

Programmable Industrial Control
Using The NCL Programming Language

Telemetry And Control System Engineering Series

Version 2.06
03 March 2013

© 1995-2013 Navionics Research, Inc.
All Rights Reserved

Navionics Research, Inc.
Saint Louis, Missouri USA

wireless-telemetry.com

RI RI

 1

TABLE OF CONTENTS

Chapter Title Page

1 Introduction 2
2 The “LOGIC.NPP” File 5
3 “LOGIC.NPP” File Header Structure 6
4 NCL Register Names 12
5 Basic Programming Techniques 14
6 NCL Command Summary 15
7 Using Macros To Simplify NCL Programs 21
8 Converting Relay-Ladder-Logic To NCL 36
9 Loading The “LOGIC.NPP” File Into The RTU 38
10 Debugging With “NDB”: The NCL Debugger 39
11 Debugging With The Advanced Realtime Display 44
12 Concluding Remarks 46

Appendix Title Page

A Dimensional Limits 47
B Example Program Source 48
C Advanced Example I – Water Tower 56
D Advanced Example II – Pump Station 60

 2

1 INTRODUCTION

In 1995, Navionics Research introduced the WiSTAR Network, an acronym derived
from Wireless System Telemetry And Remote-Control. This product was designed to
solve the problems posed by the complex distributed control and monitoring
requirements of the rural water and wastewater industries. Early in the development
stages, it became apparent that the WiSTAR RTU should support a control language
which offered the flexibility of field programming and interactive debugging. This meant
that, in addition to its wireless communication and telemetry functions, the WiSTAR
RTU should offer the power and flexibility of programmable industrial control logic.
Furthermore, because the control decisions of rural water systems are optimally made
across the wireless link, the control language would be most effective if it contained a
library of functions which specifically address inter-site control, data-sharing, and radio-
link status evaluation. As a result of these demanding requirements, NCL, an acronym
derived from Network Control Language, was developed. It is offered as Navionics
Research's open control language with a focus on solving difficult distributed wireless
control problems.

This reference and tutorial is designed for electricians, technicians, and engineers who
wish to learn the art and science of NCL programming. It is assumed that the reader
already has a modest amount of programming experience in a language such as C++,
BASIC, FORTRAN, Assembly Language, or PLC (Programmable Logic Controller)
Relay Ladder Logic.

Although NCL is a very simple programming language, it can be used to develop
sophisticated applications. In structure, the language contains many familiar features,
which have been borrowed from other high-level programming languages. At the same
time, Navionics' implementation of the integrated compiler/interpreter/debugger, which
is a component of Navionics Research’s RTU firmware, is lean and compact.

The design of the NCL programming language has been focused on programming
simplicity in every possible instance. In the C++ programming language, variables and
registers are must be predefined by the programmer as belonging to a certain data type.
These data types can be either characters (1 byte), short-integers (2 bytes), long-
integers (4 bytes), floating-points (4 bytes), or double-precision floating-points (8 bytes).
NCL, on the other hand, uses a data stack whose members are all defined as the same
data type – 8-byte double-precision floating-point numbers. With this generalized,
"over-precision" data stack, the programmer conveniently does not need to define
variable data types. And as long as floating-point data types do not exceed 8-byte
precision and integer data types do not exceed 4-byte precision, conversion and
rounding errors are eliminated.

 3

The inter-site control functionality of NCL is accomplished through "status-sharing".
Every RTU maintains its own status-file, which contains a description of its status. It is
up to the NCL programmer to decide what to put in this status-file. The wireless
networking protocol ensures that each site contains updated copies of the status-files of
the other network RTU’s. Therefore, an RTU can incorporate the status of another RTU
site (or sites) into its control decisions. For example, a pump station may primarily turn
its pumps ON and OFF based upon what a remote water tower desires (as conveyed
through the sharing of its status-file). However, if the wireless link fails, then the pump
station will not be able to receive an up-to-date copy of the water tower’s status-file. In
this case, the programmer may wish to turn the pumps OFF, or he may wish to fail over
the pump control into another mode of operation, such as ON/OFF control based upon
local-pressure readings, timer, or an external control device.

In addition to the status-file, each site also holds a setpoints-file, which contains a
description of its setpoints. Again, it is up to the NCL programmer to decide what to put
into this setpoints-file. The wireless networking protocol contains provisions that enable
a system operator to request, view, and modify the setpoints of any remote RTU from
any RTU in the system. This functionality is at the very core of a WiSTAR system's
powerful capabilities. In the example case of this manual, it will be demonstrated how
setpoint modifications can (and should) be used to implement remote-control
capabilities. As the NCL programmer, you will be tasked with deciding which
parameters will be "hard-wired" into the program, and which will be designated as
customer-modifiable setpoints. However, keep in mind that Navionics Research’s NCL
programming philosophy strongly suggests that you should provide the customer with
an abundance of setpoints. The philosophy is simple: When in doubt as to whether a
number should be "hard-wired", make it a setpoint, and let the customer decide
where to set it.

Navionics Research has created a single, multitasking executable; and this program is
embedded within an IBM-compatible CPU. This program is named: WINCOM.EXE.
WINCOM services three (3) concurrent processes: communication, control, and the
user-interface.

With the single-executable approach, the overall number of hardware components
within the system is reduced; and greater reliability is achieved. However, with this
approach, it is also imperative that adequate safeguards be constructed around the
NCL control process to protect the operations of the communication and user-interface
functions. Toward achieving this purpose, a software "firewall" has been built around
the NCL interpreter to isolate the effects of any stray NCL programming errors.
Although such errors are not acceptable, the "firewall" traps NCL coding errors, and
prevents them from corrupting the concurrent communication and user-interface
operations. At the same time, the firewall provides assistance to the programmer in
locating certain NCL errors.

 4

As with any language, the best way to learn programming is to program. And therefore,
the techniques taught in this document are based upon an actual program, which is in
operation in the "Village Of Walnut Hill (IL) Public Water District". Although the example
is a relatively short program, it exercises many of the most important aspects of NCL.
This program contains logic to control a pump station to the following specifications:

1. Control and monitor one (1) pump based upon one of the following modes of
operation:

 a. Water tower control (customer-modifiable setpoints at the water tower)
 b. Local pressure (customer-modifiable pressure setpoints)
 c. Local timer (customer-modifiable time period setpoints)
 d. Manual override (customer selectable ON or OFF)

2. Enable the pump station to automatically fail over to a local-pressure-mode
operation in the case of: (1.) a communication failure with the water tower, or (2.)
a pressure transducer failure at the water tower.

 3. Monitor 3-phase power status, and force pump OFF in the case of a phase

fault.

4. Monitor suction and discharge pressures.

5. Automatically turn OFF the pump in case of low suction pressure.

6. Automatically turn ON the pump in case of low discharge pressure.

7. Monitor the discharge and suction pressure transducers for failures.

8. Monitor station for flood condition, and force pump OFF in the case of a flood.

 9. Monitor room temperature and pump motor bearing temperature differential.

 10. Accumulate pump runtime.

 5

2 THE “LOGIC.NPP” FILE

NCL programs are contained in a single file, and they are always given the same name:
LOGIC.NPP (the NCL program file). The extension ".NPP" stands for: NCL Plus
Plus. The file is stored as a simple ASCII text file, and therefore it can be produced
using a text editor. Windows “Notepad” and Windows “Wordpad” are both examples of
appropriate text editors.

The “LOGIC.NPP” file is logically divided into two parts: The “Header” and the “Control
Logic”.

The “Header” contains setup information, network definitions, and the aliases of the
memory registers and I/O modules. For example, the alias of "Solid-State-Relay #1"
may be defined as "Pump Starter Relay". The use of aliases, rather than register
addresses and I/O module-numbers makes programs more readable and easier to
debug. Also, the use of aliases makes programs easier to port to different clients.
Although strictly optional, their use is highly encouraged. Also, the first part of the
“Header” section is strictly formatted. In other words, blank lines cannot be inserted
where they are not expected; and all fields must be filled in according to the
specifications set forth in this document. The second part of the “Header” allows an
unformatted structure, and also allows for programmer comments.

The “Control Logic”, which is typically much larger than the “Header”, contains
sequences of commands which describe the control decision-making process. The
“Control Logic” must contain at least one main subroutine (always named "main"); and
"main" may call other subroutines (which may also call subroutines, and so on…).

Throughout the example program, there are numerous embedded comments. It is good
programming practice to document your program with comments for several reasons.
First, it makes your program easier for others to understand; and second, it will make
your job easier when you are trying to modify one of your old programs months (or
years) later. Comments are delimited with the '#' character. Any text after and including
the "#' character is ignored by the NCL compiler. Also, to make your programs more
readable, blank lines may be freely used to separate functional blocks of code in your
"LOGIC.NPP" file.

LOGIC.NPP File Structure:

$HEADER

<All Formatted “Header” Information Here>

<All Unformatted “Header” Information Here>

$NCL

<All Unformatted “Control Logic” Here>

 6

3 “LOGIC.NPP” FILE HEADER STRUCTURE

The header of the “LOGIC.NPP” file contains two sections. The first section (blocked off
in RED) contains setup information and network parameters. This first section must be
written to a strict format as defined in this tutorial. The second section (blocked off in
BLUE) contains alias definitions, and the programmer may create this section to a more
relaxed format. Let’s analyze the header file of our example program:

Header (Setup) Info: UPS Station at Walnut Hill, IL
 1 # Number of Digital Setpoints
 16 # Number of Analog Setpoints
 2 # Number of Integer Setpoints
 4 # Number of Digital Input Modules
 4 # Number of Analog Input Modules
 0 # Number of Integer Input Modules
 16 # Number of Digital Flag States
 4 # Number of Analog Flag States
 2 # Number of Integer Flag States
 1 # Number of Relay Output Modules
 0 # Number of Analog Output Modules
Remote Setup Information ... (No Blank Lines Allowed...)
 1 # Number of Dependent Sites (Dependent Sites Follow)
 001 # Index 0 (Zero): Walnut Hill Water Tower

Variable Name Definitions ... (Blank Lines Allowed...)

ALIAS FAILOVER_TO_PRESSURE_MODE LDS 0

ALIAS LOW_SUCTION_CUTOUT_PSI LAS 0
ALIAS LOW_SUCTION_RELEASE_PSI LAS 1
ALIAS HIGH_SUCTION_CUTIN_PSI LAS 2
ALIAS HIGH_SUCTION_RELEASE_PSI LAS 3
ALIAS HIGH_DISCHARGE_CUTOUT_PSI LAS 4
ALIAS HIGH_DISCHARGE_RELEASE_PSI LAS 5
ALIAS LOW_DISCHARGE_CUTIN_PSI LAS 6
ALIAS LOW_DISCHARGE_RELEASE_PSI LAS 7

ALIAS PRESSURE_MODE_PUMP_OFF_PSI LAS 8
ALIAS PRESSURE_MODE_PUMP_ON_PSI LAS 9

ALIAS TIMER_1_START_HOUR LAS 10
ALIAS TIMER_1_STOP_HOUR LAS 11
ALIAS TIMER_2_START_HOUR LAS 12
ALIAS TIMER_2_STOP_HOUR LAS 13
ALIAS TIMER_3_START_HOUR LAS 14
ALIAS TIMER_3_STOP_HOUR LAS 15

ALIAS PUMP_MODE{AUTO-ON-OFF} LIS 0
ALIAS STATION_MODE{RADIO-PRESSURE-TIMER} LIS 1

ALIAS POWER_MODULE LDM 0
ALIAS PUMP_POSITIVE_INDICATOR_MODULE LDM 1
ALIAS PHASE_FAULT_DETECT_MODULE LDM 2
ALIAS FLOOD_DETECT_MODULE LDM 3

ALIAS DISCHARGE_PSI_MODULE LAM 0
ALIAS SUCTION_PSI_MODULE LAM 1
ALIAS PUMP_TEMP_DEGF_MODULE LAM 2
ALIAS PUMP_ROOM_TEMP_DEGF_MODULE LAM 3

 7

ALIAS DISCHARGE_WORKING LAMV 0
ALIAS SUCTION_WORKING LAMV 1

DISPL POWER_ON LDF 0
DISPL PUMP_RELAY LDF 1
DISPL PUMP_ON LDF 2
DISPL PHASE_FAULT_DETECT LDF 3
DISPL FLOOD_DETECT LDF 4
DISPL PUMP_FAIL LDF 5
DISPL COMM_FAILURE LDF 6
DISPL RADIO_MODE LDF 7
DISPL PRESSURE_MODE LDF 8
DISPL TIMER_MODE LDF 9
DISPL LOW_SUCTION_CUTOUT LDF 10
DISPL HIGH_SUCTION_CUTIN LDF 11
DISPL HIGH_DISCHARGE_CUTOUT LDF 12
DISPL LOW_DISCHARGE_CUTIN LDF 13
DISPL DISCHARGE_TRANSDUCER_FAIL LDF 14
DISPL SUCTION_TRANSDUCER_FAIL LDF 15

DISPL DISCHARGE_PSI LAF 0
DISPL SUCTION_PSI LAF 1
DISPL PUMP_TEMP_DEGF LAF 2
DISPL PUMP_ROOM_TEMP_DEGF LAF 3

DISPL UP_TIME_MIN LIF 0
DISPL PUMP_RUNTIME_MIN LIF 1

ALIAS PUMP_SSR LDR 0

DISPL COMM_TO_WATER_TOWER VLD 0
DISPL TOWER_LEVEL_FT RAF 0 0
DISPL TOWER_CALL_PUMP RDF 0 2
DISPL TOWER_TRANSDUCER_FAIL RDF 0 6

ALIAS LOW_SUCTION_TIMER TMR 0
ALIAS LOW_SUCTION_OK_TIMER TMR 1
ALIAS HIGH_DISCHARGE_TIMER TMR 2
ALIAS HIGH_DISCHARGE_OK_TIMER TMR 3
ALIAS HIGH_SUCTION_TIMER TMR 4
ALIAS HIGH_SUCTION_OK_TIMER TMR 5
ALIAS LOW_DISCHARGE_TIMER TMR 6
ALIAS LOW_DISCHARGE_OK_TIMER TMR 7
ALIAS PHASES_OK_TIMER TMR 8
ALIAS POWER_OK_TIMER TMR 9
ALIAS FLOOD_OK_TIMER TMR 10
ALIAS PUMP_FAIL_TIMER TMR 11

ALIAS PUMP_RUNTIME_SECS USR 0
ALIAS LASTCALL_TIME USR 1
ALIAS DELTA_TIME USR 2
ALIAS AOK USR 3
ALIAS EMERGENCY_CUTIN USR 4
ALIAS PRESSURE_PUMP USR 5
ALIAS TIMER_PUMP USR 6
ALIAS TOWER_PUMP USR 7
ALIAS LOCAL_PUMP USR 8

$NCL

(CONTROL LOGIC FOLLOWS...)

