TOWER	PUMP	

LOCAL-MODE PUMP HANDLER ...

LOAD	PRESSURE_PUMP
LOAD	TIMER_PUMP
LOAD	EMERGENCY CUTIN
OR	—
OR	
PSTORE	LOCAL_PUMP

FINAL PUMP ON-OFF CALC ...

LOAD	TOWER	PUMP
LOAD	LOCAL	PUMP

OR PUMP MODE{AUTO-ON-OFF} LOAD LOAD 2.0 X=Y? OR LOAD AOK AND LOAD PUMP MODE{AUTO-ON-OFF} LOAD 3.0 X<>Y? AND STORE PUMP RELAY PUMP_SSR PSTORE

PUMP FAIL CALC (WITH DELAY TIMER) ...

LOAD PUMP_RELAY LOAD PUMP_ON XOR PSTORE PUMP_FAIL_TIMER LOAD PUMP_FAIL_TIMER PSTORE PUMP_FAIL

PUMP RUNTIME CALC ...

LOAD	PUMP ON
LOAD *	DELTA_TIME
LOAD +	PUMP_RUNTIME_SECS
ABS	
STORE LOAD	PUMP_RUNTIME_SECS 60.0
/	
LOAD MOD	100000000.0
PSTORE	PUMP_RUNTIME_MIN

END

LBL SANITY_CHECKS

CHECK PUMP_1_MODE RANGE ...

LOAD 3.0 LOAD 1.0 LOAD PUMP_MODE{AUTO-ON-OFF} MAX MIN PSTORE PUMP_MODE{AUTO-ON-OFF}

CHECK STATION_MODE RANGE ...

ER }
-

PSTORE STATION_MODE{RADIO-PRESSURE-TIMER}

RTN

APPENDIX C: ADVANCED EXAMPLE I – WATER TOWER

\$NCH Co	ntrol Logic Setup Info: RE Wat	ter - An	ngle	Road	Elevated	Tank
0	# Number of Discrete Setpoin	nts				
9	# Number of Analog Setpoin	nts				
0	# Number of Integer Setpoin	nts				
1	# Number of Discrete Input	Module	3			
2	# Number of Analog Input	Module	-			
0	# Number of Integer Input	Module	2			
8	# Number of Diggrete Elag	States	5			
2	# Number of Applog Elag	States				
5	# Number of Integer Elag	States				
1	# Number of Poley. Output	Modula	~			
T	# Number of Apples Output	Modules	5			
U H Domot	# Number of Analog Output	Modules	5			
# Remou	When here of Description	(D		0. ¹ +		
1	# Number of Dependent Sites	(Depend	lent	SILES	(FOLLOW	
002	# Berryville BPS					
# Varia	ble Name Definitions					
# Valla.	DIE Name Delimitions					
ΔΤ.Τ Δ Ω	I.FAD OFF I.FVFI.	TAC	0			
ALIAS	LEAD_OFF_LEVEL		1			
ALIAS			1 1			
ALIAS	LAG_OFF_LEVEL		2			
ALIAS	LAG_ON_LEVEL	LAS	3			
ALIAS	HEATER_THERMO_DEGF	LAS	4			
ALIAS	AUX_HIGH_FT	LAS	5			
ALIAS	AUX_HIGH_RELEASE_FT	LAS	6			
ALIAS	AUX_LOW_FT	LAS	7			
ALIAS	AUX_LOW_RELEASE_FT	LAS	8			
ALTAS	POWER MODIILE	MCLT	0			
			Ū			
ALIAS	TANK LEVEL MODULE	LAM	0			
ALIAS	RTU TEMP MODULE	LAM	1			
ALIAS	LEVEL_WORKING	LAMV	0			
			0			
ALIAS	TANK_LEVEL_RATE	LARM	0			
AT.TAG	POWER ON	T.DF	0			
ALIAS	CALL FOR LEAD	TDE	1			
ALIAS	CALL_FOR_LEAD		- -			
ALIAS	CALL_FOR_LAG	LDF	2			
ALIAS	RIU_HEATER_ON	LDF	3			
ALIAS	COMM_FAILURE	LDF	4			
ALIAS	AUX_HIGH	LDF'	5			
ALIAS	AUX_LOW	LDF	6			
ALIAS	TRANSDUCER_FAIL	LDF	7			
λΙΤΛΟ		тлп	0			
ALIAS		цаг тар	1			
ALIAS	RIU_IEMP_DEGF		1 2			
ALIAS	TANK_FLOW_RATE_FPH	LAF	2			
ALIAS	UP_TIME_MIN	LIF	0			
ALIAS	RTU_HEATER_SSR	LDR	0			
ALIAS	LEAD ON TIMER	TMR	0			
ALIAS	LEAD OFF TIMER	TMR	1			
ALTAS	LAG ON TIMER	TMR	2			
ALTAS	LAG OFF TIMER	TMR	3			
ALTAS	LOW ON TIMER	TMR	4			
AT'TYG	LOW OFF TIMER	TMR	т 5			
171170		T 1.11/	5			

