Original Instructions

PowerFlex 750-Series AC Drives

Firmware Revisions 1.xxx. . .13.xxx

Important User Information

Read this document and the documents listed in the additional resources section about installation, configuration, and operation of this equipment before you install, configure, operate, or maintain this product. Users are required to familiarize themselves with installation and wiring instructions in addition to requirements of all applicable codes, laws, and standards.

Activities including installation, adjustments, putting into service, use, assembly, disassembly, and maintenance are required to be carried out by suitably trained personnel in accordance with applicable code of practice.

If this equipment is used in a manner not specified by the manufacturer, the protection provided by the equipment may be impaired.

In no event will Rockwell Automation, Inc. be responsible or liable for indirect or consequential damages resulting from the use or application of this equipment.

The examples and diagrams in this manual are included solely for illustrative purposes. Because of the many variables and requirements associated with any particular installation, Rockwell Automation, Inc. cannot assume responsibility or liability for actual use based on the examples and diagrams.

No patent liability is assumed by Rockwell Automation, Inc. with respect to use of information, circuits, equipment, or software described in this manual.

Reproduction of the contents of this manual, in whole or in part, without written permission of Rockwell Automation, Inc., is prohibited

Throughout this manual, when necessary, we use notes to make you aware of safety considerations.

WARNING: Identifies information about practices or circumstances that can cause an explosion in a hazardous environment, which may lead to personal injury or death, property damage, or economic loss.

ATTENTION: Identifies information about practices or circumstances that can lead to personal injury or death, property damage, or economic loss. Attentions help you identify a hazard, avoid a hazard, and recognize the consequence.

IMPORTANT Identifies information that is critical for successful application and understanding of the product.

Labels may also be on or inside the equipment to provide specific precautions.

SHOCK HAZARD: Labels may be on or inside the equipment, for example, a drive or motor, to alert people that dangerous voltage may be present.

BURN HAZARD: Labels may be on or inside the equipment, for example, a drive or motor, to alert people that surfaces may reach dangerous temperatures.

ARC FLASH HAZARD: Labels may be on or inside the equipment, for example, a motor control center, to alert people to potential Arc Flash. Arc Flash will cause severe injury or death. Wear proper Personal Protective Equipment (PPE). Follow ALL Regulatory requirements for safe work practices and for Personal Protective Equipment (PPE).
Preface
Summary of Changes 7
Product Certification 7
Manual Conventions 7
General Precautions 8
Additional Resources 10
Chapter 1
Startup Start-Up Check List 13
Start-Up Menu 15
Drive Status Indicators 16
Establishing A Connection With EtherNet/IP 17
Chapter 2
About Parameters 20
Parameter Access Level 21
How Drive Parameters are Organized 22
How Option Module Parameters are Organized 42
Chapter 3
Drive (Port 0) Monitor File 48
Drive Port 0 ParametersDrive (Port 0) Motor Control File50
Drive (Port 0) Feedback \& I/O File 64
Drive (Port 0) Cfg File 80
Drive (Port 0) Protection File 95
Drive (Port 0) Speed Control File 108
Drive (Port 0) Torque Control File 123
Drive (Port 0) Position Control File 130
Drive (Port 0) Communication File 145
Drive (Port 0) Diagnostics File 152
Drive (Port 0) Applications File 171
Chapter 4
Port 10 and Port 11 Parameters Inverter (Port 10) Common Parameters. 212
Inverter n (Port 10) Parameters. 214
Converter (Port 11) Common Parameters 217
Converter n (Port 11) Parameters 220
Precharge (Port 11) Common Parameters 223
Precharge n (Port 11) Parameters 225
Chapter 5
Embedded Feature and Option
Module Parameters
Embedded EtherNet/IP (Port 13) Parameters 230
Communication Configurations 236
Embedded DeviceLogix (Port 14) Parameters 239
11-Series I/O Module Parameters 242
22-Series I/O Module Parameters 252
Single Incremental Encoder Module Parameters 263
Dual Incremental Encoder Module Parameters 266
Universal Feedback Module Parameters 271
Safe Speed Monitor Module Parameters 289
Chapter 6
Faults, Alarms, and Configurable Conditions 301
Drive Status Indicators 303
HIM Indication 305
Manually Clearing Faults 305
Power Layer Interface (PLI) Board 7-Segment Display 306
Setting Factory Defaults 307
System Resource Allocation 307
Hardware Service Manual 308
Integrated Motion Applications 308
Fault and Alarm Display Codes. 308
Parameter Access Level 308
Drive Fault and Alarm Descriptions 309
Inverter (Port 10) Faults and Alarms (Frame 8 and Larger) 324
Converter (Port 11) Faults and Alarms (Frame 8 and Larger) 329
Precharge (Port 11) Faults and Alarms (Frame 8 and Larger) 334
$\mathrm{N}-1$ and Re-Rate Functions 337
Embedded EtherNet/IP (Port 13) Events 341
I/O Faults and Alarms 343
Safe Torque Off Fault 343
ATEX Faults 344
Single Incremental Encoder Faults and Alarms 344
Dual Incremental Encoder Faults and Alarms 345
Universal Feedback Faults and Alarms 346
Port Verification 353
Common Symptoms and Corrective Actions 353
PowerFlex 755 Lifting/Torque Proving 356
External Brake Resistor 356
Technical Support Options 357
Appendix A
PowerFlex 753 Control BlockDiagram Conventions and Definitions360
Appendix B
PowerFlex 755 Control Block Diagrams
Diagram Conventions and Definitions 396
Appendix C
Voltage Tolerance 439
Application Notes
PowerFlex 755 Lifting/Torque Proving 440
Crane Set up with Encoder Feedback 442
Crane Setup - Encoderless. 451
Pump Off Function 459
Predictive Maintenance with Logix 471
Appendix D
Introduction 479
Parameters 481
Function Block Elements 481
Bit and Analog I/O Points 482
Tips 484
Program Examples 486
Appendix E
Compatible Allen-Bradley Servo Motors 497
Permanent Magnet Motors
Appendix F
Introduction 501
Integrated Motion on
EtherNet/IP Application
Feedback Configuration Options
Feedback Configuration Options 503 503
Torque Prove and Brake Slip Detect 507
PowerFlex 755 Integrated Motion Using Firmware
Revision 12.001 or Later 511
Parameter / Instance Attribute Mapping 513
Enhanced Attributes 520
Faults 527
Additional Resources 530
Index 531