 8

Header Deconstruction:

Line Number Content and Purpose

1 Comment Line
2 Define the number of Digital Setpoints (Setpoints which are

defined as either a one (1) or a zero (0)). Stored in LDS registers.
3 Define the number of Analog Setpoints (Setpoints which are

defined as a 4-byte floating point.) Stored in LAS registers.
4 Define the number of Integer Setpoints (Setpoints which are

defined as one of a small selection of choices - also referred to as
Radiobutton Setpoints). Stored in LAS registers.

5 Define the number of Digital Input Modules (Modules which read
either a TRUE or FALSE state, such as power-detect or flood-
detect). Stored in LDM registers.

6 Define the number of Analog Input Modules (Modules which read
an analog level such as pressure, temperature, or chlorination).
Stored in LAM registers.

7 Define the number of Integer Input Modules (Modules which
count events, such as those generated by the outputs of high-
speed pickup meters. These modules automatically calculate
totalization and rate information. The maximum integer reading is
999,999,999 after which the integer "rolls-over" to zero). Stored in
LIM registers.

8 Define the number of Digital Flag States (Digital states which are
to be placed in this RTU's status-file). Stored in LDF registers.

9 Define the number of Analog Flag States (Analog states which
are to be placed in this RTU's status-file). Stored in LAF registers.

10 Define the number of Integer Flag States (Integer states which
are to be placed in this RTU's status-file). Stored in LIF registers.

11 Define the number of Relay Output Modules (SSR's or Solid-
State Relays. Writing a zero (0) to a SSR opens the contact, and
writing a one (1) to a SSR closes the contact. Stored in LDR
registers.

12 Define the number of Analog Output Modules. Stored in LAOM
registers.

13 Comment line. You may put anything on this line that you wish.
14 Define the Number of Dependent Sites (whose status-files will be

integrated into the control decisions of this RTU.
Next Lines... Network Addresses of Dependent Sites are placed on the

subsequent lines if the Number of Dependent Sites is greater than
zero (0). The first site will be known as Dependent Site #0, the
second site will be Dependent Site #1, etc. …

Next Line Comment line. You may put anything on this line that you wish.
Next Line(s)... Alias definitions of the registers, input modules, and relays.

 9

Alias Variable Declarations:

When creating an alias, the following syntax is used:

 ALIAS AliasName RegisterName

The AliasName must be different from all of the acceptable RegisterNames, and the
AliasName must be between 1 and 48 characters long. An AliasName may contain
alphabetic characters, numbers, brackets, parentheses, underscores, and dashes.
However, the first character of an AliasName cannot be a number. The summary of
available Register Names is given in the next chapter.

Legal Characters For AliasNames: A–Z , a–z , 0–9 , _ , – , { , } , [,] , (,)

Radiobutton Setpoint – Standard Naming Conventions:

When creating a Radiobutton Setpoint (A setpoint which represents an integer selector),
it is highly-recommended that the NCL programmer use the following naming
convention:

ALIAS SETTINGNAME{SELECT_1–SELECT_2–SELECT_3} LIS n

An example:

ALIAS PUMP_1{AUTO – ON – OFF} LIS 0

In this example, each of the three possible numeric settings corresponds to one of the
selectors. The selectors are contained within curly brackets, and are separated by
dashes.

 Numeric Setting Action

1 AUTO
2 ON
3 OFF

By following these naming convention guidelines, the programmer will benefit from the
automatic detection and configuration capabilities built into the Navionics Research GUI
(Graphical User Interface) software; and therefore simplify the setup of the GUI.

 10

Realtime Display Customized Configuration:

Note that certain Aliases are declared using the “DISPL” identifier, rather than the
“ALIAS” identifier. Aliases that are declared in this manner will be placed in the
“Realtime Display” of the WINCOM program. The compiler will automatically decide
whether the a DISPL register should be displayed as a digital, analog, or counter
register. If you wish to override the compiler defaults, then replace DISPL explicitly with
DISPL_D (digital), DISPL_A (analog), or DISPL_C (counter).

The following syntax describes the use of the DISPL identifier:

 DISPL AliasName RegisterName
 DISPL_D AliasName RegisterName
 DISPL_A AliasName RegisterName
 DISPL_C AliasName RegisterName

Advanced Serial Display Customized Configuration:

The WiSTAR RTU supports a Serial Display (eg VFD420 by SEETRON) on its Terminal
Port. Variables whose DISPL parameter are preceded with an ‘S’ will be displayed on
the Serial Display:

 SDISPL AliasName RegisterName
 SDISPL_D AliasName RegisterName
 SDISPL_A AliasName RegisterName
 SDISPL_C AliasName RegisterName

Advanced Alarm Display Customized Configuration:

For Color Terminals attached to the Terminal Port, the WiSTAR RTU can display
discrete states in color to denote an alarm state:

(S)DISPL_D1 ON=GREEN OFF=BLANK
 (S)DISPL_D1 ON=RED/BLINKING OFF=BLANK
 (S)DISPL_D1 ON=GREEN OFF=RED/BLINKING
 (S)DISPL_D1 ON=GREEN/BLINKING OFF=BLANK

In order to provide for customized spacings and page designs within the REALTIME
DISPLAY pages, the following compiler directives are allowed in the NCL file:

$BLANK Places a blank line after the previously-declared variable.
$BLANK n Places ‘n’ blank lines after the previously-declared variable.
$PAGE Inserts a page break after the previously-declared variable.

 11

Realtime Display Default Configuration:

In order to minimize the work of the NCL programmer, the Realtime Display is
automatically configured by default. In the absence of any specified DISPL identifiers,
the compiler will automatically assign DISPL identifiers to the following register
variables:

All LDF’s (Local Digital Flags)
All LAF’s (Local Analog Flags)
All LIF’s (Local Integer Flags)
All RDF’s (Remote Digital Flags)
All RAF’s (Remote Analog Flags)
All RIF’s (Remote Integer Flags)
All VLD’s (Remote Communication Status Flags)

 12

4 NCL REGISTER NAMES

The NCL registers which are used as memory and I/O locations within NCL programs,
are listed below. (Note: n denotes the index number; and j denotes the dependent site
index. All indices are referenced from zero, as in the C++ programming language.)

LDS n Local Digital Setpoint (Read-only from program)
LAS n Local Analog Setpoint (Read-only from program)
LIS n Local Integer Setpoint (Read-only from program)
LDM n Local Digital Input Module (Read-only from program)
LAM n Local Analog Input Module (Read-only from program)
LAMV n Local Analog Module Validity

(1 if module/transducer working, 0 if failure detected)
(Read-only from program)

LIM n Local Integer Input Module (Read/write from program)
LARM n Local Analog Rate Module (Fixed Delta-T Method)

 (1st derivative with respect to time of LAM n)
 (Units = LAM/minute) (Read-only from program)

LIRM n Local Integer Rate Module
 (1st derivative with respect to time of LIM n)
 (Read-only from program)

LDF n Local Digital Flag State (Read/write from program)
LAF n Local Analog Flag State (Read/write from program)
LIF n Local Integer Flag State (Read/write from program)
LDR n Local Digital Output Relay (Read/write from program)
LAOM n Local Analog Output Module (Read/write from program)
RDF j n Remote Digital Flag State (Read-only from program)
RAF j n Remote Analog Flag State (Read-only from program)
RIF j n Remote Integer Flag State (Read-only from program)
VLD j Valid Status File (1 if valid, 0 if stale)

 (Read-only from program)
MIS j Number Of Comm Misses To j Since Retrieving Status File

 (Read-only from program)
TMR n Time-Delay Register (Read/write from program)
USR n User Memory Register (Read/write from program)
LECRM n Local Sensus Total Module (Read-only from program)
LECRRM n Local Sensus Flow Module (Read-only from program)
LECRMV n Local Sensus Meter Module Validity

(1 if module working, 0 if failure detected)
(Read-only from program)

M_SIU j n Modbus Input: Short Integer Unsigned (j=devid, n=zero-based reg)
(Read-only from program)

M_SIS j n Modbus Input: Short Integer Signed (j=devid, n=zero-based reg)
(Read-only from program)

M_LIU j n Modbus Input: Long Integer Unsigned (j=devid, n=zero-based reg)
(Read-only from program)

M_LIS j n Modbus Input: Long Integer Signed (j=devid, n=zero-based reg)
(Read-only from program)

 13

M_FI j n Modbus Input: 32-bit Floating Point (j=devid, n=zero-based reg)
(Read-only from program)

M_DI j n Modbus Input: Discrete Input (j=devid, n=zero-based reg)
(Read-only from program)

M_SOU j n Modbus Output: Short Integer Unsigned (j=devid, n=zero-based reg)
(Read-only from program)

M_SOS j n Modbus Output: Short Integer Signed (j=devid, n=zero-based reg)
(Read-only from program)

M_DO j n Modbus Output: Discrete Output
(Read-only from program)

V_SIU j n Toshiba VFD Input: Short Integer Unsigned
(j=devid, n=zero-based reg)
(Read-only from program)

V_SOU j n Toshiba VFD Output: Short Integer Unsigned
(j=devid, n=zero-based reg)
(Read-only from program)

ADM_DI j n ADAM4000 Discrete Input (j=devid, n=zero-based reg)
(Read-only from program)

ADM_DO j n ADAM4000 Discrete Output (j=devid, n=zero-based reg)
(Read/Write from program)

ADM_AI j n ADAM4000 Analog Input (j=devid, n=zero-based reg)
(Read-only from program)

ADM_AO j n ADAM4000 Analog Output (j=devid, n=zero-based reg)
(Read/Write from program)

ADM_II j n ADAM4000 Integer Input (j=devid, n=zero-based reg)
(Read-only from program)

 14

5 BASIC PROGRAMMING TECHNIQUES

Before proceeding further, it is necessary to become acquainted with the elementary
techniques of NCL programming.

A NCL program is made up of a "main" routine, which is capable of calling other
subroutines (and which are also capable of calling subroutines, and so on …). The
deepest level of subroutine calling or recursion allowed is 16 (including the "main").
This should be more than sufficient for even the most demanding applications.

A NCL "main" or subroutine consists of a sequence of commands, each of which is
typed on its own separate line in the "LOGIC.NPP" file. There are basically four (4)
types of commands:

Memory Management - These commands are used to read/write numbers
from/to:

a. the memory registers
b. the data stack
c. the address stack
d. the industrial I/O modules

Data Stack Arithmetic - These commands are used to perform arithmetic

operations on the members of the data stack.

Execution Branching - These commands are used to control the instruction

pointer of the program.

Macros - These commands are used to perform complex
calculations using data on the data stack, or using
data referenced by the addresses on the address
stack. The Macros are provided as a library of pre-
defined subroutines for the convenience of the NCL
programmer.

The Data Stack and The Address Stack.

There are two (2) stacks available for use by the NCL programmer. The first stack is
called the “Data Stack”. The Data Stack is used as a workspace for holding numbers
which are needed for control logic calculations. The second stack is called the “Address
Stack”. The Address Stack is used as a workspace for holding addresses of registers
(or constants) which are needed for control logic calculations. It was decided to create
separate stacks: one for numbers and one for addresses, so that programming and
debugging would be simplified.

 15

A “stack” is a data buffer that has been created for the convenience of the programmer.
It is called a stack because it behaves as if the programmer is stacking numbers on top
of each other. Numbers can be "loaded" on top of the stack, or they can be "popped"
off the stack. Arithmetic operations can be performed on members of the Data Stack
(usually the top number, or the top pair of numbers). In the Data Stack, the top of the
stack is called the "X-Register" and the second from the top is called the "Y-Register".

Here is a simple example of how a NCL programmer may utilize the Data Stack to
perform the addition of two numbers (3.0 + 2.0) …

NCL Command Data Stack Description

 {empty} The stack contains no numbers initially.
LOAD 3.0

{ X=3.0 } "3" has been loaded onto the data stack.

LOAD 2.0

{ X=2.0 , Y=3.0 } "2" has been loaded on top of the data stack.
The "3" is underneath the "2".

+

{ X=5.0 } The top two numbers (2.0 and 3.0) have been
popped off of the data stack and added
together. The result, "5.0", is loaded onto the
top of the data stack.

 16

6 NCL COMMAND SUMMARY

In the NCL programming language, there are approximately 80 available commands.
The complete list of commands is shown below, and each is grouped according to its
functionality. You do not need to memorize all of the commands at this time (or really at
any time); but you should become familiar with the available functionality of the
command set.

Memory Management

LOAD register_id or f Load the contents of a register or input module

onto the data stack. Or Load a number onto the
data stack.

POP n Pop (discard) n numbers from the data stack.
(Default: n=1)

STORE register_id Store a copy of the X-Register (data stack) to a
register or output module.

PSTORE register_id Same as STORE, except followed by POP
COPY n Load a duplicate copy of a data stack register onto

the top of the data stack. “n” denotes stack
position relative to the top, with zero (0) indexing
the top stack element (the X-Register). If “n” is not
specified, then n defaults to zero (0).

SWAP Swap the contents of the X-Register and the
Y-Register (data stack).

SDELAY delay_register_id Set The Delay For "delay_register_id" To the value
held in the X-Register.

PSDELAY delay_register_id Same as SDELAY, except followed by a POP.
TIMEOUT delay_register_id Force the output of “delay_register_id” to one (1).
LOADA register_id Load the address of register_id onto the address

stack.
LOADV n Load the value of the variable, whose address is

“element n” on the address stack (the top address
has an index of zero), onto the top of the data
stack.

POPA n Pop (discard) n addresses from the address stack.
(Default: n=1)

STOREV n Store a copy of the X-Register (data stack) to the
register pointed to by element n on the address
stack.

PSTOREV n Same as STOREV, except followed by a POP.

 17

Data Stack Arithmetic

+ Pop X and Y, Load (Y+X)
- Pop X and Y, Load (Y-X)
* Pop X and Y, Load (Y*X)
/ Pop X and Y, Load (Y/X)
MOD
%

Pop X and Y, Load (Remainder of Y/X)

OR
|

Pop X and Y, If X OR Y is non-ZERO, Load 1.0.
Otherwise Load 0.0.

XOR Pop X and Y, If X#0 and Y=0, Load 1.0; If X=0 and
Y<>0, Load 1.0. Otherwise Load 0.0.

AND
&

Pop X and Y, If X AND Y are both non-ZERO,
Load 1.0. Otherwise Load 0.0.

NOT
!
X=0?

Pop X, If X is equal to ZERO, Load 1.0.
Otherwise, Load 0.0.

X<>0?
X><0?

Pop X. If X is not equal to ZERO, Load 1.0.
Otherwise Load 0.0.

Y>X?
X<Y?

Pop X and Y. If Y is greater than X, Load 1.0.
Otherwise Load 0.0.

Y>=X?
X<=Y?

Pop X and Y. If Y is greater than or equal to X,
Load 1.0. Otherwise Load 0.0.

Y=X?
X=Y?

Pop X and Y. If Y is equal to X, Load 1.0.
Otherwise Load 0.0.

Y<>X?
Y><X?
X<>Y?
X><Y?

Pop X and Y. If Y is not equal to X, Load 1.0.
Otherwise Load 0.0.