ALIAS HIGH ON TIMER TMR 6 ALIAS HIGH OFF TIMER TMR 7 ALIAS LASTCALL TIME USR 0 ALIAS DELTA TIME USR 1 VLD 0 Mtc ALIAS COMM TO PUMP STATION ALIAS COMM MISSES TO PUMP \$NCL # NCL Program # # Client : RE Water Corporation # Station : Angle Road Elevated Tank # Author : Tatyana Mimlitz, Navionics Research Inc. # Date : 19 November 2002 # # Transfer Module Inputs To Flag Inputs ... LBL MAIN LOAD POWER MODULE PSTORE POWER ON LOAD TANK LEVEL_MODULE PSTORE TANK LEVEL FT LOAD RTU TEMP MODULE PSTORE RTU TEMP DEGF LOAD TANK LEVEL RATE LOAD 60.0 * PSTORE TANK FLOW RATE FPH LOAD COMM TO PUMP STATION NOT PSTORE COMM_FAILURE LOAD LEVEL WORKING NOT PSTORE TRANSDUCER_FAIL # CALCULATE DELTA-TIME SINCE LAST CALL ... SYSTIME LOAD LASTCALL TIME PSTORE DELTA TIME SYSTIME PSTORE LASTCALL TIME # CALCULATE SYSTEM UPTIME ... UPTIME LOAD 60.0 / PSTORE UP TIME MIN # DEFINE TIMEOUTS

FIRSTRUN? IF_FALSE GOTO 110 LOAD 0 STORE LOW_ON_TIMER STORE LOW_OFF_TIMER STORE HIGH_ON_TIMER STORE HIGH_OFF_TIMER STORE LEAD_OFF_TIMER STORE LAG_ON_TIMER PSTORE LAG_OFF_TIMER LOAD 60 SDELAY LOW_ON_TIMER SDELAY LOW_OFF_TIMER SDELAY HIGH_ON_TIMER SDELAY LEAD_OFF_TIMER SDELAY LEAD_OFF_TIMER SDELAY LEAD_OFF_TIMER SDELAY LEAD_OFF_TIMER SDELAY LEAD_OFF_TIMER SDELAY LAG_ON_TIMER PSDELAY LAG_OFF_TIMER

TANK LEVEL FT

HYSTERESIS LO W TIMER

TRANSDUCER FAIL

TANK LEVEL FT

LOADA LEAD_ON_LEVEL LOADA LEAD_OFF_LEVEL LOADA LEAD_ON_TIMER LOADA LEAD_OFF_TIMER LOADA CALL FOR LEAD

PSTORE CALL FOR LEAD

59

LOADA LAG_ON_LEVEL LOADA LAG_OFF_LEVEL LOADA LAG_OFF_LEVEL LOADA LAG_OFF_TIMER LOADA LAG_OFF_TIMER LOADA CALL_FOR_LAG MACRO HYSTERESIS_LO_W_TIMER LOAD TRANSDUCER_FAIL NOT AND PSTORE CALL FOR LAG

HEATER CALC ...

110

POP

LEAD PUMP CALC ...

MACRO

LAG PUMP CALC ...

LOADA

LOAD

NOT AND

LOADA

LOADA	RTU_HEATER_ON
LOADA	RTU_TEMP_DEGF
LOADA	HEATER_THERMO_DEGF
LOAD	5.0
MACRO	SYMMETRIC DEADBAND
STORE	RTU_HEATER_ON

AUX_HIGH_LEVEL CALC ...

LOADA	TANK LEVEL FT
LOADA	AUX_HIGH_FT
LOADA	AUX_HIGH_RELEASE_FT
LOADA	HIGH_ON_TIMER
LOADA	HIGH_OFF_TIMER
LOADA	AUX_HIGH
MACRO	HYSTERESIS_HI_W_TIMER
LOAD	TRANSDUCER_FAIL
NOT	
AND	
PSTORE	AUX_HIGH

AUX_LOW_LEVEL CALC ...