Notes:

The purpose of this manual is to provide you with the basic information required to install, start-up, and troubleshoot PowerFlex ${ }^{\circ} 750$-Series Adjustable Frequency AC Drives. This manual is intended for qualified personnel. You must be able to program and operate Adjustable Frequency AC Drive devices. In addition, you must have an understanding of the parameter settings and functions. The PowerFlex 750-Series AC Drives Quick Start, publication 750QS001, is designed to provide only basic start-up information.

Summary of Changes

Product Certification

Manual Conventions

This manual contains new and updated information as indicated in the following table.

Topic	Page
Added parameter 41, [Common Mode Type].	$\underline{52}$
Updated the default value of bit 6"VCmdPhShftEn" in parameter 80 \{PM Cfg].	$\underline{58}$
Added parameter 365 [FS Brk Lvl], parameter 366 [FS Brk Time], and parameter 367 [FS ZSpd Thresh].	$\underline{89}$
Updated the Read-Write value of parameters 759...761 to R0.	$\underline{135}$
Updated the description of bit 4 "Accelerating" in parameter 935 [Drive Status 1].	$\underline{154}$
Updated the description of bit 3 "Preload" in parameter 1100 [Trq Prove Cfg].	$\underline{174}$
Updated the information associated with event numbers 10137...10338 in Table 12.	$\underline{324}$
Updated the parameter number associated with parameter [FB1 SSI Cfg] in Table 14.	$\underline{525}$

Product Certifications and Declarations of Conformity are available on the Internet at:
http://www.rockwellautomation.com/global/certification/overview.page.

- In this manual we refer to PowerFlex 750-Series Adjustable Frequency AC Drives as: drive, PowerFlex 750, PowerFlex 750 drive, or PowerFlex 750 AC drive.
- Specific drives within the PowerFlex 750-Series can be referred to as:
- PowerFlex 753, PowerFlex 753 drive, or PowerFlex 753 AC drive
- PowerFlex 755, PowerFlex 755 drive, or PowerFlex 755 AC drive
- To help differentiate parameter names and LCD display text from other text, the following conventions are used.
- Parameter names will appear in [brackets] after the parameter number.
For example: parameter 308 [Direction Mode].
- Display text appears in "quotes." For example: "Enabled."

General Precautions

Qualified Personnel

ATTENTION: Only qualified personnel familiar with adjustable frequency $A C$ drives and associated machinery must plan or implement the installation, startup, and subsequent maintenance of the system. Failure to comply can result in personal injury and equipment damage.

Personal Safety

ATTENTION: To avoid an electric shock hazard, verify that the voltage on the bus capacitors has discharged before servicing.
Frames 1...7: Measure the DC bus voltage at the power terminal block by measuring between the $+D C$ and $-D C$ terminals or between the $+D C$ and $-D C$ test point sockets if equipped. Also measure between the $+D C$ terminal or test point and the chassis, and between the - DC terminal or testpoint and the chassis. The voltage must be zero for all three measurements.
Frames 8...10: Measure the $D C$ bus voltage at the $D C+$ and $D C$ - TESTPOINT sockets on the front of the power module.
See the PowerFlex 750-Series AC Drives Installation Instructions, publication 750-IN001, for terminal and testpoint socket locations.

ATTENTION: Hazard of personal injury or equipment damage exists when using bipolar input sources. Noise and drift in sensitive input circuits can cause unpredictable changes in motor speed and direction. Use speed command parameters to help reduce input source sensitivity.

ATTENTION: Risk of injury or equipment damage exists. DPI ${ }^{[m}$ or SCANport ${ }^{\text {m' }}$ host products must not be directly connected together via 1202 cables. Unpredictable behavior can result if two or more devices are connected in this manner.

ATTENTION: The drive start/stop/enable control circuitry includes Solidstate components. An additional hardwired stop circuit can be required to remove the AC line to the drive if either of the following hazards exist:

- Accidental contact with moving machinery
- Unintentional flow of liquid, gas, or solids

An auxiliary braking method can be required.
ATTENTION: Hazard of personal injury or equipment damage due to unexpected machine operation exists if the drive is configured to issue a Start or Run command automatically. Do not use these functions without considering applicable local, national, and international codes, standards, regulations, or industry guidelines.

Product Safety

> ATTENTION: An incorrectly applied or installed drive can result in component damage or a reduction in product life. Wiring or application errors such as under sizing the motor, incorrect or inadequate AC supply, or excessive surrounding air temperatures can result in malfunction of the system.

ATTENTION: This drive contains ESD (Electrostatic Discharge) sensitive parts and assemblies. Static control precautions are required when installing, testing, servicing or repairing this assembly. Component damage can result if ESD control procedures are not followed. If you are not familiar with static control procedures, reference Guarding Against Electrostatic Damage, publication 8000-4.5.2 or any other applicable ESD protection handbook.