Y<X?
X>Y?

Pop X and Y. If Y is less than X, Load 1.0.
Otherwise Load 0.0.

Y<=X?
X>=Y?

Pop X and Y. If Y is less than or equal to X, Load
1.0. Otherwise Load 0.0.

MIN Pop X and Y. Load MIN(X , Y)
MAX Pop X and Y. Load MAX(X , Y)
BETWEEN_SECS Pop X and Y. If Y<DAYTIME_SECS<X, Load 1.0.

Otherwise Load 0.0.
BETWEEN_HOURS Pop X and Y. If Y<DAYTIME_HOURS<X, Load

1.0. Otherwise Load 0.0.
INCR
++

Pop X, Load (X+1)

DECR
--

Pop X, Load (X-1)

ABS Pop X, Load (|X|)
INT Pop X, Load (INT(X))
SIN Pop X, Load (SIN(X)), where X is in radians.

 18

COS Pop X, Load (COS(X)) , where X is in radians.
TAN Pop X, Load (TAN(X)) , where X is in radians.
Y^X Pop X and Y, Load (Y^X)
X^2 Pop X, Load (X*X)
SQRT Pop X, Load (SQRT(|X|))
CHS Pop X, Load (-X)
LOG Pop X, Load (LOG10(|X|))
LN Pop X, Load (LN(|X|))
10^X Pop X, Load (10^(X))
E^X Pop X, Load (E^(X))
ASIN Pop X, Load (ASIN(X)) in radians
ACOS Pop X, Load (ACOS(X)) in radians

ATAN Pop X, Load (ATAN(X)) in radians
1/X Pop X, Load (1/X)

Utility Functions

UPTIME Load {Seconds Since RTU Execution Started}
SYSTIME Load {Seconds Since 01 Jan 1970 GMT}
DAYTIME_SECS Load {Seconds Since Midnight (Takes Into

Account Daylight Savings Time)}
DAYTIME_HOURS Load {Hours Since Midnight (Takes Into Account

Daylight Savings Time)}
DAY_OF_WEEK Load {Day Of Week (1=Sunday … 7=Saturday)}
FIRSTRUN? If First Call Of NCL Program, Load 1.0.

Otherwise, Load 0.0.
NEW_SETPOINTS? If Setpoints Modified Since The Last Call, Load

1.0. Otherwise, Load 0.0.
ANNOUNCE Generate Status Announcements To All Sites On

Announce-List. Stacks Unaffected.
FLUSH Store Status and USR Variables To Disk.

(Win32/64 Only: Flush History Point To Disk.)
W32_ONLINE Win32/64 Only: If Desktop/Notebook Has A

Compatible UPS And 120VAC Power, Load 1.0.
Otherwise, Load 0.0.

CHG%_nn If one or more local analog flags (LAFs) has
changed by more than nn%, then signal to the
program that a STATUS_ANNOUNCEMENT
should be made all remote sites defined within the
announcement list.

W32_BATT_PERCENT Win32/64 Only: If Desktop/Notebook Has A
Compatible UPS, Load Battery Strength (0-100%).
Otherwise, Load: –1.0%.

MA_VLD If last Modbus read was successful or if last
Modbus read is a valid cached value, then a ‘1’ is

 19

placed on the stack. Otherwise, a ‘0’.
MA_CACHED If last Modbus read was unsuccessful, but the last

Modbus read is a valid cached value, then a ‘1’ is
placed on the stack. Otherwise, a ‘0’.

MA_TIMEOUT If last Modbus read was unsuccessful AND the
Modbus channel has timed out (a valid cached
value is not available), then a ‘1’ is placed on the
stack. Otherwise, a ‘0’.

LOADM j n Load ‘n’ words (16-bit) from Modbus device_id ‘j’
into the Modbus data stack.

CAST_INT n Copies a 16-bit word from the Modbus data stack
onto the data stack, source location based upon
index ‘n’. Casts the value as a 16-bit signed
integer.

CAST_UINT n Copies a 16-bit word from the Modbus data stack
onto the data stack, source location based upon
index ‘n’. Casts the value as a 16-bit unsigned
integer.

CAST_LONG n Copies a 32-bit word from the Modbus data stack
onto the data stack, source location based upon
index ‘n’. Casts the value as a 32-bit signed
integer.

CAST_ULONG n Copies a 32-bit word from the Modbus data stack
onto the data stack, source location based upon
index ‘n’. Casts the value as a 32-bit unsigned
integer.

CAST_FLOAT n Copies a 32-bit word from the Modbus data stack
onto the data stack, source location based upon
index ‘n’. Casts the value as a 32-bit floating point.

BITMASK n Tests the ‘nth’ bit of the element on the top of the
stack.
Replaces top stack element with the result (1 or 0).

 20

Execution Branching

LBL RoutineName Defines Subroutine Name And Labels The

Beginning Of The Subroutine.
GOSUB RoutineName Sends Execution To Top Of "RoutineName"
GOTO LineNumber Sends Execution To "LineNumber"
MACRO MacroName Sends Execution To A Pre-Defined Macro
CONTINUE Does Nothing. Useful As The Target Of A GOTO

Statement.
RTN Returns Execution To The Line Below The Calling

GOSUB Statement
END Ends NCL Program Execution. Returns Execution

To Top Of "Main"
IF_TRUE If X is non-zero, continue execution; otherwise skip

over the next command
IF_FALSE If X is zero, continue execution; otherwise skip

over the next command
CHG%_nn If one or more local analog flags (LAFs) has

changed by more than nn%, then signal to the
program that a STATUS_ANNOUNCEMENT
should be made all remote sites defined within the
announcement list.

Example Program Analysis

At this point, you have the necessary background to examine the example program
listed in Appendix B. Notice that a large number of comments are interspersed
throughout the program. This will assist in debugging, future modifications, and code
re-use. Also, notice that both the data stack and address stacks are kept “clean”
throughout the program. In other words, when a set of calculations has been
completed, all remaining data on the data stack is removed, and all remaining data on
the address stack is removed. Again, this optional programming practice simplifies the
debugging process, if debugging is required.

 21

7 USING MACROS TO SIMPLIFY NCL PROGRAMS

In addition to the core NCL commands, a group of 12 predefined “Macros” is provided
with the compiler. The Macros are analogous to subroutines in C++, and each has
been tailored to solve a common control logic problem. A typical NCL program will
consist of both Macros and core commands. Each Macro has been optimized and field-
tested, so the NCL programmer may use them with confidence.

Built-In Macros

HYSTERESIS_HI A Simple Hi-Level Cutoff Switch
HYSTERESIS_LO A Simple Lo-Level Cutoff Switch
HYSTERESIS_HI_W_TIMER A Hi-Level Cutoff Switch with time delay
HYSTERESIS_LO_W_TIMER A Lo-Level Cutoff Switch with time delay
HYBRID_PRESSURE_HI A Hybrid-Level/Timer Hi-Level Cutoff Switch
HYBRID_PRESSURE_LO A Hybrid-Level/Timer Lo-Level Cutoff Switch
SYMMETRIC_DEADBAND An ON/OFF Analog Switch With A Symmetric

Deadband Around The Setpoint.
BOUNDS_CHECK An “Upper and Lower Bounds Checker” for

radiobutton setpoints.
VFD_SPEED A Proportional-Feedback Analog Controller.

Error function a combination of a Hi-Level
Boundary and a Lo-Level Boundary.

BPS_MODE_CALC Calculates The Appropriate Pump Station Mode
From The Following Choices: Radio, Pressure,
Timer, External.

PUMP_SEQUENCE_SETUP2 Sets Up Pump Alternation / No Alternation For A
2-Pump Station.

PUMP_SEQUENCE_SETUP3 Sets Up Pump Alternation / No Alternation For A
3-Pump Station.

SPHEROID_STATS Approximate Tank Level In Spheroid Tank
CUBIC_SOLVER Solve for X: AX^3 + BX^2 + CX + D = 0

 22

MACRO: HYSTERESIS_HI

Example Usage:

LOADA LINE_PRESSURE
LOADA HI_THRESHOLD_SETTING_PSI
LOADA HI_THRESHOLD_RELEASE_SETTING_PSI
LOADA HI_CUTOFF_STATUS
MACRO HYSTERESIS_HI
PSTORE HI_CUTOFF_STATUS

Internal Compiler Implementation:

LBL HYSTERESIS_HI

LOADV 3
LOADV 2
Y>=X?

LOADV 3
LOADV 1
Y>=X?
LOADV 0
AND

OR
POPA 4
RTN

 23

MACRO: HYSTERESIS_LO

Example Usage:

LOADA LINE_PRESSURE
LOADA LO_THRESHOLD_SETTING_PSI
LOADA LO_THRESHOLD_RELEASE_SETTING_PSI
LOADA LO_CUTOFF_STATUS
MACRO HYSTERESIS_LO
PSTORE LO_CUTOFF_STATUS

Internal Compiler Implementation:

LBL HYSTERESIS_LO

LOADV 3
LOADV 2
Y<=X?

LOADV 3
LOADV 1
Y<=X?
LOADV 0
AND

OR
POPA 4
RTN

 24

MACRO: HYSTERESIS_HI_W_TIMER

Example Usage:

LOADA LINE_PRESSURE
LOADA HI_THRESHOLD_SETTING_PSI
LOADA HI_THRESHOLD_RELEASE_SETTING_PSI
LOADA HI_CUTOFF_TIMER
LOADA HI_RELEASE_TIMER
LOADA HI_CUTOFF_STATUS
MACRO HYSTERESIS_HI_W_TIMER
PSTORE HI_CUTOFF_STATUS

Internal Compiler Implementation:

LBL HYSTERESIS_HI_W_TIMER

LOADV 5
LOADV 4
Y>=X?
PSTOREV 2

LOADV 5
LOADV 3
Y<=X?
PSTOREV 1

LOADV 2
LOADV 1
NOT
LOADV 0
AND
OR

POPA 6
RTN

 25

MACRO: HYSTERESIS_LO_W_TIMER

Example Usage:

LOADA LINE_PRESSURE
LOADA LO_THRESHOLD_SETTING_PSI
LOADA LO_THRESHOLD_RELEASE_SETTING_PSI
LOADA LO_CUTOFF_TIMER
LOADA LO_RELEASE_TIMER
LOADA LO_CUTOFF_STATUS
MACRO HYSTERESIS_LO_W_TIMER
PSTORE LO_CUTOFF_STATUS

Internal Compiler Implementation:

LBL HYSTERESIS_LO_W_TIMER

LOADV 5
LOADV 4
Y<=X?
PSTOREV 2

LOADV 5
LOADV 3
Y>=X?
PSTOREV 1

LOADV 2
LOADV 1
NOT
LOADV 0
AND
OR

POPA 6
RTN

 26

MACRO: HYBRID_PRESSURE_HI

Example Usage:

LOADA DISCHARGE_PRESSURE
LOADA HI_DISCHARGE_THRESHOLD_PSI
LOADA HI_DISCHARGE_TIMER
LOADA HI_DISCHARGE_RELEASE_TIMER
MACRO HYBRID_PRESSURE_HI
PSTORE HI_DISCHARGE_CUTOUT

Internal Compiler Implementation:

LBL HYBRID_PRESSURE_HI

LOADV 3
LOADV 2
Y>=X?
PSTOREV 1
LOADV 1
NOT
PSTOREV 0
LOADV 0
NOT
POPA 4
RTN

 27

MACRO: HYBRID_PRESSURE_LO

Example Usage:

LOADA SUCTION_PRESSURE
LOADA LO_SUCTION_THRESHOLD_PSI
LOADA LO_SUCTION_TIMER
LOADA LO_SUCTION_RELEASE_TIMER
MACRO HYBRID_PRESSURE_LO
PSTORE LO_SUCTION_CUTOUT

Internal Compiler Implementation:

LBL HYBRID_PRESSURE_LO

LOADV 3
LOADV 2
Y<=X?
PSTOREV 1
LOADV 1
NOT
PSTOREV 0
LOADV 0
NOT
POPA 4
RTN

 28

MACRO: SYMMETRIC_DEADBAND

Example Usage:

LOADA HEATER_ON
LOADA RTU_TEMPERATURE
LOADA RTU_THERMOSTAT
LOAD 5.0
MACRO SYMMETRIC_DEADBAND
STORE HEATER_ON
PSTORE HEATER_RELAY

Internal Compiler Implementation:

LBL SYMMETRIC_DEADBAND
COPY
LOADV 0
+
LOADV 1
Y>X?
LOADV 2
AND
SWAP
CHS
LOADV 0
+
LOADV 1
Y>X?
OR
POPA 3
RTN

 29

MACRO: BOUNDS_CHECK

Example Usage:

LOADA VALVE{AUTO-OPEN-CLOSED}
LOAD 3
LOAD 1
MACRO BOUNDS_CHECK

Internal Compiler Implementation:

LBL BOUNDS_CHECK
LOADV 0
MAX
MIN
PSTOREV 0
POPA
RTN

 30

MACRO: FEEDBACK_CONTROL

Example Usage:

LOAD SPEED_PERCENT
LOAD FEEDBACK_GAIN
LOAD SPEED_MAXSTEP_PERCENT
LOAD SUCTION_PRESSURE
LOAD DISCHARGE_PRESSURE
LOAD SUCTION_LIMIT_PSI
LOAD DISCHARGE_LIMIT_PSI
MACRO FEEDBACK_CONTROL
STORE SPEED_PERCENT
LOAD 100.0
/
PSTORE SPEED_CONTROL_MODULE

Internal Compiler Implementation (C++):

ERR1 = FEEDBACK_GAIN * (DISCHARGE_LIMIT_PSI – DISCHARGE_PRESSURE)
ERR2 = FEEDBACK_GAIN * (SUCTION_PRESSURE – SUCTION_LIMIT_PSI)
IF (ERR1 < 0)
 {
 IF (ERR2 < 0)
 {
 // both negative…
 ERR = ERR1 + ERR2
 }
 ELSE
 {
 // only one negative…
 ERR = ERR1
 }
 }
ELSE
 {
 IF (ERR2 < 0)
 {
 // one negative…
 ERR = ERR2
 }
 ELSE
 {
 // both positive…
 ERR = ERR1 + ERR2
 }
 }
ERR = MIN (ERR , SPEED_MAXSTEP_PERCENT)
ERR = MAX (ERR , –SPEED_MAXSTEP_PERCENT)
SPEED = SPEED + ERR

[POP ALL SEVEN (7) VALUES OFF THE DATA STACK; AND ADD ONE (1) ELEMENT TO THE DATA STACK:
VFD_SPEED_PERCENT.]