LOADA	TANK_LEVEL_FT
LOADA	AUX_LOW_FT
LOADA	AUX_LOW_RELEASE_FT
LOADA	LOW_ON_TIMER
LOADA	LOW_OFF_TIMER
LOADA	AUX_LOW
MACRO	HYSTERESIS_LO_W_TIMER
LOAD	TRANSDUCER_FAIL
NOT	—
AND	
PSTORE	AUX_LOW

END

APPENDIX D: ADVANCED EXAMPLE II – PUMP STATION

\$NCH Co	ontrol Logic Setup Info: RE Water -	Berryv	ille B	PS
1	# Number of Discrete Setpoints			
21	# Number of Analog Setpoints			
6	# Number of Integer Setpoints			
5	# Number of Discrete Input Modu	les		
4	# Number of Analog Input Modu	les		
2	# Number of Integer Input Modu	1eg		
16	# Number of Discrete Flag Stat			
- T O	# Number of Analog Elag Stat	00		
6	# Number of Integer Elag Stat	65		
0	# Number of Delay Output Medu			
0	# Number of Areles Output Modu	les		
	# Number of Analog Output Modu	Ies		
# Remot	te RIU Setup Information	1	a.'.	\
1	# Number of Dependent Sites (Dep	endent s	sites .	FOITOW)
001	# New Elevated Tank At Angle Roa	d		
# Varia	able Name Definitions			
ALIAS	ALTERNATE PUMPS	LDS	0	
	-			
ALTAS	GST VALVE CLOSE FT	LAS	0	
ALTAS	GST VALVE OPEN FT	LAS	1	
ALTAS	VALVE FEED LIMIT PSI	LAS	2	
ALIAD ALIAD	VALVE CAIN		2	
ALIAS	VALVE_GAIN	TAG	1	
ALIAS	VALVE_MAASIEP		4 F	
ALIAS	VALVE_XDUCER_FAIL_OPEN_PERCENT	LAS	5	
ALIAS		LAS	6	
ALIAS	LOW_GST_RELEASE_SECS	LAS	.7	
ALIAS	VFD_DISCHARGE_LIMIT_PSI	LAS	8	
ALIAS	VFD_GAIN	LAS	9	
ALIAS	VFD_MAXSTEP	LAS	10	
ALIAS	VFD_XDUCER_FAIL_SPEED_PERCENT	LAS	11	
ALIAS	FLOW_DETECT_GPM	LAS	12	
ALIAS	PRESSURE_MODE_RUNTIME_HRS	LAS	13	
ALIAS	PRESSURE MODE LEAD ON PSI	LAS	14	
ALIAS	TIMER 1 START HOUR	LAS	15	
ALIAS	TIMER 1 STOP HOUR	LAS	16	
ALIAS	TIMER 2 START HOUR	LAS	17	
ALIAS	TIMER 2 STOP HOUR	LAS	18	
ALTAS	TIMER 3 START HOUR	LAS	19	
ALTAS	TIMER 3 STOP HOUR	LAS	20	
ALIAD		ЦАО	20	
ATTAC		тте	0	
ALIAS	MODE (RADIO-PRESS-IIMER-EXI)	T T C	1	
ALIAS	FAILOVER (PRESS-IIMER-EAI)	LIS	1	
ALIAS	PUMP_1{AUTO-ON-OFF}		2	
ALIAS	PUMP_2{AUTO-ON-OFF}	LIS	3	
ALIAS	LEAD_PUMP{P1-P2}	LIS	4	
ALIAS	LAG_PUMP{P1-P2}	LIS	5	
ALLAS	POWER OK MODIILE	T.DM	Ο	
AT.TAC	PIMP FEEDBACK MODILLE	T.DM	1	
AT.TAC	GST VALVE OPEN MODILLE		ר ד ג	
ATTYG	COT VALVE CLOCED MODULE		Л	
CHITYS		ויועע	4	
ALTAS	DISCHARGE MODILLE	Τ.ΔΜ	0	
ALTAS	GST MODULE	T.AM	1	
ALTAS	ROOM TEMP MODILLE	Τ.ΔΜ	2	
AT.TAC	FFFD MODILLF	T.7M	2	
CUTUD			2	