ATTENTION: Configuring an analog input for $0 \ldots 20 \mathrm{~mA}$ operation and driving it from a voltage source could cause component damage. Verify proper configuration before you apply input signals.

ATTENTION: A contactor or other device that routinely disconnects and reapplies the AC line to the drive to start and stop the motor can cause drive hardware damage. The drive is designed to use control input signals that start and stop the motor. If an input device is used, operation must not exceed 1 cycle per minute or drive damage can occur.

ATTENTION: Drive must not be installed in an area where the ambient atmosphere contains volatile or corrosive gas, vapors, or dust. If the drive is not going to be installed immediately, it must be stored in an area where it is not exposed to a corrosive atmosphere.

Class 1 Light-emitting Diode Product

ATTENTION: Hazard of permanent eye damage exists when using optical transmission equipment. This product emits intense light and invisible radiation. Do not look into module ports or fiber-optic cable connectors.

Additional Resources

The recommended documentation that is listed in this section is available online at http://www.rockwellautomation.com/literature.

The following publications provide general drive information.

Title	Publication
Wiring and Grounding Guidelines for Pulse Width Modulated (PWM) AC Drives	$\underline{\text { DRIVES-IN001 }}$
Safety Guidelines for the Application, Installation, and Maintenance of Solid State Control	$\underline{\text { SGI-1.1 }}$
Guarding Against Electrostatic Damage	$\underline{8000-4.5 .2}$

The following publications provide specific PowerFlex 750-Series information on drive installation, features, specifications, and service.

Title	Publication
PowerFlex 750-Series AC Drive Installation Instructions	$\underline{750-\text { IN001 }}$
PowerFlex 750-Series AC Drives Technical Data	$\underline{750-\text { TD001 }}$
Enhanced PowerFlex 7-Class Human Interface Module (HIM) User Manual	$\underline{20 H I M-U M 001 ~}$
PowerFlex 750-Series Safe Torque Off User Manual	$\underline{750-\text { UM002 }}$
Safe Speed Monitor Option Module for PowerFlex 750-Series AC Drives Reference Manual	$\underline{750-\text { RM001 }}$
PowerFlex 750-Series AC Drives Hardware Service Manual (Frame 8 and Larger)	$\underline{\text { 750-TG001 }}$
Dynamic Braking Resistor Calculator	$\underline{\text { PFLEX-AT001 }}$
DeviceLogix' ${ }^{\text {TM User Manual }}$	$\underline{\text { RA-UM003 }}$

The following publications provide specific Network Communications information.

Title	Publication
PowerFlex 755 Drive Embedded EtherNet/IP Adapter	$\underline{750 C O M-U M 001}$
PowerFlex 750-Series Drive DeviceNet Option Module	$\underline{750 C O M-U M 002}$
PowerFlex 20-750-CNETC Coaxial ControlNet Option Module	$\underline{750 C O M-U M 003}$

The following publications provide necessary information when applying the Logix Processors.

Title	Publication
Logix5000'm Controllers Common Procedures	$\underline{1756-\mathrm{PM} 001}$
Logix5000 Controllers General Instructions	$\underline{1756-\mathrm{RM} 003}$
Logix5000 Controllers Process Control and Drives Instructions	$\underline{1756-\text { RM000 }}$

The following publications provide information that is useful when planning and installing communication networks.

Title	Publication
ContolNet Coax Tap Installation Instructions	$\underline{1786-\text { IN007 }}$
ControlNet Cable System Planning and Installation Manual	$1786-6.2 .1$
ContolNet Fiber Media Planning and Installation Guide	$\underline{\text { CNET-IN001 }}$

To order paper copies of technical documentation, contact your local AllenBradley distributor or sales representative.

To find your local Allen-Bradley distributor, visit www.rockwellautomation.com/locations.

Notes:

Startup

This chapter provides the information that is required to start up the PowerFlex ${ }^{\circ}$ 750-Series drive.

Topic	Page
Start-Up Check List	13
Start-Up Menu	15
Drive Status Indicators	16
Establishing A Connection With EtherNet/IP	17

Start-Up Check List

- This check list supports the Start-Up menu option.
- A Human Interface Module (HIM) is required to run the Start-Up routine.
For detailed information on by using the HIM, refer to the Enhanced PowerFlex 7-Class Human Interface Module (HIM) User Manual, publication 20HIM-UM001.
- The Start-Up routine can modify parameter values for Analog and Digital I/O.

ATTENTION: Power must be applied to the drive to perform the following start-up procedure. Some of the voltages present are at incoming line potential. To avoid electric shock hazard or damage to equipment, it is recommended that only qualified service personnel perform the following procedure. Thoroughly read and understand the procedure before beginning.

Prepare For Initial Drive Startup

- 1. Confirm that drive has been installed according to the PowerFlex 750Series AC Drives Installation Instructions, publication 750-IN001.
- 2. Confirm that all inputs are connected to the correct terminals and are secure.

3. Verify that AC line power at the disconnect device is within the rated value of the drive.

- 4. Verify that control power voltage is correct.
- 5. The remainder of this procedure requires that a Human Interface Module (HIM) is connected to DPI ${ }^{\text {wi }}$ Port 1 or 2.

- 6. Apply AC power and control voltages to the drive.

If any digital inputs are configured to Stop - CF, Run, or Enable, verify that signals are present or the drive does not start. See Chapter 6 for a list of potential digital input conflicts.

If the STS light-emitting diode is not flashing green, refer to Drive Status Indicators on page 16.
\square
7. When prompted, select a display language. The Start-Up Screen automatically displays for drives that have not been previously configured.