 31

MACRO: BPS_MODE_CALC

Example Usage:

LOADA MODE{RADIO-PRESS-TIMER-EXT}
LOADA FAILOVER{PRESS-TIMER-EXT}
LOADA COMM_TO_TOWER
LOADA TOWER_TRANSDUCER_FAIL
MACRO BPS_MODE_CALC
PSTORE EXTERNAL_MODE
PSTORE TIMER_MODE
PSTORE PRESSURE_MODE
PSTORE RADIO_MODE

Internal Compiler Implementation:

LBL BPS_MODE_CALC

TOWER_CONTROL_FAIL ...
LOADV 1
NOT
LOADV 0
OR
LOADV 3
LOAD 1.0
X=Y?
AND
PSTOREV 4

RADIO_MODE ...
LOADV 4
NOT
LOADV 3
LOAD 1.0
X=Y?
AND

PRESSURE_MODE ...
LOADV 4
LOADV 2
LOAD 1.0
X=Y?
AND
LOADV 3

LOAD 2.0
X=Y?
OR

TIMER_MODE ...
LOADV 4
LOADV 2
LOAD 2.0
X=Y?
AND
LOADV 3
LOAD 3.0
X=Y?
OR

EXT_MODE CALC ...
LOADV 4
LOADV 2
LOAD 3.0
X=Y?
AND
LOADV 3
LOAD 4.0
X=Y?
OR

POPA 5
RTN

 32

MACRO: PUMP_SEQUENCE_SETUP2

Example Usage:

LOADA ALTERNATE_PUMPS
LOADA SEQUENCE_POINTER
LOADA LEAD_PUMP{P1-P2}
LOADA LAG_PUMP{P1-P2}
LOADA LEAD_PUMP_DEF
LOADA LAG_PUMP_DEF
MACRO PUMP_SEQUENCE_SETUP2

Internal Compiler Implementation (C++):

IF (! ALTERNATE_PUMPS)
 {
 SEQUENCE_POINTER = 1
 }
IF (SEQUENCE_POINTER = 1)
 {
 LEAD_PUMP_DEF = LEAD_PUMP{P1-P2}
 LAG_PUMP_DEF = LAG_PUMP{P1-P2}
 }
ELSE IF (SEQUENCE_POINTER = 2)
 {
 LEAD_PUMP_DEF = LAG_PUMP{P1-P2}
 LAG_PUMP_DEF = LEAD_PUMP{P1-P2}
 }

[Data Stack Pointer: Unchanged. Pop 6 Addresses Off The Address Stack.]

 33

MACRO: PUMP_SEQUENCE_SETUP3

Example Usage:

LOADA ALTERNATE_PUMPS
LOADA SEQUENCE_POINTER
LOADA LEAD_PUMP{P1-P2-P3}
LOADA LAG_PUMP{P1-P2-P3}
LOADA TRAIL_PUMP{P1-P2-P3}
LOADA LEAD_PUMP_DEF
LOADA LAG_PUMP_DEF
LOADA TRAIL_PUMP_DEF
MACRO PUMP_SEQUENCE_SETUP3

Internal Compiler Implementation (C++):

IF (! ALTERNATE_PUMPS)
 {
 SEQUENCE_POINTER = 1
 }
IF (SEQUENCE_POINTER = 1)
 {
 LEAD_PUMP_DEF = LEAD_PUMP{P1-P2-P3}
 LAG_PUMP_DEF = LAG_PUMP{P1-P2-P3}
 LAG_PUMP_DEF = TRAIL_PUMP{P1-P2-P3}
 }
ELSE IF (SEQUENCE_POINTER = 2)
 {
 LEAD_PUMP_DEF = LAG_PUMP{P1-P2-P3}
 LAG_PUMP_DEF = TRAIL_PUMP{P1-P2-P3}
 TRAIL_PUMP_DEF = LEAD_PUMP{P1-P2-P3}
 }
ELSE IF (SEQUENCE_POINTER = 3)
 {
 LEAD_PUMP_DEF = TRAIL_PUMP{P1-P2-P3}
 LAG_PUMP_DEF = LEAD_PUMP{P1-P2-P3}
 TRAIL_PUMP_DEF = LAG_PUMP{P1-P2-P3}
 }

[Data Stack Pointer: Unchanged. Pop 6 Addresses Off The Address Stack.]

 34

MACRO: SPHEROID_STATS

Example Usage:

LOAD TANK_LEVEL_FT
LOAD TANK_FLOW_FT_PER_MINUTE
LOAD TOP_OF_BOWL_HEIGHT
LOAD BOTTOM_OF_BOWL_HEIGHT
LOAD TANK_VOLUME_GAL
MACRO SPHEROID_STATS
PSTORE CURRENT_VOLUME_GAL
PSTORE CURRENT_FLOW_GPM
PSTORE CURRENT_FLOW_FEET_PER_HOUR
PSTORE CURRENT_DIAMETER

Internal Compiler Implementation (C++):

// Volume (spheroid) = 7.48 x PI x DIAM**2 x HEIGHT / 6
// Diameter (spheroid) = SQRT{ 6 x VOLUME_GAL / 7.48 / PI / HEIGHT }
tank_level_ft = dStack[dSP-4] ;
current_flow_fpm = dStack[dSP-3] ;
top_of_bowl_ft = dStack[dSP-2] ;
bottom_of_bowl_ft = dStack[dSP-1] ;
tank_capacity_gal = dStack[dSP] ;
delta_height_ft = top_of_bowl_ft - bottom_of_bowl_ft ;
delta_height_ft = MAX(delta_height_ft,(double)0.001) ;
rz = (double)0.5 * delta_height_ft ;
rz2 = rz * rz ;
tank_capacity_ft3 = tank_capacity_gal / (double)7.48 ;
tank_max_diameter_ft = (double)6.0 * tank_capacity_ft3 / DPI / delta_height_ft ;
tank_max_diameter_ft = sqrt(fabs(tank_max_diameter_ft)) ;
rx = (double)0.5 * tank_max_diameter_ft ;
rx2 = pow(rx,2) ;

// Tank Level Limiter ...
// (Do not allow tank level to be above/below bowl)...
tank_level_limited = min(tank_level_ft,top_of_bowl_ft) ;
tank_level_limited = max(tank_level_limited,bottom_of_bowl_ft) ;

// Current Diameter ...
// 2 * sqrt(fabs(rx2 - pow(rx*(tank_lev_lim-bot_ht-rz)/rz , 2)))
current_diameter_ft = (double)2 * sqrt(fabs(rx2-pow(rx*(tank_level_limited-bottom_of_bowl_ft-rz)/rz,2))) ;

// Flow Rate ...
current_flow_gpm = 7.48 * DPI * pow(current_diameter_ft,2) * 0.25 * current_flow_fpm ;
current_flow_fph = current_flow_fpm * 60 ;

// Current Tank Volume ...
current_volume_gal = 7.48 * DPI * rx2 ;
current_volume_gal *= (tank_level_limited-bottom_of_bowl_ft-rz) + (double)0.6666666667 * rz - 0.3333333 *

 pow(tank_level_limited - bottom_of_bowl_ft - rz , 3)/rz2 ;

dSP = ((dSP-1) & DATA_STACK_MASK) ;
ElementsOnStack-- ;
dStack[dSP] = current_volume_gal ;
dStack[dSP-1] = current_flow_gpm ;
dStack[dSP-2] = current_flow_fph ;
dStack[dSP-3] = current_diameter_ft ;

 35

MACRO: CUBIC_SOLVER

Example Usage:

LOAD A_PARAMETER
LOAD B_PARAMETER
LOAD C_PARAMETER
LOAD D_PARAMETER
LOAD LOWER_BOUND
LOAD UPPER_BOUND
LOAD ACCEPTABLE_ERROR
MACRO CUBIC_SOLVER
PSTORE X_ROOT

Internal Compiler Implementation (C++):

Solves for the first located root of the polynomial equation:

Y = 0 = A * X^3 + B * X^2 + C * X + D

First, the program searches 20 evenly-spaced values for X
between LOWER_BOUND and UPPER_BOUND for an approximate
zero-crossing point Y.

Second, the program refines the search using the SECANT method to
derive the root within precision determined by ACCEPTABLE_ERROR.

The program returns the root to the stack.

 36

8 CONVERTING RELAY-LADDER-LOGIC TO NCL

RLL (Relay-Ladder-Logic) diagrams can play a useful part in the creation of NCL
programs. In a situation where a WiSTAR RTU is installed as a replacement to an
obsolete control panel (which may contain complex groups of relays, timers, and
transducers), the panel diagram can be implemented as the control logic for the
WiSTAR RTU. This provides the benefit of familiar operating characteristics for the
system.

NCL offers all of the capabilities of RLL as well as the capabilities of complex logic
blocks in one easy-to-use language. This single-language solution provides the benefits
of simplified programming and troubleshooting combined with a compact, high-
performance interpreter and debugger.

To get acquainted with the basic methods of RLL conversion to NCL, let's start with a
simple example of regulating a heater:

ROOM_TEMP <= THERMOSTAT_TEMP - 5 ?

[HEATER_RELAY]

[HEATER_RELAY]

ROOM_TEMP <= THERMOSTAT_TEMP + 5 ?

Figure 1. Temperature Regulation Relay Diagram

For this example, let us assume that the thermostat temperature is set at 50degF.
When the temperature drops to 45degF or below, then the heater relay will be
energized by both the upper and lower rungs of the ladder. After the heater relay is
activated, it is assumed that the temperature will begin to climb. When the temperature
rises above 45degF, the upper rung will not pass energy to the relay, but the lower rung
will continue to pass energy until the temperature climbs above 55degF. This type of 10
degF hysteresis (deadband) is common in level control, as it reduces the wear on the
switch and the equipment which it controls.

 37

This heater control example can be implemented in NCL with the following program:

Core Command Implementation:

LBL MAIN

Logic For Upper Rung ...

LOAD ROOM_TEMP
LOAD THERMOSTAT_TEMP
LOAD 5.0
-
Y<=X?

Logic For Lower Rung ...

LOAD ROOM_TEMP
LOAD THERMOSTAT_TEMP
LOAD 5.0
+
Y<=X?
LOAD HEATER_RELAY
AND

Add Them Together And Energize
(or De-Energize) The Relay ...

OR
STORE HEATER_ON
PSTORE HEATER_RELAY

END

Macro Implemtation:

LBL MAIN
LOADA HEATER_ON
LOADA ROOM_TEMP
LOADA THERMOSTAT_TEMP
LOAD 5.0
MACRO SYMMETRIC_DEADBAND
STORE HEATER_ON
PSTORE HEATER_RELAY
END

 38

9 LOADING THE “LOGIC.NPP” FILE INTO THE RTU

After the "LOGIC.NPP" program file has been written using the text editor of your
choice, the next step is to download the program to the target RTU:

A. Copy your "LOGIC.NPP" file onto your palmtop (or notebook) computer, if it
is not already on it.

B. Make a serial port connection between your palmtop computer and the
RS232-DTE port of the RTU using a null modem cable. The palmtop (or
notebook) terminal emulation program should be configured with the following
communication settings :

* 19200 bps
* NoParity
* 8 DataBits
* 1 StopBit
* “ANSI” Terminal Emulation

C. Press <ENTER> on the palmtop to activate the "Login" screen, and log in as
"FACTORY”. Type the "<X>" hotkey to "Exit To DOS".

D. Download LOGIC.NPP: At the DOS prompt, type the following command:

 D: <ENTER>
 CD RT <ENTER>

TRANSFER /R LOGIC.NPP <ENTER>

E. Escape back to the terminal emulation program and send the "LOGIC.NPP"
file using the XMODEM protocol. When the transfer is complete, you will see the
DOS prompt on the terminal display again.

F. Execute WINCOM: At the DOS prompt, type the following command:

 GO <ENTER>

(This will restart the WINCOM software and compile the new NCL program. If
there are any compilation errors, WINCOM will tell you which line contains the
error, what the error is, and halt execution and exit to DOS. If there are any
errors, then you will need to edit and fix the flawed "LOGIC.NPP" file on your
palmtop. After the fix, download the new file to the RTU (Repeat steps D-F.).

G. After successfully compiling the program, you are now ready to evaluate and
debug your new program using “NDB”, the NCL Debugger, which is described in
detail in the next chapter.

 39

10 DEBUGGING WITH “NDB”: THE NCL DEBUGGER

The NDB debugger may be invoked at any time from the "Login" screen of the
WINCOM program when the user logs in using the “control”-level password:

 Enter Password : CONTROL <ENTER>

After a few seconds, the following message should appear on your screen:

 Begin NCL Debugger At Line 1.

 1: LBL MAIN
 NDB>

As a programmer, you may have defined separate logic branches, depending upon
certain conditions. For example, during program startup (the “first run”), it is customary
to initialize registers and timers. Also, after a setpoint change has occurred, certain
registers and timers must be re-initialized. In order to debug these logic branches, the
following commands are available to simulate these conditions:

NDB> FIRSTRUN <ENTER> Toggle “First Run” Simulation ON/OFF

NDB> NEWSETPOINTS <ENTER> Toggle “New Setpoints” Simulation ON/OFF

Note: When the NDB debugger is invoked, all communication functions are disabled.
For this reason, you can be assured that the status-file(s) retrieved from a remote site(s)
will be stable for the duration of your debugging session.

LISTING THE SOURCE CODE

At this point, the first program line has not yet been executed. NDB always displays the
next line of the program that will be executed. Therefore, upon debugger startup, NDB
displays the first line of the control logic. Also notice that NDB numbers the lines
(ignoring any blank lines). This will prove useful should you locate a “bug”
(programming error) during the debugging session, as it will help to pinpoint the line(s)
that need fixing when you return to your text editor.

 40

Sometimes while debugging, it is useful to "look ahead" several lines so as to anticipate
the next commands. This capability is provided by using the "LIST" command at the
NDB> prompt. Here is an example of its usage:

 NDB> LIST <ENTER> "Lists the next 10 (default) lines in the program"

 1: LBL MAIN
 2: FIRSTRUN?
 3: IF_FALSE
 4: GOTO 10
 5: LOAD 0.0
 6: STORE DELTA_TIME (USR 16)
 7: STORE PUMP_START_TIME (USR 12)
 8: PSTORE PUMP_STOP_TIME (USR 13)
 9: SYSTIME
 10: PSTORE LOW_SUCTION_BEG_TIME (USR 22)

If you type: LIST n <ENTER>, then the next n lines of the program will be displayed.

Notice that when a command uses an "alias" for a register name, NDB also displays the
actual register name as well. For example, on line 6, DELTA_TIME is the alias name
for the "USR 16" register. To provide you with the most possible information during
your debugging session, NDB displays both actual and alias names of all registers.

“STEPPING THROUGH” THE CONTROL LOGIC

Stepping through the control logic is accomplished by using the "STEP" command at the
NDB> prompt. Since this is the most used command, you can simply hit the <ENTER>
key, as well, to accomplish a "STEP":

 NDB> STEP <ENTER> "Executes one (1) line of NCL code."
 Or …
 NDB> <ENTER> "Executes one (1) line of NCL code."

For many NDB commands, you can simply type the first letter as an abbreviated form of
the command, if this first letter identifies the command without ambiguity. However, the
"STEP" command is the exception, as the "S" is reserved as an abbreviation for the
"STACK" command defined below. The "<ENTER>" key should be used as the
abbreviated version of "STEP".