ALIAS ALIAS ALIAS	DISCHARGE_WORKING GST_WORKING FEED_WORKING	LAMV LAMV LAMV	0 1 3
ALIAS ALIAS	METER_OUT_MODULE METER_IN_MODULE	LIM LIM	0 1
ALIAS	P1 SSR	LDR	0
ALTAS	P2 SSR		1
ALIAS	EXT_MODE_SSR	LDR	7
ALIAS	VALVE_POSITION_MODULE	LAOM	4
ALIAS	VFD_SPEED_MODULE	LAOM	5
DISPL	POWER_ON	LDF	0
DISPL	PUMP_1_ON	LDF	1
DISPL	PUMP_2_ON	LDF	2
DISPL	PUMP_1_FAIL	LDF	3
DISPL	PUMP_2_FAIL	LDF	4
DISPL	GST_VALVE_OPEN	LDF	5
DISPL	GST_VALVE_FAIL	LDF	6
DISPL	COMM_FAILURE	LDF	7
DISPL	RADIO_MODE	LDF	8
DISPL	PRESSURE_MODE	LDF	9
DISPL	TIMER MODE	LDF	10
ALIAS	EXT MODE	LDF	11
DISPL	LOW GST CUTOUT	LDF	12
DISPL	DISCHARGE TRANSDUCER FAIL	LDF	13
DISPL	GST TRANSDUCER FAIL	LDF	14
DISPL	FEED_TRANSDUCER_FAIL	LDF	15
DISPL	DISCHARGE PSI	LAF	0
DISPL	GST LEVEL FT	LAF	1
DISPL	FEED PSI	LAF	2
DISPL	FLOW RATE IN GPM	LAF	3
DISPL	FLOW RATE OUT GPM	LAF	4
DISPL	VFD SPEED PERCENT	LAF	5
DISPL	GST VALVE OPEN PERCENT	LAF	6
DISPL	ROOM_TEMP_DEGF	LAF	7
DISPL	METER IN GAL	LIF	0
DISPL	METER OUT GAL	LIF	1
DISPL	PUMP 1 RUNTIME MIN	LIF	2
DISPL	PUMP 2 RUNTIME MIN	LIF	3
ALIAS	CURRENT LEAD PUMP	LIF	4
ALIAS	UP_TIME_MIN	LIF	5
DISPL	COMM TO TOWER	VLD	0
DISPL	TOWER LEVEL FT	RAF	0 0
DISPL	TOWER CALL PUMP	RDF	0 1
DISPL	TOWER_TRANSDUCER_FAIL	RDF	07
ALIAS	POWER OK TIMER	TMR	0
ALIAS	P1 FAIL TIMER	TMR	1
ALIAS	P2 FAIL TIMER	TMR	2
ALIAS	PRESSURE LEAD ON TIMER	TMR	3
ALIAS	PRESSURE LEAD OFF TIMER	TMR	4
ALIAS	P1 DELAY TIMER	TMR	5
ALIAS	P2 DELAY TIMER	TMR	6
ALTAS	P1 OFF TIMER	TMR	7
ATITAS	P2 OFF TIMER	TMR	, 8
ALIAS	LGST TIMER	TMR	9
	_		

ALIAS	LGST_RELEASE_TIMER	TMR	10
ALIAS	HSP_SAMPLE_TIMER	TMR	11
ALIAS	GST_VALVE_FAIL_TIMER	TMR	12
ALIAS	P1_RUNTIME_SECS	USR	0
ALIAS	P2_RUNTIME_SECS	USR	1
ALIAS	LEAD_PUMP_DEF	USR	2
ALIAS	LAG_PUMP_DEF	USR	3
ALIAS	LASTCALL_TIME	USR	4
ALIAS	DELTA_TIME	USR	5
ALIAS	TOWER_LEAD	USR	6
ALIAS	PRESSURE_LEAD	USR	7
ALIAS	TIMER_LEAD	USR	8
ALIAS	NEW_LEAD_STATE	USR	9
ALIAS	LEAD_TURNING_ON	USR	10
ALIAS	LEAD_TURNING_OFF	USR	11
ALIAS	LEAD_STATE	USR	12
ALIAS	LAG_STATE	USR	13
ALIAS	LOCAL_P1	USR	14
ALIAS	LOCAL_P2	USR	15
ALIAS	TOWER_CONTROL_FAIL	USR	16
ALIAS	LEAD_TIMER	USR	17
ALIAS	SEQUENCE_POINTER	USR	18
ALIAS	TRY_1_FAIL	USR	19
ALIAS	TRY_2_FAIL	USR	20
ALIAS	AOK	USR	21
ALIAS	P1_FINAL	USR	22
ALIAS	P2 FINAL	USR	23
ALIAS	LAST PULSE TIME	USR	24
ALIAS	LAST METER TIME	USR	25
ALIAS	LAST METER OUT	USR	26
ALIAS	FLOWING_OUT_USR	USR	27
ALIAS	GST_VALVE_OPEN_USR	USR	28