If the Start-Up screen is not displayed, press the Enter key.8. Press the Enter key to display the Start-Up Menu.
9. Use the Up/Down Arrow keys to highlight " 2 . Basic."
10. Press the Enter key. Follow the menu by using the Enter key, which steps you through the Start-Up routine.

The Start-Up routine asks simple questions and prompts you to input required information.

Start-Up Menu

The Human Interface Module (HIM) displays the General Start-Up menu by default upon initial power-up of the drive. To navigate to the Start-Up menu after the initial powerup of the drive, press the \square (Folders) key.

> | IMPORTANT | $\begin{array}{l}\text { If a start-up routine is initiated, but must be terminated before the routine is } \\ \text { completed, be sure to press the Abort soft key to exit the routine. }\end{array}$ |
| :--- | :--- |

Drive Status Indicators

Table 1 - PowerFlex 753 Status Indicator Descriptions

Name	Color	State	Description
STS (Status)	Green	Flashing	Drive ready but not running, and no faults are present.
		Drive running, no faults are present.	
	Yellow	Flashing	Drive is not running, a start inhibit condition exists and the drive cannot be started. See parameter $\underline{933}$ [Start Inhibits].
	Steady	A type 1 (user configurable) alarm exists. A stopped drive cannot start until the alarm condition is cleared. A running drive continues to run but cannot restart until the alarm condition is cleared. See parameters 959 [Alarm Status A] and 960 [Alarm Status B].	
	Red	Flashing	A major fault has occurred. The drive stops and cannot be started until the fault condition is cleared. See parameter 951 [Last Fault Code].
	Steady	A non-resettable fault has occurred.	
	Red / Yellow	Flashing Alternately	A minor fault has 0ccurred. When running, the drive continues to run. System is brought to a stop under system control. Fault must be cleared to continue. Use parameter $\underline{950}$ [Minor Flt Cfg] to enable. If not enabled, acts like a major fault.
	Yellow / Green	Flashing Alternately	When running, a type 1 alarm exists. See parameters 959 [Alarm Status A] and 960 [Alarm Status B].
	Green / Red	Flashing Alternately	Drive is flash updating.

Table 2 - PowerFlex 755 Status Indicator Descriptions

Name	Color	State	Description
STS (Status)	Green	Flashing	Drive ready but not running, and no faults are present.
		Steady	Drive running, no faults are present.
	Yellow	Flashing	Drive is not running, a type 2 (non-configurable) alarm condition exists and the drive cannot be started. See parameter 961 [Type 2 Alarms].
		Steady	A type 1 (user configurable) alarm exists. A stopped drive cannot start until the alarm condition is cleared. A running drive continues to run but cannot restart until the alarm condition is cleared. See parameters 959 [Alarm Status A] and 960 [Alarm Status B].
	Red	Flashing	A major fault has occurred. The drive stops and cannot be started until fault condition is cleared. See parameter 951 [Last Fault Code].
		Steady	A non-resettable fault has occurred.
	Red / Yellow	Flashing Alternately	A minor fault has occurred. When running, the drive continues to run. System is brought to a stop under system control. Fault must be cleared to continue. Use parameter 950 [Minor Flt Cfg] to enable. If not enabled, acts like a major fault.
	Yellow/ Green	Flashing Alternately	When running, a type 1 alarm exists. See parameters 959 [Alarm Status A] and 960 [Alarm Status B].
	Green / Red	Flashing Alternately	Drive is flash updating.
ENET	Unlit	Off	Embedded EtherNet/IP is not properly connected to the network or needs an IP Address.
	Red	Flashing	An EtherNet/IP connection has timed out.
		Steady	Adapter failed the duplicate IP Address detection test.
	Red/ Green	Flashing Alternately	Adapter is performing a self-test.
	Green	Flashing	Adapter is properly connected but is not communicating with any devices on the network.
		Steady	Adapter is properly connected and communicating on the network.
LINK	Unlit	Off	Adapter is not powered or is not transmitting on the network.
	Green	Flashing	Adapter is properly connected and transmitting data packets on the network.
		Steady	Adapter is properly connected but is not transmitting on the network.

IMPORTANT The Status Indicator light-emitting diodes on the HIM cradle do not indicate the status of an installed Communication Adapter option. If an optional Communication Adapter is installed, refer to the option module user manual for a description of lightemitting diode location and indication.

Establishing A Connection With EtherNet/IP

There are three methods for configuring the embedded EtherNet/IP adapter IP address:

- Adapter Rotary Switches - Use the switches when working on a simple, isolated network (for example, 192.168.1.xxx) that has other products with switches to set their IP addresses, does not need to be accessed from outside the network, and you prefer a simplified node addressing method. The three adapter switches are read when the drive powers up, and represent three decimal digits from top to bottom (see Figure 1). If set to a valid address ($001 \ldots 254$), the adapter uses that value as the lower octet of its IP address (192.168.1.xxx, where $\mathrm{xxx}=$ rotary switch settings), along with a subnet mask of 255.255 .255 .0 and there a gateway is not configured. Also, the setting for adapter P36 [BOOTP] is automatically ignored.

See Figure 1 and its accompanying table for all possible switch settings and their related descriptions.

IMPORTANT When using the adapter rotary switches, se the IP address before power is applied because the adapter uses the IP address it detects when it first receives power.

- BOOTP Server - Use BOOTP if you prefer to control the IP addresses of the devices by using a server. The IP address, subnet mask, and gateway addresses are provided by the BOOTP server.
- Adapter Parameters - Use adapter parameters when you want more flexibility in IP address configuration, or must communicate outside the control network by using a gateway. Use the adapter parameters to configure the IP address, subnet mask, and gateway addresses.