If you wish to execute “n” lines of the NCL program, then use the “RUN” command at
the prompt:

 NDB> RUN 20 <ENTER> "Execute the next 20 lines of code."

 41

If you wish to execute the entire program, non-stop, until the END is reached, then use
the "RUN" command at the prompt without specifying the number of lines of code:

 NDB> RUN <ENTER> "Execute code from present location until the end."

When you reach the END of the program (by using either the "RUN" command or by
using "STEP" commands), NDB will pause and display the new values of the digital,
analog, and integer FLAG registers.

DISPLAYING THE DATA STACK ELEMENTS

By default, the elements on the data stack are printed to the screen, but none will be
displayed if the data stack is empty. If you wish for NDB to re-print the data stack
elements to the screen, use the "STACK" command at the prompt:

 NDB> STACK <ENTER> "Display the elements of the data stack."

NDB will also interpret "S" as the "STACK" command.

It is considered good programming practice to pop numbers from the data stack after
they are no longer needed by the program. However, this is not strictly required, as the
data stack may be overflowed without causing an error condition. When the data stack
length exceeds 32, the excess numbers are simply discarded. However, if you choose
not to follow this stern recommendation, then your debugging sessions will be much
more difficult, as you will be constantly trying to determine which data stack members
are of active interest, and which are not.

DISPLAYING THE ADDRESS STACK ELEMENTS

By default, the elements on the address stack are printed to the screen, but none will be
displayed if the address stack is empty. If you wish for NDB to re-print the stack
elements to the screen, use the "ASTACK" command at the prompt:

 NDB> ASTACK <ENTER> "Display the elements of the address stack."

It is considered good programming practice to pop numbers from the address stack
after they are no longer needed by the program. However, this is not strictly required,
as the address stack may be overflowed without causing an error condition. When the
address stack length exceeds 32, the excess numbers are simply discarded. However,
if you choose not to follow this stern recommendation, then your debugging sessions
will be much more difficult, as you will be constantly trying to determine which address
stack members are of active interest, and which are not.

 42

DISPLAYING THE CONTENTS OF REGISTERS AND INPUT MODULES

NDB provides the capability to view the contents of all registers and input modules with
the "PRINT" command. "PRINT" is invoked from the command line in the following
manner:

 NDB> PRINT "RegisterName" "Display contents of RegisterName."

Some possible examples would be:

 NDB> PRINT POWER_MODULE "Display status of the power module."
 Or …
 NDB> PRINT TOWER_CALL_PUMP "Display one of the water tower's flags."

MODIFYING THE CONTENTS OF REGISTERS AND OUTPUT MODULES

NDB provides the capability to modify the contents of certain registers and all output
modules with the "ASSIGN" command. "ASSIGN" is invoked from the command line in
the following manner:

 NDB> ASSIGN "RegisterName" Value "Assign Value To RegisterName."

A possible example would be …

 NDB> ASSIGN DISCHARGE_PSI 60.0 "Change Discharge_Psi flag to 60.0"

The following example is not acceptable, and NDB will display an error if you attempt to
perform this command:

 NDB> ASSIGN DISCHARGE_PSI_MODULE 60.0 "Illegal! – Read Only Register”

The DISCHARGE_PSI_MODULE cannot be modified because it is an “input module”,
and therefore it is “read-only”. All registers that are "read-only" cannot be modified with
the "ASSIGN" command. When in doubt, refer back to the table in Chapter 4, which
specifies whether a register or module is "read-only".

 43

MODIFYING THE TIMEOUT OF A TIME-DELAY REGISTER

NDB provides the capability to modify the timeout delay of a time-delay register with the
"SETDELAY" command. "SETDELAY" is invoked from the command line in the
following manner:

 NDB> SETDELAY "Time-Delay-RegisterName" Value

... "Change The Timeout Of "Time-Delay-RegisterName" To "Value" seconds.

A possible example would be …

 NDB> SETDELAY LOW_SUCTION_TIMER 25.0

... "Change Low Suction Timeout To 25 seconds."

EDITING THE NCL HEADER FILE OR LOGIC FILE DURING EXECUTION

NDB provides the capability to edit the header file and/or the logic file from within the
debugger environment. The editor is invoked from the command line in the following
manner:

 NDB> EDITNPP "Edit the NCL Program File.”

It is important to note that any changes made to the NCL Program File do not take
effect immediately. After the editing changes are made, a recompilation of the
LOGIC.NPP file must follow. The recompilation is invoked from the command line in the
following manner:

 NDB> REC "Recompile the .NPP Program File.”

EXITING THE DEBUGGER AND CONTINUING WINCOM EXECUTION

In order to exit from NDB but continue with WINCOM execution, use the "EXIT" (or "X")
command at the prompt. The "Login" screen will appear, and WINCOM execution will
continue normally.

 NDB> X "Exit The Debugger, And Resume Normal Execution.”

EXITING BOTH THE DEBUGGER AND WINCOM

In order to exit from both NDB and WINCOM, use the "QUIT" (or "Q") command at the
prompt. Warming: The program will halt execution and exit to a DOS prompt.

 NDB> Q "Exit The Debugger and WINCOM, Return To A DOS system prompt.”

 44

11 DEBUGGING WITH THE ADVANCED
REALTIME DISPLAY

1. In addition to NDB, the NCL debugger that is documented in the previous chapter,
there exists another technique for debugging the control logic of an RTU. This
alternative method uses an extended feature of the “Realtime Display”, and is available
to personnel who are logged into the RTU with the “factory”-level password.

2. While logged in at the “factory”-level, and from the “Main Menu”, press the <8>
hotkey to enter the “Realtime Display”. The standard “Realtime Display” is shown:

3. When the user presses the <TAB> key, a “Realtime Display” of internal control logic
registers is shown. Notice that the page number is incremented to page #2:

 45

4. When the user presses the <TAB> key again, the more internal control logic
registers are shown. For user reference, the page number of each screen is shown.
Notice the “POWER_OK_TIMER” register, and those of similar type. These are “Time-
Delay” Registers. The left block denotes the input signal; and the right block denotes
the output signal. The left number denotes the “time since energized”; and the left
number denotes the “timeout” of the timer.

5. When the user presses the <TAB> key again, the final page of internal control logic
registers is shown. Note that the number of displayed registers is application-specific,
and therefore the number of display pages will vary between applications.

6. If the user presses the <TAB> key again, the display will return to the standard
“Realtime Display” page.

 46

12 CONCLUDING REMARKS

Over the past 18 years, the rural water and wastewater industries have been moving
toward wireless telemetry networks for their reduced costs and increased effectiveness.
In an almost parallel time period, the move toward the use of industrial PC’s for high-
performance industrial control has been equally rapid and consistent. The development
of the NCL-programmable WiSTAR RTU represents the natural marriage of these two
technologies in a single, integrated product.

The goal of this tutorial has been to provide you with the knowledge and the tools to
build innovative and useful distributed control programs for the rural water and
wastewater industries. After the first reading, the techniques may seem difficult to
master; but this should not deter you – You will get it eventually.

NCL empowers the programmer to tap into the expertise of the operators and engineers
of water and wastewater systems; and in turn provide them with control and information
networks that perform exactly as desired, and in ways in which no other RTU or PLC
could compare.

You now have what you need to build the great NCL applications of tomorrow!

 47

APPENDIX A: DIMENSIONAL LIMITS

The following list documents the present dimensional limits of the most recent NCL
firmware (Navionics Research RTU firmware as of 03 December 2002). In a few
instances, the limits are based upon computer memory provisions. However, in most
cases, it is simply a matter of supporting the industrial I/O hardware of the standard
RTU. For example, the standard unit allows 48 digital input modules, 48 relay output
modules, 24 analog input modules, 24 analog output modules, and 3 integer input
modules (event counters). The dimensional limitations thereby prevent the programmer
from attempting to address more modules than the standard hardware configuration will
support. However, for special hardware configurations with additional I/O capacity,
upgraded software versions can be easily created upon request.

Maximum Usable Data Stack Length 32 Numbers
Maximum Usable Address Stack Length 32 Numbers
Maximum Number Of Aliases 300 Aliases
Maximum Alias Name Length 48 Characters
Maximum "In-Core" NCL Program Length 1000 Lines
Maximum "Out-Of-Core" NCL Program Length 5000+ Lines
Maximum Number Of Digital Setpoints 48
Maximum Number Of Analog Setpoints 40
Maximum Number Of Integer (Radiobutton)
Setpoints

40

Maximum Number Of Time-Delay Registers 64
Maximum Number Of Digital Flags 48
Maximum Number Of Analog Flags 40
Maximum Number Of Integer Flags 40
Maximum Number Of Digital Input Modules 48
Maximum Number Of Relay Output Modules 48
Maximum Number Of Analog Input Modules 24
Maximum Number Of Analog Output Modules 24
Maximum Number Of Integer Input (Counter)
Modules

3

Maximum Modbus/ADAM/Toshiba Variable Names 32
Maximum Number Of Remote Dependent Sites 10
Maximum Number Of USR Registers 128
Maximum Number of Subroutines 32 Subroutines,

Including Main
Maximum Recursion Or Subroutine Calling Depth 16 Subroutines,

Including Main
Maximum Subroutine Name Length 36 characters

 48

APPENDIX B: EXAMPLE PROGRAM SOURCE

$NCH - Header Info: UPS Station at Walnut Hill, IL
 1 # Number of Digital Setpoints
 16 # Number of Analog Setpoints
 2 # Number of Integer Setpoints
 4 # Number of Digital Input Modules
 4 # Number of Analog Input Modules
 0 # Number of Integer Input Modules
 16 # Number of Digital Flag States
 4 # Number of Analog Flag States
 2 # Number of Integer Flag States
 1 # Number of Relay Output Modules
 0 # Number of Analog Output Modules
Remote Setup Information ... (No Blank Lines Allowed...)
 1 # Number of Dependent Sites (Dependent Sites Follow)
 001 # Index 0 (Zero): Walnut Hill Water Tower
Variable Name Definitions ... (Blank Lines Allowed...)

ALIAS FAILOVER_TO_PRESSURE_MODE LDS 0

ALIAS LOW_SUCTION_CUTOUT_PSI LAS 0
ALIAS LOW_SUCTION_RELEASE_PSI LAS 1
ALIAS HIGH_SUCTION_CUTIN_PSI LAS 2
ALIAS HIGH_SUCTION_RELEASE_PSI LAS 3
ALIAS HIGH_DISCHARGE_CUTOUT_PSI LAS 4
ALIAS HIGH_DISCHARGE_RELEASE_PSI LAS 5
ALIAS LOW_DISCHARGE_CUTIN_PSI LAS 6
ALIAS LOW_DISCHARGE_RELEASE_PSI LAS 7

ALIAS PRESSURE_MODE_PUMP_OFF_PSI LAS 8
ALIAS PRESSURE_MODE_PUMP_ON_PSI LAS 9

ALIAS TIMER_1_START_HOUR LAS 10
ALIAS TIMER_1_STOP_HOUR LAS 11
ALIAS TIMER_2_START_HOUR LAS 12
ALIAS TIMER_2_STOP_HOUR LAS 13
ALIAS TIMER_3_START_HOUR LAS 14
ALIAS TIMER_3_STOP_HOUR LAS 15

ALIAS PUMP_MODE{AUTO-ON-OFF} LIS 0
ALIAS STATION_MODE{RADIO-PRESSURE-TIMER} LIS 1

ALIAS POWER_MODULE LDM 0
ALIAS PUMP_POSITIVE_INDICATOR_MODULE LDM 1
ALIAS PHASE_FAULT_DETECT_MODULE LDM 2
ALIAS FLOOD_DETECT_MODULE LDM 3

ALIAS DISCHARGE_PSI_MODULE LAM 0
ALIAS SUCTION_PSI_MODULE LAM 1
ALIAS PUMP_TEMP_DEGF_MODULE LAM 2
ALIAS PUMP_ROOM_TEMP_DEGF_MODULE LAM 3

ALIAS DISCHARGE_WORKING LAMV 0
ALIAS SUCTION_WORKING LAMV 1

DISPL POWER_ON LDF 0
DISPL PUMP_RELAY LDF 1
DISPL PUMP_ON LDF 2
DISPL PHASE_FAULT_DETECT LDF 3
DISPL FLOOD_DETECT LDF 4
DISPL PUMP_FAIL LDF 5

 49

DISPL COMM_FAILURE LDF 6
DISPL RADIO_MODE LDF 7
DISPL PRESSURE_MODE LDF 8
DISPL TIMER_MODE LDF 9
DISPL LOW_SUCTION_CUTOUT LDF 10
DISPL HIGH_SUCTION_CUTIN LDF 11
DISPL HIGH_DISCHARGE_CUTOUT LDF 12
DISPL LOW_DISCHARGE_CUTIN LDF 13
DISPL DISCHARGE_TRANSDUCER_FAIL LDF 14
DISPL SUCTION_TRANSDUCER_FAIL LDF 15

DISPL DISCHARGE_PSI LAF 0
DISPL SUCTION_PSI LAF 1
DISPL PUMP_TEMP_DEGF LAF 2
DISPL PUMP_ROOM_TEMP_DEGF LAF 3

DISPL UP_TIME_MIN LIF 0
DISPL PUMP_RUNTIME_MIN LIF 1

ALIAS PUMP_SSR LDR 0

DISPL COMM_TO_WATER_TOWER VLD 0
DISPL TOWER_LEVEL_FT RAF 0 0
DISPL TOWER_CALL_PUMP RDF 0 2
DISPL TOWER_TRANSDUCER_FAIL RDF 0 6

ALIAS LOW_SUCTION_TIMER TMR 0
ALIAS LOW_SUCTION_OK_TIMER TMR 1
ALIAS HIGH_DISCHARGE_TIMER TMR 2
ALIAS HIGH_DISCHARGE_OK_TIMER TMR 3
ALIAS HIGH_SUCTION_TIMER TMR 4
ALIAS HIGH_SUCTION_OK_TIMER TMR 5
ALIAS LOW_DISCHARGE_TIMER TMR 6
ALIAS LOW_DISCHARGE_OK_TIMER TMR 7
ALIAS PHASES_OK_TIMER TMR 8
ALIAS POWER_OK_TIMER TMR 9
ALIAS FLOOD_OK_TIMER TMR 10
ALIAS PUMP_FAIL_TIMER TMR 11

ALIAS PUMP_RUNTIME_SECS USR 0
ALIAS LASTCALL_TIME USR 1
ALIAS DELTA_TIME USR 2
ALIAS AOK USR 3
ALIAS EMERGENCY_CUTIN USR 4
ALIAS PRESSURE_PUMP USR 5
ALIAS TIMER_PUMP USR 6
ALIAS TOWER_PUMP USR 7
ALIAS LOCAL_PUMP USR 8

$NCL

NCL Program

Station : UPS Pump Station (Village of Walnut Hill PWD)
Author : Jim Mimlitz, Navionics Research Inc.
Date : 30 September 1997

TRANSFER MODULE INPUTS TO FLAG INPUTS ...