\$NCL

NCL Program
#
#
Client : RE Water Corporation
Station : Berryville Booster Pump Station
Author : Tatyana Mimlitz, Navionics Research Inc.
Date : 18 November 2002
#

TRANSFER MODULE INPUTS TO FLAG INPUTS ...

LBL MAIN

IF FIRSTRUN, INITIALIZE VARIABLES AND TIMERS ...

FIRSTRUN? IF_FALSE GOTO 10 SYSTIME STORE LAST_PULSE_TIME PSTORE LASTCALL_TIME LOAD METER OUT MODULE

NEW SETPOINTS? FIRSTRUN? OR IF FALSE GOTO 20 LOAD PRESSURE MODE RUNTIME HRS

IF NEW-SETPOINTS OR FIRSTRUN, SANITY CHECK THE SETPOINTS ...

P2_OFF_TIMER STORE LGST RELEASE_TIMER STORE PSTORE POWER OK TIMER 25.0 LOAD PSDELAY HSP SAMPLE TIMER LOAD 100.0 SDELAY P1 OFF TIMER SDELAY P2 OFF TIMER SDELAY P1 DELAY TIMER PSDELAY P2 DELAY TIMER LOAD 120.0 PSTORE LGST TIMER LOW GST RELEASE SECS LOAD PSDELAY LGST RELEASE TIMER LOAD 900.0 PSDELAY PRESSURE_LEAD_ON_TIMER LOAD PRESSURE MODE RUNTIME HRS LOAD 3600.0 * PSDELAY PRESSURE LEAD OFF TIMER LOAD 600.0 SDELAY P1_FAIL_TIMER PSDELAY P2 FAIL TIMER

PSTORE

LOAD

LOAD

LOAD

STORE

10

POP

STORE

METER OUT GAL

STOREPUMP_1_FAILSTOREPUMP_2_FAILSTORELGST_TIMERSTOREP1_FAIL_TIMERSTOREP2_FAIL_TIMERSTOREP1_DELAY_TIMERSTOREHSP_SAMPLE_TIMERPSTOREPRESSURE_LEAD_ON_TIMER

P1 OFF TIMER

0.0 STORE FLOW RATE IN GPM PSTORE FLOW RATE OUT GPM

0.0

STORE TRY 2 FAIL STORE PUMP 1 FAIL

1.0

TRY 1 FAIL

LOAD 3600.0

PSDELAY PRESSURE_LEAD_OFF_TIMER

LOAD LOW_GST_RELEASE_SECS PSDELAY LGST_RELEASE_TIMER

GOSUB SANITY_CHECKS GOSUB MY_PUMP_SEQUENCE_SETUP

LOAD LEAD_PUMP_DEF PSTORE CURRENT_LEAD_PUMP

20 POP

TIME CALCULATOR ...

SYSTIME LOAD LASTCALL_TIME -PSTORE DELTA_TIME SYSTIME PSTORE LASTCALL_TIME

SYSTEM UPTIME CALCULATOR ...

UPTIME LOAD 60.0 / PSTORE UP_TIME_MIN

TRANSFER MODULE STATES INTO FLAG STATES ...

LOAD	POWER_OK_MODULE
PSTORE	POWER_OK_TIMER
LOAD	POWER_OK_TIMER
PSTORE	POWER_ON
LOAD LOAD AND	PUMP_FEEDBACK_MODULE FLOWING_OUT_USR
LOAD	P1_SSR
PSTORE LOAD AND	PUMP_1_ON P2_SSR
PSTORE	PUMP_2_ON
LOAD	DISCHARGE_MODULE
PSTORE	DISCHARGE_PSI
LOAD	GST_MODULE
PSTORE	GST_LEVEL_FT
LOAD	FEED_MODULE
PSTORE	FEED_PSI
LOAD	ROOM_TEMP_MODULE
PSTORE	ROOM_TEMP_DEGF

LOAD DISCHARGE_WORKING NOT PSTORE DISCHARGE_TRANSDUCER_FAIL LOAD GST_WORKING NOT PSTORE GST_TRANSDUCER_FAIL LOAD FEED_WORKING NOT PSTORE FEED_TRANSDUCER_FAIL

"FLOW RATE IN" CALCULATION (LOW-SPEED PULSE METER)...