IMPORTANT Regardless of the method that is used to set the adapter IP address, each node on the EtherNet/IP network must have a unique IP address. To change an IP address, you must set the new value and then remove and reapply power to (or reset) the adapter.

Figure 1 - Setting the IP Address Switches

Possible Settings	Description
000	Adapter uses, depending on P36 [B0OTP], the B00TP setting, or the adapter parameter settings for the PP address.
$001 \ldots 254$	Adapter uses the rotary switch settings for the IP address (192.168.1.xxx, where xxx = rotary switch settings).
$255 \ldots 887$	Adapter uses, depending on P36 [B00TP], the B00TP setting, or the adapter parameter settings for the IP address.
888	Resets the adapter IP address function to factory defaults. Thereafter, the drive must be powered down, the switches set to a setting other than 888, and then the drive must be powered up again to accept the new address.
$889 \ldots . .998$	Adapter uses, depending on P36 [B00TP], the B00TP setting, or the adapter parameter settings for the PP address.
999	
(default settings)	Disables the rotary switches. Adapter uses, depending on P36 [B00TP], the BOOTP setting, or the adapter parameter settings for the IP address.

Parameter Organization

This chapter lists and describes the PowerFlex ${ }^{\circ} 750$-Series Port 0 drive parameters. The parameters can be programmed (viewed/edited) using a Human Interface Module (HIM). Refer to Enhanced PowerFlex 7-Class Human Interface Module (HIM) User Manual, publication 20HIM-UM001, for information on using the HIM to view and edit parameters. As an alternative, programming can also be performed using DriveTools" software and a personal computer.

Topic	Page
About Parameters	20
Parameter Access Level	21
How Drive Parameters are Organized	22
How Option Module Parameters are Organized	42

About Parameters

To configure a drive module to operate in a specific way, certain drive parameters may have to be configured appropriately. Three types of parameters exist:

- Numeric Parameters These parameters have a single numeric value (such as 1750.0 RPM).
- ENUM Parameters

These parameters allow a selection from 2 or more items. The LCD HIM displays a text message for each item.

- Indirect Parameters

These parameters, represented by a maximum value of 159999 or 159999.15, are used to create assignments or to select either a data source or destination. The first two digits are used to select a port. The next four digits select a parameter number. If applicable, the two digits following the decimal point select a bit. For example, to assign an I/O option module in port 4 using a run contact on digital input 0 , parameter 163 [DI Run] is set to 040001.00 .

- Bit Parameters

These parameters have individual bits associated with features or conditions. If the bit is 0 , the feature is off or the condition is false. If the bit is 1 , the feature is on or the condition is true.

Table 3 shows how each parameter type is presented in this manual.
Table 3 - Table Explanation

(0			(2)											(8			
		No.	Display Name Full Name Description											Values		\%	
		${ }^{28}$	Motor NP RPM Motor Nameplate Revolutions Per Minute Rated RPM shown on the motor nameplate.											Units: Default: Min/Max:	$\begin{array}{\|l\|} \text { RPM } \\ 1750.0 \\ 1.0 / 40000.0 \end{array}$	RW	Real
$\begin{aligned} & \text { 릉 } \\ & \text { 은 } \\ & \text { 은 } \end{aligned}$		107	Trq Adapt En Torque Adaption Enable Enables or disables the adaptive torque calculation. This selection is active only in motor control mode flux vector induction (P35 [Motor Ctrl Mode] = 3 "Induction FV").											Default: Options:	$\begin{aligned} & 1=\text { "Enabled" } \\ & 0=\text { "Disabled" } \\ & 1=\text { "Enabled" } \end{aligned}$	RW	$\begin{aligned} & 32-\text {-bit } \\ & \text { Integer } \end{aligned}$
		$\begin{array}{r} 164 \\ 0 \end{array}$	DI Run Forward Digital Input Run Forward Assigns a digital input used to run the drive (2 wire control) and command forward direction.											Default: Min/Max:	0.00 $0.00 / 159999.15$	RW	$\begin{array}{\|l\|} \hline \text { 32-bit } \\ \text { Integer } \end{array}$
		${ }^{220}$	753 Digital In Sts Digital Input Status Status of the digital inputs resident on the main control board (Port 0). Options											$\begin{aligned} & 0=\text { Condition False } \\ & 1=\text { Condition True } \end{aligned}$		RO	$\begin{array}{\|l\|} \hline 16 \text {-bit } \\ \text { Integer } \end{array}$

Parameter Access Level

Three parameter access level options are selectable by P301 [Access Level].

- Option 0 "Basic" is the most limited view that only displays commonly utilized parameters and options.
- Option 1 "Advanced" is an expanded view that may be required to access more advanced drive features.
- Option 2 "Expert" provides a comprehensive view of the drive's entire parameter set.

How Drive Parameters are Organized

DriveExecutive" programming software displays parameters in "Linear List" or "File Group Parameter" format. Viewing the parameters in "File Group Parameter" format simplifies programming by grouping parameters that are used for similar functions. There are eleven files. Each file is divided into multiple groups of parameters.

Drive (Port 0) parameter descriptions begin on page 47.

Basic Parameter View (Port 0)

Parameter 301 [Access Level] set to option 0 "Basic."