 LBL MAIN

 LOAD PUMP_POSITIVE_INDICATOR_MODULE

 50

 PSTORE PUMP_ON

 LOAD DISCHARGE_PSI_MODULE
 PSTORE DISCHARGE_PSI

 LOAD SUCTION_PSI_MODULE
 PSTORE SUCTION_PSI

 LOAD DISCHARGE_WORKING
 NOT
 PSTORE DISCHARGE_TRANSDUCER_FAIL

 LOAD SUCTION_WORKING
 NOT
 PSTORE SUCTION_TRANSDUCER_FAIL

 LOAD PUMP_ROOM_TEMP_DEGF_MODULE
 PSTORE PUMP_ROOM_TEMP_DEGF

 LOAD PUMP_TEMP_DEGF_MODULE
 LOAD PUMP_ROOM_TEMP_DEGF
 -
 PSTORE PUMP_TEMP_DEGF

FIRSTRUN HANDLER & DELTA-TIME HANDLER ...

 FIRSTRUN?
 IF_FALSE
 GOTO 10

 SYSTIME
 PSTORE LASTCALL_TIME

 LOAD 5.0
 SDELAY LOW_SUCTION_TIMER
 SDELAY HIGH_SUCTION_TIMER
 PSDELAY LOW_DISCHARGE_TIMER
 LOAD 12.0
 PSDELAY HIGH_DISCHARGE_TIMER
 LOAD 300.0
 SDELAY LOW_SUCTION_OK_TIMER
 SDELAY HIGH_SUCTION_OK_TIMER
 SDELAY LOW_DISCHARGE_OK_TIMER
 SDELAY HIGH_DISCHARGE_OK_TIMER
 SDELAY PHASES_OK_TIMER
 SDELAY POWER_OK_TIMER
 PSDELAY FLOOD_OK_TIMER
 LOAD 180.0
 PSDELAY PUMP_FAIL_TIMER

 GOSUB SANITY_CHECKS

10 POP

 SYSTIME
 LOAD LASTCALL_TIME
 -
 PSTORE DELTA_TIME
 SYSTIME
 PSTORE LASTCALL_TIME

 51

IF NEW SETPOINTS, SANITY CHECK THE SETPOINTS ...

 NEW_SETPOINTS?
 IF_FALSE
 GOTO 20
 GOSUB SANITY_CHECKS
20 POP

CALCULATE SYSTEM UPTIME ...

 UPTIME
 LOAD 60.0
 /
 PSTORE UP_TIME_MIN

CHECK COMMUNICATION STATUS & PRESSURE_MODE CALC ...

 LOAD COMM_TO_WATER_TOWER
 NOT
 STORE COMM_FAILURE
 LOAD TOWER_TRANSDUCER_FAIL
 OR
 LOAD STATION_MODE{RADIO-PRESSURE-TIMER}
 LOAD 1.0
 X=Y?
 AND
 LOAD FAILOVER_TO_PRESSURE_MODE
 AND
 LOAD STATION_MODE{RADIO-PRESSURE-TIMER}
 LOAD 2.0
 X=Y?
 OR
 PSTORE PRESSURE_MODE

TIMER_MODE CALC ...

 LOAD STATION_MODE{RADIO-PRESSURE-TIMER}
 LOAD 3.0
 X=Y?
 PSTORE TIMER_MODE

RADIO_MODE CALC ...

 LOAD COMM_FAILURE
 NOT
 LOAD STATION_MODE{RADIO-PRESSURE-TIMER}
 LOAD 1.0
 X=Y?
 AND
 PSTORE RADIO_MODE

LOW SUCTION CALC (W/ DELAY TIMER) ...

 LOAD SUCTION_PSI
 LOAD LOW_SUCTION_CUTOUT_PSI
 Y<=X?
 PSTORE LOW_SUCTION_TIMER

 52

 LOAD LOW_SUCTION_TIMER
 NOT
 PSTORE LOW_SUCTION_OK_TIMER

 LOAD LOW_SUCTION_OK_TIMER
 NOT
 LOAD SUCTION_PSI
 LOAD LOW_SUCTION_RELEASE_PSI
 Y<X?
 LOAD LOW_SUCTION_CUTOUT
 AND
 OR
 PSTORE LOW_SUCTION_CUTOUT

HIGH_DISCHARGE CALC (W/ DELAY TIMER) ...

 LOAD DISCHARGE_PSI
 LOAD HIGH_DISCHARGE_CUTOUT_PSI
 Y>=X?
 PSTORE HIGH_DISCHARGE_TIMER

 LOAD HIGH_DISCHARGE_TIMER
 NOT
 PSTORE HIGH_DISCHARGE_OK_TIMER

 LOAD HIGH_DISCHARGE_OK_TIMER
 NOT
 LOAD DISCHARGE_PSI
 LOAD HIGH_DISCHARGE_RELEASE_PSI
 Y>X?
 LOAD HIGH_DISCHARGE_CUTOUT
 AND
 OR
 LOAD DISCHARGE_TRANSDUCER_FAIL
 NOT
 AND
 PSTORE HIGH_DISCHARGE_CUTOUT

HIGH SUCTION CALC (W/ DELAY TIMER) ...

 LOAD SUCTION_PSI
 LOAD HIGH_SUCTION_CUTIN_PSI
 Y>=X?
 PSTORE HIGH_SUCTION_TIMER

 LOAD HIGH_SUCTION_TIMER
 NOT
 PSTORE HIGH_SUCTION_OK_TIMER

 LOAD HIGH_SUCTION_OK_TIMER
 NOT
 LOAD SUCTION_PSI
 LOAD HIGH_SUCTION_RELEASE_PSI
 Y>X?
 LOAD HIGH_SUCTION_CUTIN
 AND
 OR
 LOAD SUCTION_TRANSDUCER_FAIL
 NOT
 AND
 PSTORE HIGH_SUCTION_CUTIN

 53

LOW DISCHARGE CALC (W/ DELAY TIMER) ...

 LOAD DISCHARGE_PSI
 LOAD LOW_DISCHARGE_CUTIN_PSI
 Y<=X?
 PSTORE LOW_DISCHARGE_TIMER

 LOAD LOW_DISCHARGE_TIMER
 NOT
 PSTORE LOW_DISCHARGE_OK_TIMER

 LOAD LOW_DISCHARGE_OK_TIMER
 NOT
 LOAD DISCHARGE_PSI
 LOAD LOW_DISCHARGE_RELEASE_PSI
 Y<X?
 LOAD LOW_DISCHARGE_CUTIN
 AND
 OR
 LOAD DISCHARGE_TRANSDUCER_FAIL
 NOT
 AND
 PSTORE LOW_DISCHARGE_CUTIN

 LOAD PHASE_FAULT_DETECT_MODULE
 PSTORE PHASES_OK_TIMER
 LOAD PHASES_OK_TIMER
 NOT
 PSTORE PHASE_FAULT_DETECT

 LOAD POWER_MODULE
 PSTORE POWER_OK_TIMER
 LOAD POWER_OK_TIMER
 PSTORE POWER_ON

 LOAD FLOOD_DETECT_MODULE
 PSTORE FLOOD_OK_TIMER
 LOAD FLOOD_OK_TIMER
 NOT
 PSTORE FLOOD_DETECT

EQUIPMENT FAILURE CALC (W/ RELEASE TIMER) ...

 LOAD LOW_SUCTION_CUTOUT
 NOT
 LOAD HIGH_DISCHARGE_CUTOUT
 NOT
 AND
 LOAD PHASE_FAULT_DETECT
 NOT
 AND
 LOAD FLOOD_DETECT
 NOT
 AND
 LOAD POWER_ON
 AND
 PSTORE AOK

EMERGENCY_CUTIN CALC ...

 54

 LOAD LOW_DISCHARGE_CUTIN
 LOAD HIGH_SUCTION_CUTIN
 OR
 PSTORE EMERGENCY_CUTIN

TIMER-MODE HANDLER ...

 LOAD TIMER_1_START_HOUR
 LOAD TIMER_1_STOP_HOUR
 BETWEEN_HOURS
 LOAD TIMER_2_START_HOUR
 LOAD TIMER_2_STOP_HOUR
 BETWEEN_HOURS
 LOAD TIMER_3_START_HOUR
 LOAD TIMER_3_STOP_HOUR
 BETWEEN_HOURS
 OR
 OR
 LOAD TIMER_MODE
 AND
 PSTORE TIMER_PUMP

PRESSURE-MODE HANDLER ...

 LOAD DISCHARGE_PSI
 LOAD PRESSURE_MODE_PUMP_ON_PSI
 Y<=X?
 LOAD DISCHARGE_PSI
 LOAD PRESSURE_MODE_PUMP_OFF_PSI
 Y<X?
 LOAD PRESSURE_PUMP
 AND
 OR
 LOAD PRESSURE_MODE
 AND
 PSTORE PRESSURE_PUMP

TOWER-MODE HANDLER ...

 LOAD TOWER_CALL_PUMP
 LOAD RADIO_MODE
 AND
 PSTORE TOWER_PUMP

LOCAL-MODE PUMP HANDLER ...

 LOAD PRESSURE_PUMP
 LOAD TIMER_PUMP
 LOAD EMERGENCY_CUTIN
 OR
 OR
 PSTORE LOCAL_PUMP

FINAL PUMP ON-OFF CALC ...

 LOAD TOWER_PUMP
 LOAD LOCAL_PUMP

 55

 OR
 LOAD PUMP_MODE{AUTO-ON-OFF}
 LOAD 2.0
 X=Y?
 OR
 LOAD AOK
 AND
 LOAD PUMP_MODE{AUTO-ON-OFF}
 LOAD 3.0
 X<>Y?
 AND
 STORE PUMP_RELAY
 PSTORE PUMP_SSR

PUMP FAIL CALC (WITH DELAY TIMER) ...

 LOAD PUMP_RELAY
 LOAD PUMP_ON
 XOR
 PSTORE PUMP_FAIL_TIMER
 LOAD PUMP_FAIL_TIMER
 PSTORE PUMP_FAIL

PUMP RUNTIME CALC ...

 LOAD PUMP_ON
 LOAD DELTA_TIME
 *
 LOAD PUMP_RUNTIME_SECS
 +
 ABS
 STORE PUMP_RUNTIME_SECS
 LOAD 60.0
 /
 LOAD 1000000000.0
 MOD
 PSTORE PUMP_RUNTIME_MIN

 END

 LBL SANITY_CHECKS

CHECK PUMP_1_MODE RANGE ...

 LOAD 3.0
 LOAD 1.0
 LOAD PUMP_MODE{AUTO-ON-OFF}
 MAX
 MIN
 PSTORE PUMP_MODE{AUTO-ON-OFF}

CHECK STATION_MODE RANGE ...

 LOAD 3.0
 LOAD 1.0
 LOAD STATION_MODE{RADIO-PRESSURE-TIMER}
 MAX
 MIN

 56

 PSTORE STATION_MODE{RADIO-PRESSURE-TIMER}

 RTN

 57

APPENDIX C: ADVANCED EXAMPLE I – WATER TOWER

$NCH Control Logic Setup Info: RE Water - Angle Road Elevated Tank
 0 # Number of Discrete Setpoints
 9 # Number of Analog Setpoints
 0 # Number of Integer Setpoints
 1 # Number of Discrete Input Modules
 2 # Number of Analog Input Modules
 0 # Number of Integer Input Modules
 8 # Number of Discrete Flag States
 3 # Number of Analog Flag States
 1 # Number of Integer Flag States
 1 # Number of Relay Output Modules
 0 # Number of Analog Output Modules
Remote RTU Setup Information ...
 1 # Number of Dependent Sites (Dependent Sites Follow)
 002 # Berryville BPS

Variable Name Definitions ...

ALIAS LEAD_OFF_LEVEL LAS 0
ALIAS LEAD_ON_LEVEL LAS 1
ALIAS LAG_OFF_LEVEL LAS 2
ALIAS LAG_ON_LEVEL LAS 3
ALIAS HEATER_THERMO_DEGF LAS 4
ALIAS AUX_HIGH_FT LAS 5
ALIAS AUX_HIGH_RELEASE_FT LAS 6
ALIAS AUX_LOW_FT LAS 7
ALIAS AUX_LOW_RELEASE_FT LAS 8

ALIAS POWER_MODULE LDM 0

ALIAS TANK_LEVEL_MODULE LAM 0
ALIAS RTU_TEMP_MODULE LAM 1

ALIAS LEVEL_WORKING LAMV 0

ALIAS TANK_LEVEL_RATE LARM 0

ALIAS POWER_ON LDF 0
ALIAS CALL_FOR_LEAD LDF 1
ALIAS CALL_FOR_LAG LDF 2
ALIAS RTU_HEATER_ON LDF 3
ALIAS COMM_FAILURE LDF 4
ALIAS AUX_HIGH LDF 5
ALIAS AUX_LOW LDF 6
ALIAS TRANSDUCER_FAIL LDF 7

ALIAS TANK_LEVEL_FT LAF 0
ALIAS RTU_TEMP_DEGF LAF 1
ALIAS TANK_FLOW_RATE_FPH LAF 2

ALIAS UP_TIME_MIN LIF 0

ALIAS RTU_HEATER_SSR LDR 0

ALIAS LEAD_ON_TIMER TMR 0
ALIAS LEAD_OFF_TIMER TMR 1
ALIAS LAG_ON_TIMER TMR 2
ALIAS LAG_OFF_TIMER TMR 3
ALIAS LOW_ON_TIMER TMR 4
ALIAS LOW_OFF_TIMER TMR 5

 58

ALIAS HIGH_ON_TIMER TMR 6
ALIAS HIGH_OFF_TIMER TMR 7

ALIAS LASTCALL_TIME USR 0
ALIAS DELTA_TIME USR 1

ALIAS COMM_TO_PUMP_STATION VLD 0
ALIAS COMM_MISSES_TO_PUMP MIS 0

$NCL

NCL Program

Client : RE Water Corporation
Station : Angle Road Elevated Tank
Author : Tatyana Mimlitz, Navionics Research Inc.
Date : 19 November 2002

Transfer Module Inputs To Flag Inputs ...

 LBL MAIN

 LOAD POWER_MODULE
 PSTORE POWER_ON

 LOAD TANK_LEVEL_MODULE
 PSTORE TANK_LEVEL_FT

 LOAD RTU_TEMP_MODULE
 PSTORE RTU_TEMP_DEGF

 LOAD TANK_LEVEL_RATE
 LOAD 60.0
 *
 PSTORE TANK_FLOW_RATE_FPH

 LOAD COMM_TO_PUMP_STATION
 NOT
 PSTORE COMM_FAILURE

 LOAD LEVEL_WORKING
 NOT
 PSTORE TRANSDUCER_FAIL

CALCULATE DELTA-TIME SINCE LAST CALL ...

 SYSTIME
 LOAD LASTCALL_TIME
 -
 PSTORE DELTA_TIME
 SYSTIME
 PSTORE LASTCALL_TIME

CALCULATE SYSTEM UPTIME ...