	LOAD	METER IN MODULE
	LOAD	METER IN GAL
	-	
	IF FALSE	
	GOTO	692
	LOAD	60.0
	*	
	SYSTIME	
		LAST PIILSE TIME
	-	
		1 0
	MAX	1.0
	/	
		FIOW PATE IN COM
	CVCTTME	FIOW_KAIE_IN_GFM
	DCTOPE	דאפידי סווו פעי ידאע
	FSIOKE	METER IN MODILE
		METER_IN_MODULE
	PSTORE	METER_IN_GAL
	LOAD	0.0
692	POP	
	LOAD	GST_VALVE_OPEN
	LOAD	FLOW_RATE_IN_GPM
	*	
	PSTORE	FLOW_RATE_IN_GPM

"FLOW RATE OUT" CALCULATION (HIGH-SPEED PULSE METER)...

LOAD	METER_OUT_MODULE
PSTORE	METER OUT GAL
LOAD	1.0
PSTORE	HSP_SAMPLE_TIMER
LOAD	HSP SAMPLE TIMER
IF FALSE	
GOTO	693
LOAD	0.0
PSTORE	HSP SAMPLE TIMER
LOAD	1.0
PSTORE	HSP SAMPLE TIMER
LOAD	LAST METER OUT
LOAD	METER OUT GAL
STORE	LAST METER OUT
-	
ABS	
LOAD	LAST METER TIME

SYSTIME STORE LAST_METER_TIME _ ABS LOAD 1.0 MAX / LOAD 60.0 * PSTORE FLOW_RATE_OUT_GPM SYSTIME PSTORE LAST_METER_TIME POP 693 LOAD FLOW_RATE_OUT_GPM LOAD FLOW_DETECT_GPM Y>X?

PSTORE FLOWING OUT USR

GST FILL VALVE HANDLER ...

LOADA	GST_LEVEL_FT
LOADA	GST_VALVE_OPEN_FT
LOADA	GST_VALVE_CLOSE_FT
LOADA	GST_VALVE_OPEN
MACRO	HYSTERESIS_LO
PSTORE	GST_VALVE_OPEN_USR

GST FILL VALVE "PERCENT OPEN" CALCULATION ...

LOAD	GST_VALVE_OPEN_PERCENT
LOAD	VALVE GAIN
LOAD	VALVE MAXSTEP
LOAD	FEED PSI
LOAD	0.0
LOAD	VALVE_FEED_LIMIT_PSI
LOAD	0.0
MACRO	FEEDBACK CONTROL
LOAD	FEED_TRANSDUCER_FAIL
NOT	
*	
LOAD	VALVE_XDUCER_FAIL_OPEN_PERCENT
LOAD	FEED_TRANSDUCER_FAIL
*	
+	
LOAD	GST_VALVE_OPEN_USR
*	
STORE	GST_VALVE_OPEN_PERCENT
LOAD	100.0
/	
PSTORE	VALVE_POSITION_MODULE

VALVE FAIL CALCUALTION ...

LOAD	GST_VALVE_OPEN_MODULE
LOAD	GST VALVE OPEN PERCENT
LOAD	100.0
X=Y?	
XOR	
LOAD	GST_VALVE_CLOSED_MODULE

LOAD GST_VALVE_OPEN_PERCENT LOAD 0.0 X=Y? XOR OR PSTORE GST_VALVE_FAIL_TIMER LOAD GST_VALVE_FAIL_TIMER PSTORE GST_VALVE_FAIL

"VALVE OPEN" CALCULATION ...

LOAD	GST_	VALVE	CLOSED	MODULE
NOT				
PSTORE	GST_	VALVE_	OPEN	

LOW GST CUTOUT CALC ...

R
0
ΙL

CHECK COMMUNICATION STATUS ...

LOAD	COMM	TO	TOWER
NOT			
PSTORE	COMM	_FA]	LURE

BPS_MODE_CALC ...

LOADA	MODE { RADIO-PRESS-TIMER-EXT }
LOADA	FAILOVER { PRESS-TIMER-EXT }
LOADA	COMM TO TOWER
LOADA	TOWER_TRANSDUCER_FAIL
MACRO	BPS_MODE_CALC
STORE	EXT_MODE
NOT	_
PSTORE	EXT_MODE_SSR
PSTORE	TIMER_MODE
LOAD	DISCHARGE_TRANSDUCER_FAIL
NOT	
AND	
PSTORE	PRESSURE_MODE
PSTORE	RADIO_MODE

TIMER HANDLER ...