File Monitor	Group Metering	Parameters							
		Output Frequency Commanded SpdRef Mtr Vel Fdbk	$\begin{aligned} & 1 \\ & 2 \\ & 3 \end{aligned}$	Commanded Trq Torque Cur Fdbk Flux Cur Fdbk	$\begin{aligned} & 4 \\ & 5 \\ & 6 \end{aligned}$	Output Current Output Voltage Output Power	$\begin{aligned} & 7 \\ & 8 \\ & 9 \end{aligned}$	DC Bus Volts	11
	Drive Data	Rated Volts	20	Rated Amps	21	Rated kW	22		
Motor Control	Motor Data	Motor NP Volts Motor NP Amps	$\begin{aligned} & 25 \\ & 26 \end{aligned}$	Motor NP Hertz Motor NP RPM	27 28	Mtr NP Pwr Units Motor NP Power	$\begin{aligned} & 29 \\ & 30 \end{aligned}$	Motor Poles	31
	Mtr Ctrl Options	Motor Ctrl Mode Maximum Voltage	$\begin{aligned} & 35 \\ & 36 \end{aligned}$	Maximum Freq	37	PWM Frequency	38	IPM Stc OfsTst ${ }^{(1)}$ ${ }^{(1)}$ Frames $1 . . .7$ Only	1660
	Volts per Hertz	VHz Curve	65						
	Autotune	Autotune Autotune Torque IPM_Lg_25_pct	$\begin{array}{r} 70 \\ 71 \\ 1630 \end{array}$	$\begin{aligned} & \text { IPM_Lg_50_pct } \\ & \text { IPM_Lg_75_pct } \end{aligned}$	$\begin{aligned} & 1631 \\ & 1632 \end{aligned}$	$\begin{aligned} & \text { IPM_Lg_100_pct } \\ & \text { IPM_Lg_125_pct } \end{aligned}$	$\begin{aligned} & 1633 \\ & 1634 \end{aligned}$	$\begin{aligned} & \text { IPM_Ld_0_pct } \\ & \text { IPM_Ld_100_pct } \end{aligned}$	$\begin{aligned} & 1635 \\ & 1636 \end{aligned}$
Feedback \& I/0	Digin Functions	Digital In Cfg DI Enable DI Clear Fault DI Aux Fault DI Stop DI Cur Lmt Stop DI Coast Stop	150 155 156 157 158 159 160	DI Start DI Fwd Reverse DI Run DI Run Forward DI Run Reverse DI Jog 1 DI Jog 1 Forward	$\begin{aligned} & 161 \\ & 162 \\ & 163 \\ & 164 \\ & 165 \\ & 166 \\ & 167 \end{aligned}$	DI Jog 1 Reverse DI Jog 2 DI Jog 2 Forward DI Jog 2 Reverse DI Manual Ctrl DI Speed Sel 0 DI Speed Sel 1	$\begin{aligned} & 168 \\ & 169 \\ & 170 \\ & 171 \\ & 172 \\ & 173 \\ & 174 \end{aligned}$	DI Speed Sel 2 DI HOA Start DI Accel 2 DI Decel 2	$\begin{aligned} & 175 \\ & 176 \\ & 179 \\ & 180 \end{aligned}$
	Control Board 10 ${ }^{755}$	Digital In Sts	220						
	Digital Inputs ${ }^{753}$	Digital In Sts	220	Dig In Filt Mask	222	Dig In Filt	223		
	Digital Outputs ${ }^{753}$	Dig Out Sts Dig Out Invert ROO Sel	$\begin{aligned} & 225 \\ & 226 \\ & 230 \end{aligned}$	ROO Level Sel ROO Level ROO Level CmpSts	$\begin{aligned} & 231 \\ & 232 \\ & 233 \end{aligned}$	TOO Sel T00 Level Sel TOO Level	$\begin{aligned} & 240 \\ & 241 \\ & 242 \end{aligned}$	TOO Level CmpSts	243
	Motor PTC ${ }^{753}$	PTC Cfg	250	PTC Status	251				
	Analog Inputs ${ }^{753}$	Anlg In Type	255	Anlg In0 Value	260	Anlg InO Hi	261	Anlg $\ln 0 \mathrm{Lo}$	262
	Analog Outputs ${ }^{753}$	Anlg Out Type Anlg Out0 Sel	$\begin{aligned} & 270 \\ & 275 \end{aligned}$	Anlg Out0 Data Anlg Out0 DataHi	$\begin{aligned} & 277 \\ & 278 \end{aligned}$	Anlg Out0 DataLo Anlg Out0 Hi	$\begin{aligned} & 279 \\ & 280 \end{aligned}$	Anlg Out0 Lo Anlg Out0 Val	281
Drive Cfg	Preferences	Speed Units	300	Access Level	301	Language	302		
Oriveconto	Control Cfg	Voltage Class	305	Duty Rating	306	Direction Mode	308	SpdTrqPsn Mode A	309
	Auto Manual Ctrl	Logic Mask Auto Mask	$\begin{aligned} & 324 \\ & 325 \end{aligned}$	Manual Cmd Mask Manual Ref Mask	$\begin{aligned} & 326 \\ & 327 \end{aligned}$	Alt Man Ref Sel Alt Man Ref AnHi	$\begin{aligned} & 328 \\ & 329 \end{aligned}$	Alt Man Ref AnLo Manual Preload	$\begin{aligned} & 330 \\ & 331 \end{aligned}$
	Braking Features	Stop Mode A Stop Mode B Bus Reg Mode A	$\begin{aligned} & 370 \\ & 371 \\ & 372 \end{aligned}$	Bus Reg Mode B DB Resistor Type DB Ext Ohms	$\begin{aligned} & \hline 373 \\ & 382 \\ & 383 \end{aligned}$	DB Ext Watts DB ExtPulseWatts Stop Dwell Time	$\begin{aligned} & 384 \\ & 385 \\ & 392 \end{aligned}$	Dec Inhibit Actn	409