 UPTIME
 LOAD 60.0
 /
 PSTORE UP_TIME_MIN

DEFINE TIMEOUTS

 59

 FIRSTRUN?
 IF_FALSE
 GOTO 110
 LOAD 0
 STORE LOW_ON_TIMER
 STORE LOW_OFF_TIMER
 STORE HIGH_ON_TIMER
 STORE HIGH_OFF_TIMER
 STORE LEAD_ON_TIMER
 STORE LEAD_OFF_TIMER
 STORE LAG_ON_TIMER
 PSTORE LAG_OFF_TIMER

 LOAD 60
 SDELAY LOW_ON_TIMER
 SDELAY LOW_OFF_TIMER
 SDELAY HIGH_ON_TIMER
 SDELAY HIGH_OFF_TIMER
 SDELAY LEAD_ON_TIMER
 SDELAY LEAD_OFF_TIMER
 SDELAY LAG_ON_TIMER
 PSDELAY LAG_OFF_TIMER
110 POP

LEAD PUMP CALC ...

 LOADA TANK_LEVEL_FT
 LOADA LEAD_ON_LEVEL
 LOADA LEAD_OFF_LEVEL
 LOADA LEAD_ON_TIMER
 LOADA LEAD_OFF_TIMER
 LOADA CALL_FOR_LEAD
 MACRO HYSTERESIS_LO_W_TIMER
 LOAD TRANSDUCER_FAIL
 NOT
 AND
 PSTORE CALL_FOR_LEAD

LAG PUMP CALC ...

 LOADA TANK_LEVEL_FT
 LOADA LAG_ON_LEVEL
 LOADA LAG_OFF_LEVEL
 LOADA LAG_ON_TIMER
 LOADA LAG_OFF_TIMER
 LOADA CALL_FOR_LAG
 MACRO HYSTERESIS_LO_W_TIMER
 LOAD TRANSDUCER_FAIL
 NOT
 AND
 PSTORE CALL_FOR_LAG

HEATER CALC ...

 LOADA RTU_HEATER_ON
 LOADA RTU_TEMP_DEGF
 LOADA HEATER_THERMO_DEGF
 LOAD 5.0
 MACRO SYMMETRIC_DEADBAND
 STORE RTU_HEATER_ON

 60

 PSTORE RTU_HEATER_SSR

AUX_HIGH_LEVEL CALC ...

 LOADA TANK_LEVEL_FT
 LOADA AUX_HIGH_FT
 LOADA AUX_HIGH_RELEASE_FT
 LOADA HIGH_ON_TIMER
 LOADA HIGH_OFF_TIMER
 LOADA AUX_HIGH
 MACRO HYSTERESIS_HI_W_TIMER
 LOAD TRANSDUCER_FAIL
 NOT
 AND
 PSTORE AUX_HIGH

AUX_LOW_LEVEL CALC ...

 LOADA TANK_LEVEL_FT
 LOADA AUX_LOW_FT
 LOADA AUX_LOW_RELEASE_FT
 LOADA LOW_ON_TIMER
 LOADA LOW_OFF_TIMER
 LOADA AUX_LOW
 MACRO HYSTERESIS_LO_W_TIMER
 LOAD TRANSDUCER_FAIL
 NOT
 AND
 PSTORE AUX_LOW

 END

 61

APPENDIX D: ADVANCED EXAMPLE II – PUMP STATION

$NCH Control Logic Setup Info: RE Water - Berryville BPS
 1 # Number of Discrete Setpoints
 21 # Number of Analog Setpoints
 6 # Number of Integer Setpoints
 5 # Number of Discrete Input Modules
 4 # Number of Analog Input Modules
 2 # Number of Integer Input Modules
 16 # Number of Discrete Flag States
 8 # Number of Analog Flag States
 6 # Number of Integer Flag States
 8 # Number of Relay Output Modules
 2 # Number of Analog Output Modules
Remote RTU Setup Information ...
 1 # Number of Dependent Sites (Dependent Sites Follow)
 001 # New Elevated Tank At Angle Road

Variable Name Definitions ...

ALIAS ALTERNATE_PUMPS LDS 0

ALIAS GST_VALVE_CLOSE_FT LAS 0
ALIAS GST_VALVE_OPEN_FT LAS 1
ALIAS VALVE_FEED_LIMIT_PSI LAS 2
ALIAS VALVE_GAIN LAS 3
ALIAS VALVE_MAXSTEP LAS 4
ALIAS VALVE_XDUCER_FAIL_OPEN_PERCENT LAS 5
ALIAS LOW_GST_CUTOUT_FT LAS 6
ALIAS LOW_GST_RELEASE_SECS LAS 7

ALIAS VFD_DISCHARGE_LIMIT_PSI LAS 8
ALIAS VFD_GAIN LAS 9
ALIAS VFD_MAXSTEP LAS 10
ALIAS VFD_XDUCER_FAIL_SPEED_PERCENT LAS 11
ALIAS FLOW_DETECT_GPM LAS 12

ALIAS PRESSURE_MODE_RUNTIME_HRS LAS 13
ALIAS PRESSURE_MODE_LEAD_ON_PSI LAS 14
ALIAS TIMER_1_START_HOUR LAS 15
ALIAS TIMER_1_STOP_HOUR LAS 16
ALIAS TIMER_2_START_HOUR LAS 17
ALIAS TIMER_2_STOP_HOUR LAS 18
ALIAS TIMER_3_START_HOUR LAS 19
ALIAS TIMER_3_STOP_HOUR LAS 20

ALIAS MODE{RADIO-PRESS-TIMER-EXT} LIS 0
ALIAS FAILOVER{PRESS-TIMER-EXT} LIS 1
ALIAS PUMP_1{AUTO-ON-OFF} LIS 2
ALIAS PUMP_2{AUTO-ON-OFF} LIS 3
ALIAS LEAD_PUMP{P1-P2} LIS 4
ALIAS LAG_PUMP{P1-P2} LIS 5

ALIAS POWER_OK_MODULE LDM 0
ALIAS PUMP_FEEDBACK_MODULE LDM 1
ALIAS GST_VALVE_OPEN_MODULE LDM 3
ALIAS GST_VALVE_CLOSED_MODULE LDM 4

ALIAS DISCHARGE_MODULE LAM 0
ALIAS GST_MODULE LAM 1
ALIAS ROOM_TEMP_MODULE LAM 2
ALIAS FEED_MODULE LAM 3

 62

ALIAS DISCHARGE_WORKING LAMV 0
ALIAS GST_WORKING LAMV 1
ALIAS FEED_WORKING LAMV 3

ALIAS METER_OUT_MODULE LIM 0
ALIAS METER_IN_MODULE LIM 1

ALIAS P1_SSR LDR 0
ALIAS P2_SSR LDR 1
ALIAS EXT_MODE_SSR LDR 7

ALIAS VALVE_POSITION_MODULE LAOM 4
ALIAS VFD_SPEED_MODULE LAOM 5

DISPL POWER_ON LDF 0
DISPL PUMP_1_ON LDF 1
DISPL PUMP_2_ON LDF 2
DISPL PUMP_1_FAIL LDF 3
DISPL PUMP_2_FAIL LDF 4
DISPL GST_VALVE_OPEN LDF 5
DISPL GST_VALVE_FAIL LDF 6
DISPL COMM_FAILURE LDF 7
DISPL RADIO_MODE LDF 8
DISPL PRESSURE_MODE LDF 9
DISPL TIMER_MODE LDF 10
ALIAS EXT_MODE LDF 11
DISPL LOW_GST_CUTOUT LDF 12
DISPL DISCHARGE_TRANSDUCER_FAIL LDF 13
DISPL GST_TRANSDUCER_FAIL LDF 14
DISPL FEED_TRANSDUCER_FAIL LDF 15

DISPL DISCHARGE_PSI LAF 0
DISPL GST_LEVEL_FT LAF 1
DISPL FEED_PSI LAF 2
DISPL FLOW_RATE_IN_GPM LAF 3
DISPL FLOW_RATE_OUT_GPM LAF 4
DISPL VFD_SPEED_PERCENT LAF 5
DISPL GST_VALVE_OPEN_PERCENT LAF 6
DISPL ROOM_TEMP_DEGF LAF 7

DISPL METER_IN_GAL LIF 0
DISPL METER_OUT_GAL LIF 1
DISPL PUMP_1_RUNTIME_MIN LIF 2
DISPL PUMP_2_RUNTIME_MIN LIF 3
ALIAS CURRENT_LEAD_PUMP LIF 4
ALIAS UP_TIME_MIN LIF 5

DISPL COMM_TO_TOWER VLD 0
DISPL TOWER_LEVEL_FT RAF 0 0
DISPL TOWER_CALL_PUMP RDF 0 1
DISPL TOWER_TRANSDUCER_FAIL RDF 0 7

ALIAS POWER_OK_TIMER TMR 0
ALIAS P1_FAIL_TIMER TMR 1
ALIAS P2_FAIL_TIMER TMR 2
ALIAS PRESSURE_LEAD_ON_TIMER TMR 3
ALIAS PRESSURE_LEAD_OFF_TIMER TMR 4
ALIAS P1_DELAY_TIMER TMR 5
ALIAS P2_DELAY_TIMER TMR 6
ALIAS P1_OFF_TIMER TMR 7
ALIAS P2_OFF_TIMER TMR 8
ALIAS LGST_TIMER TMR 9

 63

ALIAS LGST_RELEASE_TIMER TMR 10
ALIAS HSP_SAMPLE_TIMER TMR 11
ALIAS GST_VALVE_FAIL_TIMER TMR 12

ALIAS P1_RUNTIME_SECS USR 0
ALIAS P2_RUNTIME_SECS USR 1
ALIAS LEAD_PUMP_DEF USR 2
ALIAS LAG_PUMP_DEF USR 3
ALIAS LASTCALL_TIME USR 4
ALIAS DELTA_TIME USR 5
ALIAS TOWER_LEAD USR 6
ALIAS PRESSURE_LEAD USR 7
ALIAS TIMER_LEAD USR 8
ALIAS NEW_LEAD_STATE USR 9
ALIAS LEAD_TURNING_ON USR 10
ALIAS LEAD_TURNING_OFF USR 11
ALIAS LEAD_STATE USR 12
ALIAS LAG_STATE USR 13
ALIAS LOCAL_P1 USR 14
ALIAS LOCAL_P2 USR 15
ALIAS TOWER_CONTROL_FAIL USR 16
ALIAS LEAD_TIMER USR 17
ALIAS SEQUENCE_POINTER USR 18
ALIAS TRY_1_FAIL USR 19
ALIAS TRY_2_FAIL USR 20
ALIAS AOK USR 21
ALIAS P1_FINAL USR 22
ALIAS P2_FINAL USR 23
ALIAS LAST_PULSE_TIME USR 24
ALIAS LAST_METER_TIME USR 25
ALIAS LAST_METER_OUT USR 26
ALIAS FLOWING_OUT_USR USR 27
ALIAS GST_VALVE_OPEN_USR USR 28

$NCL

NCL Program

Client : RE Water Corporation
Station : Berryville Booster Pump Station
Author : Tatyana Mimlitz, Navionics Research Inc.
Date : 18 November 2002

TRANSFER MODULE INPUTS TO FLAG INPUTS ...

 LBL MAIN

IF FIRSTRUN, INITIALIZE VARIABLES AND TIMERS ...

 FIRSTRUN?
 IF_FALSE
 GOTO 10

 SYSTIME
 STORE LAST_PULSE_TIME
 PSTORE LASTCALL_TIME

 LOAD METER_OUT_MODULE
 STORE LAST_METER_OUT

 64

 PSTORE METER_OUT_GAL

 LOAD 0.0
 STORE FLOW_RATE_IN_GPM
 PSTORE FLOW_RATE_OUT_GPM

 LOAD 0.0
 STORE TRY_1_FAIL
 STORE TRY_2_FAIL
 STORE PUMP_1_FAIL
 STORE PUMP_2_FAIL
 STORE LGST_TIMER
 STORE P1_FAIL_TIMER
 STORE P2_FAIL_TIMER
 STORE P1_DELAY_TIMER
 STORE P2_DELAY_TIMER
 STORE HSP_SAMPLE_TIMER
 PSTORE PRESSURE_LEAD_ON_TIMER

 LOAD 1.0
 STORE P1_OFF_TIMER
 STORE P2_OFF_TIMER
 STORE LGST_RELEASE_TIMER
 PSTORE POWER_OK_TIMER

 LOAD 25.0
 PSDELAY HSP_SAMPLE_TIMER

 LOAD 100.0
 SDELAY P1_OFF_TIMER
 SDELAY P2_OFF_TIMER
 SDELAY P1_DELAY_TIMER
 PSDELAY P2_DELAY_TIMER

 LOAD 120.0
 PSTORE LGST_TIMER

 LOAD LOW_GST_RELEASE_SECS
 PSDELAY LGST_RELEASE_TIMER

 LOAD 900.0
 PSDELAY PRESSURE_LEAD_ON_TIMER

 LOAD PRESSURE_MODE_RUNTIME_HRS
 LOAD 3600.0
 *
 PSDELAY PRESSURE_LEAD_OFF_TIMER

 LOAD 600.0
 SDELAY P1_FAIL_TIMER
 PSDELAY P2_FAIL_TIMER

10 POP

IF NEW-SETPOINTS OR FIRSTRUN, SANITY CHECK THE SETPOINTS ...

 NEW_SETPOINTS?
 FIRSTRUN?
 OR
 IF_FALSE
 GOTO 20
 LOAD PRESSURE_MODE_RUNTIME_HRS

 65

 LOAD 3600.0
 *
 PSDELAY PRESSURE_LEAD_OFF_TIMER

 LOAD LOW_GST_RELEASE_SECS
 PSDELAY LGST_RELEASE_TIMER

 GOSUB SANITY_CHECKS
 GOSUB MY_PUMP_SEQUENCE_SETUP

 LOAD LEAD_PUMP_DEF
 PSTORE CURRENT_LEAD_PUMP

20 POP

TIME CALCULATOR ...

 SYSTIME
 LOAD LASTCALL_TIME
 -
 PSTORE DELTA_TIME
 SYSTIME
 PSTORE LASTCALL_TIME

SYSTEM UPTIME CALCULATOR ...

 UPTIME
 LOAD 60.0
 /
 PSTORE UP_TIME_MIN

TRANSFER MODULE STATES INTO FLAG STATES ...