LOAD TIMER_1_START_HOUR LOAD TIMER_1_STOP_HOUR BETWEEN_HOURS LOAD TIMER_2_START_HOUR LOAD TIMER_2_STOP_HOUR BETWEEN_HOURS LOAD TIMER_3_START_HOUR LOAD TIMER_3_STOP_HOUR BETWEEN_HOURS OR OR LOAD TIMER_MODE AND PSTORE TIMER_LEAD

TOWER HANDLER ...

LOAD	TOWER	CALL	PUMP
LOAD	RADIO	MODE	_
AND	_	_	
PSTORE	TOWER_	LEAD	

PRESSURE-LEAD HANDLER ...

LOADA	DISCHARGE_PSI
LOADA	PRESSURE_MODE_LEAD_ON_PSI
LOADA	PRESSURE_LEAD_ON_TIMER
LOADA	PRESSURE_LEAD_OFF_TIMER
MACRO	HYBRID_PRESSURE_LO
LOAD	PRESSURE_MODE
AND	_
PSTORE	PRESSURE_LEAD

LEAD_STATE CALC ...

TOWER_LEAD
PRESSURE_LEAD
TIMER_LEAD
NEW_LEAD_STATE
LEAD_STATE
LEAD_TURNING_ON
NEW_LEAD_STATE
LEAD_STATE
LEAD_TURNING_OFF
40
0
LEAD_TIMER

LOAD	NEW LEAD STATE
PSTORE	LEAD_STATE

LOCAL_P1 & LOCAL_P2 CALC ...

40

LOAD	LEAD	STATE	Ξ
LOAD	LEAD	PUMP	DEF
LOAD	1.0		_

X=Y? AND PSTORE LOCAL_P1 LOAD LEAD_STATE LOAD LEAD_PUMP_DEF LOAD 2.0 X=Y? AND PSTORE LOCAL_P2

AOK CALC ...

POWER_ON
LOW_GST_CUTOUT
AOK

FINAL P1 CALC ...

LOAD	LOCAL P1
LOAD	PUMP $\overline{1}$ {AUTO-ON-OFF}
LOAD	2.0
X=Y?	
OR	
LOAD	AOK
AND	
LOAD	<pre>PUMP_1{AUTO-ON-OFF}</pre>
LOAD	3.0
X=Y?	
NOT	
AND	
LOAD	P2_SSR
NOT	
AND	
PSTORE	P1_DELAY_TIMER
LOAD	P1_DELAY_TIMER
STORE	P1_FINAL
NOT	
PSTORE	P1_OFF_TIMER
LOAD	P1_OFF_TIMER
NOT	
LOAD	P1_FINAL
OR	
PSTORE	P1_SSR

P1 FAIL CALC ...

LOAD	P1_SSR
LOAD	PUMP 1 ON
XOR	
PSTORE	P1_FAIL_TIMER
LOAD	P1_FAIL_TIMER
STORE	TRY_1_FAIL
LOAD	PUMP_1_FAIL
LOAD	PUMP_1_ON
NOT	
AND	
OR	
PSTORE PUMP 1 FAIL

FINAL P2 CALC ... LOAD LOCAL P2 LOAD PUMP_2{AUTO-ON-OFF} LOAD 2.0 X=Y?OR LOAD AOK AND LOAD PUMP 2{AUTO-ON-OFF} LOAD 3.0 X=Y?NOT AND LOAD P1 SSR NOT AND PSTORE P2 DELAY TIMER P2_DELAY_TIMER LOAD STORE P2 FINAL NOT PSTORE P2 OFF TIMER P2 OFF TIMER LOAD NOT LOAD P2 FINAL OR PSTORE P2 SSR # P2 FAIL CALC ... LOAD P2 SSR LOAD PUMP 2 ON

XOR P2 FAIL TIMER PSTORE LOAD P2 FAIL TIMER $TR\overline{Y} 2_F\overline{A}IL$ STORE $PUMP \overline{2} FAIL$ LOAD PUMP 2 ON LOAD NOT AND OR PSTORE PUMP 2 FAIL

VFD SPEED CALCULATION...