File	Group	Parameters							
Protection	Motor Overload	Motor OL Actn	410	Mtr OL Alarm Lvl	412	Mtr OL Hertz	414	MtrOL Reset Time	416
		Mtr OL at Pwr Up	411	Mtr OL Factor	413	Mtr OL Reset Lvl	415		
	Load Limits	Current Lmt Sel	421	Shear Pin Cfg	434	Shear Pin1 Level	436		
		Current Limit 1	422	Shear Pin 1 Actn	435	Shear Pin 1 Time	437		
	Power Loss	Power Loss Actn	449	Pwr Loss Mode A	450				
Speed Control	Speed Limits	Max Fwd Speed	520	Max Rev Speed	521	Min Fwd Speed	522	Min Rev Speed	523
	Speed Ramp Rates	Accel Time 1	535	Decel Time 1	537	Jog Acc Dec Time	539		
		Accel Time 2	536	Decel Time 2	538				
	Speed Reference	Spd Ref A Sel	545	Spd Ref B Stpt	551	MOP Init Select	566	Preset Speed 4	574
		Spd Ref A Stpt	546	Spd Ref B AnlgHi	552	MOP Init Stpt	567	Preset Speed 5	575
		Spd Ref A AnlgHi	547	Spd Ref B AnlgLo	553	Preset Speed 1	571	Preset Speed 6	576
		Spd Ref A AnlgLo	548	Jog Speed 1	556	Preset Speed 2	572	Preset Speed 7	577
		Spd Ref B Sel	550	Jog Speed 2	557	Preset Speed 3	573		
Torque Control	Torque Reference	Trq Ref A Sel	675	Trq Ref A AnlgLo	678	Trq Ref B Stpt	681	Trq Ref B Mult	684
		Trq Ref A Stpt	676	Trq Ref A Mult	679	Trq Ref B AnlgHi	682	Selected Trq Ref	685
		Trq Ref A AnlgHi	677	Trq RefB Sel	680	Trq Ref B AnlgLo	683		
Communication	Comm Control	Port 1 Reference	871						
	DPI Datalinks	Data In A1	895	Data $\ln \mathrm{C1}$	899	Data Out A1	905	Data Out C1	909
		Data In A2	896	Data $\ln \mathrm{C} 2$	900	Data Out A2	906	Data Out C2	910
		Data In B1	897	Data In D1	901	Data Out B1	907	Data Out D1	911
		Data In B2	898	Data In D2	902	Data Out B2	908	Data Out D2	912
Diagnostics	Status	Speed Ref Source	930	Last Stop Source	932	Last StrtInhibit	934	Drive Status 2	936
		Last StartSource	931	Start Inhibits	933	Drive Status 1	935	Condition Sts 1	937
	Fault/Alarm Info	Minor Flt Cfg	950	Last Fault Code	951	Fault Status A	952	Fault Status B	953

Advanced Parameter View (Port 0)

Parameter 301 [Access Level] set to option 1 "Advanced."

File	Group	Parameters							
Speed Control	Speed Limits	Max Fwd Speed	520	Min Rev Speed	523	Skip Speed 1	526	Skip Speed Band	529
Tpeed Contron		Max Rev Speed	521	Overspeed Limit	524	Skip Speed 2	527		
		Min Fwd Speed	522	Zero Speed Limit	525	Skip Speed 3	528		
	Speed Ramp Rates	Accel Time 1	535	Decel Time 1	537	Jog Acc Dec Time	539	S-curve Decel	541
		Accel Time 2	536	Decel Time 2	538	S-curve Accel	540		
	Speed Reference	Spd Ref A Sel	545	Spd Ref B AnlgLo	553	MOP High Limit	561	Preset Speed 1	571
		Spd Ref A Stpt	546	Spd Ref B Mult	554	MOP Low Limit	562	Preset Speed 2	572
		Spd Ref A AnlgHi	547	Spd Ref Scale	555	MOP Init Select	566	Preset Speed 3	573
		Spd Ref A AnlgLo	548	Jog Speed 1	556	MOP Init Stpt	567	Preset Speed 4	574
		Spd Ref A Mult	549	Jog Speed 2	557	DI ManRef Sel	563	Preset Speed 5	575
		Spd Ref B Sel	550	MOP Reference	558	DI ManRef AnlgHi	564	Preset Speed 6	576
		Spd Ref B Stpt	551	Save MOP Ref	559	DI ManRef AnlgLo	565	Preset Speed 7	577
		Spd Ref B AnlgHi	552	MOP Rate	560				
	Speed Trim	Trim Ref A Sel	600	Trim Ref B Sel	604	TrmPct RefA Sel	608	TrmPct RefB Sel	612
		Trim Ref A Stpt	601	Trim Ref B Stpt	605	TrmPct RefA Stpt	609	TrmPct RefB Stpt	613
		Trim RefA AnlgHi	602	Trim RefB AnlgHi	606	TrmPct RefA AnHi	610	TrmPct RefB AnHi	614
		Trim RefA AnlgLo	603	Trim RefB AnlgLo	607	TrmPct RefA AnLo	611	TrmPct RefB AnLo	615
	Slip/Droop Comp	Droop RPM at FLA	620	Slip RPM at FLA	621	Slip Comp BW	622		
	Speed Regulator	Spd Options Ctrl	635	Speed Reg Kp	645	Spd Reg Int Out	654	VHzSV Spd Reg Kp	663
		Speed Reg BW	636	Speed Reg Max Kp	646	Spd Reg Pos Lmt	655	VHzSV Spd Reg Ki	664
		Filtered SpdFdbk	640	Speed Reg Ki	647	Spd Reg Neg Lmt	656		
		Speed Error	641	Spd Loop Damping	653	SReg Output	660		
	Speed Comp	Speed Comp Sel	665	Speed Comp Gain	666	Speed Comp Out	667		
Torque Control	Torque Limits	Pos Torque Limit	670	Neg Torque Limit	671				
	Torque Reference	Trq Ref A Sel	675	Trq Ref A Mult	679	Trq Ref B AnlgLo	683	Filtered Trq Ref	689
		Trq Ref A Stpt	676	Trq Ref B Sel	680	Trq Ref B Mult	684	Limited Trq Ref	690
		Trq Ref A AnlgHi	677	Trq Ref B Stpt	681	Selected Trq Ref	685		
		Trq Ref A AnlgLo	678	Trq Ref B AnlgHi	682	Torque Step	686		
	Inertia Comp ${ }^{755}$	Inertia CompMode	695	Inertia Dec Gain	697	Inertia Comp Out	699		
		Inertia Acc Gain	696	Inert Comp LPFBW	698	Ext Ramped Ref	700		
	Inertia Adaption ${ }^{755}$	InAdp LdObs Mode	704	InertiaAdaptGain	706	InertiaTrqAdd	708	InertAdptFltrBW	710
		Inertia Adapt BW	705	Load Estimate	707	IA LdObs Delay	709	Load Observer BW	711
	Friction Comp ${ }^{755}$	FrctnComp Mode	1560	FrctnComp Hyst	1562	FrctnComp Stick	1564	FrctnComp Rated	1566
		FrctnComp Trig	1561	FrctnComp Time	1563	FrctnComp Slip	1565	FrctnComp Out	1567