 LOAD POWER_OK_MODULE
 PSTORE POWER_OK_TIMER
 LOAD POWER_OK_TIMER
 PSTORE POWER_ON

 LOAD PUMP_FEEDBACK_MODULE
 LOAD FLOWING_OUT_USR
 AND
 COPY
 LOAD P1_SSR
 AND
 PSTORE PUMP_1_ON
 LOAD P2_SSR
 AND
 PSTORE PUMP_2_ON

 LOAD DISCHARGE_MODULE
 PSTORE DISCHARGE_PSI

 LOAD GST_MODULE
 PSTORE GST_LEVEL_FT

 LOAD FEED_MODULE
 PSTORE FEED_PSI

 LOAD ROOM_TEMP_MODULE
 PSTORE ROOM_TEMP_DEGF

 66

 LOAD DISCHARGE_WORKING
 NOT
 PSTORE DISCHARGE_TRANSDUCER_FAIL

 LOAD GST_WORKING
 NOT
 PSTORE GST_TRANSDUCER_FAIL

 LOAD FEED_WORKING
 NOT
 PSTORE FEED_TRANSDUCER_FAIL

"FLOW RATE IN" CALCULATION (LOW-SPEED PULSE METER)...

 LOAD METER_IN_MODULE
 LOAD METER_IN_GAL
 -
 IF_FALSE
 GOTO 692
 LOAD 60.0
 *
 SYSTIME
 LOAD LAST_PULSE_TIME
 -
 LOAD 1.0
 MAX
 /
 PSTORE FLOW_RATE_IN_GPM
 SYSTIME
 PSTORE LAST_PULSE_TIME
 LOAD METER_IN_MODULE
 PSTORE METER_IN_GAL
 LOAD 0.0
692 POP
 LOAD GST_VALVE_OPEN
 LOAD FLOW_RATE_IN_GPM
 *
 PSTORE FLOW_RATE_IN_GPM

"FLOW RATE OUT" CALCULATION (HIGH-SPEED PULSE METER)...

 LOAD METER_OUT_MODULE
 PSTORE METER_OUT_GAL

 LOAD 1.0
 PSTORE HSP_SAMPLE_TIMER
 LOAD HSP_SAMPLE_TIMER
 IF_FALSE
 GOTO 693
 LOAD 0.0
 PSTORE HSP_SAMPLE_TIMER
 LOAD 1.0
 PSTORE HSP_SAMPLE_TIMER

 LOAD LAST_METER_OUT
 LOAD METER_OUT_GAL
 STORE LAST_METER_OUT
 -
 ABS
 LOAD LAST_METER_TIME

 67

 SYSTIME
 STORE LAST_METER_TIME
 -
 ABS
 LOAD 1.0
 MAX
 /
 LOAD 60.0
 *
 PSTORE FLOW_RATE_OUT_GPM
 SYSTIME
 PSTORE LAST_METER_TIME
693 POP

 LOAD FLOW_RATE_OUT_GPM
 LOAD FLOW_DETECT_GPM
 Y>X?
 PSTORE FLOWING_OUT_USR

GST FILL VALVE HANDLER ...

 LOADA GST_LEVEL_FT
 LOADA GST_VALVE_OPEN_FT
 LOADA GST_VALVE_CLOSE_FT
 LOADA GST_VALVE_OPEN
 MACRO HYSTERESIS_LO
 PSTORE GST_VALVE_OPEN_USR

GST FILL VALVE "PERCENT OPEN" CALCULATION ...

 LOAD GST_VALVE_OPEN_PERCENT
 LOAD VALVE_GAIN
 LOAD VALVE_MAXSTEP
 LOAD FEED_PSI
 LOAD 0.0
 LOAD VALVE_FEED_LIMIT_PSI
 LOAD 0.0
 MACRO FEEDBACK_CONTROL
 LOAD FEED_TRANSDUCER_FAIL
 NOT
 *
 LOAD VALVE_XDUCER_FAIL_OPEN_PERCENT
 LOAD FEED_TRANSDUCER_FAIL
 *
 +
 LOAD GST_VALVE_OPEN_USR
 *
 STORE GST_VALVE_OPEN_PERCENT
 LOAD 100.0
 /
 PSTORE VALVE_POSITION_MODULE

VALVE FAIL CALCUALTION ...

 LOAD GST_VALVE_OPEN_MODULE
 LOAD GST_VALVE_OPEN_PERCENT
 LOAD 100.0
 X=Y?
 XOR
 LOAD GST_VALVE_CLOSED_MODULE

 68

 LOAD GST_VALVE_OPEN_PERCENT
 LOAD 0.0
 X=Y?
 XOR
 OR
 PSTORE GST_VALVE_FAIL_TIMER
 LOAD GST_VALVE_FAIL_TIMER
 PSTORE GST_VALVE_FAIL

"VALVE OPEN" CALCULATION ...

 LOAD GST_VALVE_CLOSED_MODULE
 NOT
 PSTORE GST_VALVE_OPEN

LOW GST CUTOUT CALC ...

 LOADA GST_LEVEL_FT
 LOADA LOW_GST_CUTOUT_FT
 LOADA LGST_TIMER
 LOADA LGST_RELEASE_TIMER
 MACRO HYBRID_PRESSURE_LO
 LOAD GST_TRANSDUCER_FAIL
 NOT
 AND
 PSTORE LOW_GST_CUTOUT

CHECK COMMUNICATION STATUS ...

 LOAD COMM_TO_TOWER
 NOT
 PSTORE COMM_FAILURE

BPS_MODE_CALC ...

 LOADA MODE{RADIO-PRESS-TIMER-EXT}
 LOADA FAILOVER{PRESS-TIMER-EXT}
 LOADA COMM_TO_TOWER
 LOADA TOWER_TRANSDUCER_FAIL
 MACRO BPS_MODE_CALC
 STORE EXT_MODE
 NOT
 PSTORE EXT_MODE_SSR
 PSTORE TIMER_MODE
 LOAD DISCHARGE_TRANSDUCER_FAIL
 NOT
 AND
 PSTORE PRESSURE_MODE
 PSTORE RADIO_MODE

TIMER HANDLER ...

 LOAD TIMER_1_START_HOUR
 LOAD TIMER_1_STOP_HOUR
 BETWEEN_HOURS
 LOAD TIMER_2_START_HOUR
 LOAD TIMER_2_STOP_HOUR
 BETWEEN_HOURS

 69

 LOAD TIMER_3_START_HOUR
 LOAD TIMER_3_STOP_HOUR
 BETWEEN_HOURS
 OR
 OR
 LOAD TIMER_MODE
 AND
 PSTORE TIMER_LEAD

TOWER HANDLER ...

 LOAD TOWER_CALL_PUMP
 LOAD RADIO_MODE
 AND
 PSTORE TOWER_LEAD

PRESSURE-LEAD HANDLER ...

 LOADA DISCHARGE_PSI
 LOADA PRESSURE_MODE_LEAD_ON_PSI
 LOADA PRESSURE_LEAD_ON_TIMER
 LOADA PRESSURE_LEAD_OFF_TIMER
 MACRO HYBRID_PRESSURE_LO
 LOAD PRESSURE_MODE
 AND
 PSTORE PRESSURE_LEAD

LEAD_STATE CALC ...

 LOAD TOWER_LEAD
 LOAD PRESSURE_LEAD
 LOAD TIMER_LEAD
 OR
 OR
 STORE NEW_LEAD_STATE
 LOAD LEAD_STATE
 NOT
 AND
 STORE LEAD_TURNING_ON
 LOAD NEW_LEAD_STATE
 NOT
 LOAD LEAD_STATE
 AND
 STORE LEAD_TURNING_OFF
 OR
 IF_FALSE
 GOTO 40
 LOAD 0
 PSTORE LEAD_TIMER
40 POP

 LOAD NEW_LEAD_STATE
 PSTORE LEAD_STATE

LOCAL_P1 & LOCAL_P2 CALC ...

 LOAD LEAD_STATE
 LOAD LEAD_PUMP_DEF
 LOAD 1.0

 70

 X=Y?
 AND
 PSTORE LOCAL_P1

 LOAD LEAD_STATE
 LOAD LEAD_PUMP_DEF
 LOAD 2.0
 X=Y?
 AND
 PSTORE LOCAL_P2

AOK CALC ...

 LOAD POWER_ON
 LOAD LOW_GST_CUTOUT
 NOT
 AND
 PSTORE AOK

FINAL P1 CALC ...

 LOAD LOCAL_P1
 LOAD PUMP_1{AUTO-ON-OFF}
 LOAD 2.0
 X=Y?
 OR
 LOAD AOK
 AND
 LOAD PUMP_1{AUTO-ON-OFF}
 LOAD 3.0
 X=Y?
 NOT
 AND
 LOAD P2_SSR
 NOT
 AND
 PSTORE P1_DELAY_TIMER
 LOAD P1_DELAY_TIMER
 STORE P1_FINAL
 NOT
 PSTORE P1_OFF_TIMER
 LOAD P1_OFF_TIMER
 NOT
 LOAD P1_FINAL
 OR
 PSTORE P1_SSR

P1 FAIL CALC ...

 LOAD P1_SSR
 LOAD PUMP_1_ON
 XOR
 PSTORE P1_FAIL_TIMER
 LOAD P1_FAIL_TIMER
 STORE TRY_1_FAIL
 LOAD PUMP_1_FAIL
 LOAD PUMP_1_ON
 NOT
 AND
 OR

 71

 PSTORE PUMP_1_FAIL

FINAL P2 CALC ...

 LOAD LOCAL_P2
 LOAD PUMP_2{AUTO-ON-OFF}
 LOAD 2.0
 X=Y?
 OR
 LOAD AOK
 AND
 LOAD PUMP_2{AUTO-ON-OFF}
 LOAD 3.0
 X=Y?
 NOT
 AND
 LOAD P1_SSR
 NOT
 AND
 PSTORE P2_DELAY_TIMER
 LOAD P2_DELAY_TIMER
 STORE P2_FINAL
 NOT
 PSTORE P2_OFF_TIMER
 LOAD P2_OFF_TIMER
 NOT
 LOAD P2_FINAL
 OR
 PSTORE P2_SSR

P2 FAIL CALC ...

 LOAD P2_SSR
 LOAD PUMP_2_ON
 XOR
 PSTORE P2_FAIL_TIMER
 LOAD P2_FAIL_TIMER
 STORE TRY_2_FAIL
 LOAD PUMP_2_FAIL
 LOAD PUMP_2_ON
 NOT
 AND
 OR
 PSTORE PUMP_2_FAIL

VFD SPEED CALCULATION...
Note that when the pumps are to be shut down
(p1_final=0 AND p2_final=0), the discharge pressure
limit is artificially set to zero. This ensures that
the speed is tapered down to zero before pump shutdown.

 LOAD VFD_SPEED_PERCENT
 LOAD VFD_GAIN
 LOAD VFD_MAXSTEP
 LOAD 0.0
 LOAD DISCHARGE_PSI
 LOAD 0.0
 LOAD VFD_DISCHARGE_LIMIT_PSI
 LOAD P1_FINAL
 LOAD P2_FINAL

 72

 OR
 *
 MACRO FEEDBACK_CONTROL
 LOAD DISCHARGE_TRANSDUCER_FAIL
 NOT
 *
 LOAD VFD_XDUCER_FAIL_SPEED_PERCENT
 LOAD DISCHARGE_TRANSDUCER_FAIL
 *
 +
 LOAD P1_SSR
 LOAD P2_SSR
 OR
 *
 STORE VFD_SPEED_PERCENT
 LOAD 100.0
 /
 PSTORE VFD_SPEED_MODULE

PUMP-1 RUNTIME ...
(WILL ROLLOVER AFTER ~20 YEARS OF RUNTIME)

 LOAD PUMP_1_ON
 LOAD DELTA_TIME
 *
 LOAD P1_RUNTIME_SECS
 +
 ABS
 LOAD 600000000.0
 MOD
 STORE P1_RUNTIME_SECS
 LOAD 60.0
 /
 PSTORE PUMP_1_RUNTIME_MIN

PUMP-2 RUNTIME ...
(WILL ROLLOVER AFTER ~20 YEARS OF RUNTIME)

 LOAD PUMP_2_ON
 LOAD DELTA_TIME
 *
 LOAD P2_RUNTIME_SECS
 +
 ABS
 LOAD 600000000.0
 MOD
 STORE P2_RUNTIME_SECS
 LOAD 60.0
 /
 PSTORE PUMP_2_RUNTIME_MIN

IF THE LEAD PUMP FAILS, THE LEAD HAS RUN FOR 12 HOURS,
OR PUMP-A JUST TURNED OFF, INCREMENT ALTERNATOR ...

 LOAD LEAD_TIMER
 LOAD 12
 Y>X?

 LOAD LEAD_PUMP_DEF
 LOAD 1

 73

 X=Y?
 LOAD TRY_1_FAIL
 LOAD PUMP_1{AUTO-ON-OFF}
 LOAD 3.0
 X=Y?
 OR
 AND

 LOAD LEAD_PUMP_DEF
 LOAD 2
 X=Y?
 LOAD TRY_2_FAIL
 LOAD PUMP_2{AUTO-ON-OFF}
 LOAD 3.0
 X=Y?
 OR
 AND

 OR
 LOAD LEAD_STATE
 AND
 LOAD LEAD_TURNING_OFF
 OR
 OR
 LOAD ALTERNATE_PUMPS
 AND
 IF_FALSE
 GOTO 110
 LOAD SEQUENCE_POINTER
 LOAD 2.0
 MOD
 INCR
 PSTORE SEQUENCE_POINTER

 LOAD 0.0
 PSTORE LEAD_TIMER

 GOSUB MY_PUMP_SEQUENCE_SETUP

 LOAD LEAD_PUMP_DEF
 PSTORE CURRENT_LEAD_PUMP
110 POP

INCREMENT LEAD TIMER ...

 LOAD LEAD_STATE
 IF_FALSE
 GOTO 555
 LOAD LEAD_TIMER
 LOAD DELTA_TIME
 LOAD 3600
 /
 +
 PSTORE LEAD_TIMER
555 POP

 END

===

ADDITIONAL SUBROUTINES...

 74

===

 LBL SANITY_CHECKS

 LOADA LEAD_PUMP{P1-P2}
 LOAD 2.0
 LOAD 1.0
 MACRO BOUNDS_CHECK

 LOADA LAG_PUMP{P1-P2}
 LOAD 2.0
 LOAD 1.0
 MACRO BOUNDS_CHECK

 LOADA PUMP_1{AUTO-ON-OFF}
 LOAD 3.0
 LOAD 1.0
 MACRO BOUNDS_CHECK

 LOADA PUMP_2{AUTO-ON-OFF}
 LOAD 3.0
 LOAD 1.0
 MACRO BOUNDS_CHECK

 LOADA MODE{RADIO-PRESS-TIMER-EXT}
 LOAD 4.0
 LOAD 1.0
 MACRO BOUNDS_CHECK

 LOADA FAILOVER{PRESS-TIMER-EXT}
 LOAD 3.0
 LOAD 1.0
 MACRO BOUNDS_CHECK

 RTN

===

 LBL MY_PUMP_SEQUENCE_SETUP

 LOADA ALTERNATE_PUMPS
 LOADA SEQUENCE_POINTER
 LOADA LEAD_PUMP{P1-P2}
 LOADA LAG_PUMP{P1-P2}
 LOADA LEAD_PUMP_DEF
 LOADA LAG_PUMP_DEF
 MACRO PUMP_SEQUENCE_SETUP2
 RTN

===