Note that when the pumps are to be shut down

(p1_final=0 AND p2_final=0), the discharge pressure

limit is artificially set to zero. This ensures that

 $\ensuremath{\texttt{\#}}$ the speed is tapered down to zero before pump shutdown.

#

LOAD VFD SPEED PERCENT LOAD VFD GAIN LOAD VFD MAXSTEP LOAD 0.0 LOAD DISCHARGE PSI LOAD 0.0 LOAD VFD DISCHARGE LIMIT PSI LOAD P1 FINAL LOAD P2 FINAL

OR * MACRO FEEDBACK CONTROL LOAD DISCHARGE TRANSDUCER FAIL NOT * LOAD VFD_XDUCER_FAIL_SPEED_PERCENT LOAD DISCHARGE_TRANSDUCER_FAIL * + P1_SSR P2_SSR LOAD LOAD OR * VFD_SPEED_PERCENT 100.0 STORE LOAD / PSTORE VFD SPEED MODULE

PUMP-1 RUNTIME ...

(WILL ROLLOVER AFTER ~20 YEARS OF RUNTIME)

PUMP_1_ON DELTA_TIME LOAD LOAD * LOAD P1 RUNTIME SECS + ABS 60000000.0 LOAD MOD STORE P1 RUNTIME SECS LOAD 60.0 / PSTORE PUMP 1 RUNTIME MIN

PUMP-2 RUNTIME ... # (WILL ROLLOVER AFTER ~20 YEARS OF RUNTIME)

> LOAD PUMP 2 ON DELTA_TIME LOAD * LOAD P2 RUNTIME SECS + ABS LOAD 60000000.0 MOD P2_RUNTIME_SECS STORE LOAD 60.0 / PSTORE PUMP_2_RUNTIME_MIN

IF THE LEAD PUMP FAILS, THE LEAD HAS RUN FOR 12 HOURS, # OR PUMP-A JUST TURNED OFF, INCREMENT ALTERNATOR ...

> LOAD LEAD_TIMER LOAD 12 Y>X? LOAD LEAD_PUMP_DEF LOAD 1

X=Y? LOAD TRY_1_FAIL LOAD PUMP_1{AUTO-ON-OFF} LOAD 3.0 X=Y? OR AND LOAD LEAD_PUMP_DEF LOAD 2 X=Y? TRY_2_FAIL PUMP_2{AUTO-ON-OFF} LOAD LOAD LOAD 3.0 X=Y? OR AND OR LOAD LEAD STATE AND LOAD LEAD_TURNING_OFF OR OR LOAD ALTERNATE PUMPS AND IF FALSE GOTO 110 LOAD SEQUENCE POINTER LOAD 2.0 MOD INCR PSTORE SEQUENCE POINTER LOAD 0.0 PSTORE LEAD_TIMER GOSUB MY_PUMP_SEQUENCE_SETUP LOAD LEAD PUMP DEF PSTORE CURRENT LEAD PUMP POP 110 # INCREMENT LEAD TIMER ... LEAD_STATE LOAD IF FALSE 555 GOTO LOAD LEAD_TIMER LEAD_TIMER DELTA_TIME 3600 LOAD LOAD 3600 / + PSTORE LEAD TIMER 555 POP END

#

ADDITIONAL SUBROUTINES...

LBLSANITY CHECKS LOADA LEAD PUMP{P1-P2} LOAD 2.0 LOAD 1.0 MACRO BOUNDS_CHECK LAG PUMP{P1-P2} LOADA LOAD 2.0 LOAD 1.0 MACRO BOUNDS CHECK PUMP 1{AUTO-ON-OFF} LOADA LOAD 3.0 LOAD 1.0 BOUNDS CHECK MACRO LOADA PUMP 2{AUTO-ON-OFF} LOAD 3.0 LOAD 1.0 MACRO BOUNDS_CHECK MODE { RADIO - PRESS - TIMER - EXT } LOADA LOAD 4.0 LOAD 1.0 MACRO BOUNDS CHECK FAILOVER { PRESS-TIMER-EXT } LOADA LOAD 3.0 LOAD 1.0 MACRO BOUNDS_CHECK RTN # _____ LBLMY PUMP SEQUENCE SETUP ALTERNATE PUMPS LOADA SEQUENCE POINTER LOADA LEAD $PUMP{P1-P2}$ LOADA LAG PUMP{P1-P2} LOADA LEAD PUMP DEF LOADA LAG PUMP DEF LOADA MACRO PUMP SEQUENCE SETUP2 RTN