File	Group	Parameters							
Position Control	Position Cfg/Sts	PTP PsnRefStatus	720	Psn Selected Ref	722	Psn Reg Status	724	In Pos Psn Band	726
		Position Control	721	Psn Command	723	Zero Position	725	In Pos Psn Dwell	727
	Position Homing	Homing Status	730	DI Redefine Psn	733	Find Home Ramp	736		
		Homing Control	731	DI OL Home Limit	734	Actual Home Psn	737		
		DI Find Home	732	Find Home Speed	735	User Home Psn	738		
	Position Watch ${ }^{755}$	PsnWatch1 Select	745	PsnWatch1 Stpt	747	PsnWatch2 Dtctln	749		
		PsnWatch1 Dtctln	746	PsnWatch2 Select	748	PsnWatch2 Stpt	750		
	Interpolator ${ }^{755}$	Interp Control	755	Interp Vel Input	757	Interp Psn Out	759	Interp Trq Out	761
		Interp Psn Input	756	Interp Trq Input	758	Interp Vel Out	760		
	Direct	Psn Ref Select	765	Psn Direct Stpt	766	Psn Direct Ref	767		
	Point to Point	PTP Control	770	PTP Reference	776	PTP Decel Time	782	PTP Vel Override	788
		PTP Mode	771	PTP Feedback	777	PTP Speed FwdRef	783	PTP EGR Mult	789
		DI Indx Step	772	PTP Ref Scale	778	PTP Command	784	PTP EGR Div	790
		DI Indx StepRev	773	PTP Index Preset	779	PTP Fwd Vel Lmt	785		
		DI Indx StepPrst	774	PTP Setpoint	780	PTP Rev Vel Lmt	786		
		PTP Ref Sel	775	PTP Accel Time	781	PTP S-curve	787		
	Phase Lock Loop ${ }^{755}$	PLL Control	795	PLL Psn Stpt	800	PLL Rvls Input	805	PLL Enc Out Adv	810
		PLL Ext Spd Sel	796	PLL BW	801	PLL Psn Out Fltr	806	PLL EPR Output	811
		PLL Ext Spd Stpt	797	PLL LPFilter BW	802	PLL Speed Out	807	PLL Rvls Output	812
		PLL Ext SpdScale	798	PLL Virt Enc RPM	803	PLL Speed OutAdv	808		
		PLL Psn Ref Sel	799	PLL EPR Input	804	PLL Enc Out	809		
	Electronic Gear	Psn Ref EGR Out	815	Psn EGR Mult	816	Psn EGR Div	817		
	Position Offset	Psn Offset 1 Sel	820	Psn Offset 2 Sel	822	Psn Offset Vel	824		
		Psn Offset 1	821	Psn Offset 2	823				
	Ld Psn Fdbk Scal ${ }^{755}$	LdPsn Fdbk Mult	825	LdPsn Fdbk Div	826				
	Position Reg	Psn Error	835	Psn Reg Kp	839	PsnReg Spd Out	843	Psn Fdbk	847
		Psn Actual	836	PReg Pos Int Lmt	840	PReg Pos Spd Lmt	844	Psn Gear Ratio	848
		Psn Load Actual ${ }^{755}$	837	PReg Neg Int Lmt	841	PReg Neg Spd Lmt	845		
		Psn Reg Ki	838	PsnReg IntgrIOut	842	Psn Reg Droop	846		
Communication	Comm Control	Port 1 Reference	871	Port 5 Reference	875	Drive Logic Rslt	879	Drive Ref Rslt	883
		Port 2 Reference	872	Port 6 Reference	876	DPI Ref Rslt	880	Drive Ramp Rsit	884
		Port 3 Reference	873	Port13 Reference ${ }^{755}$	877	DPI Ramp Rslt	881		
		Port 4 Reference	874	Port14 Reference	878	DPI Logic Rslt	882		
	$\begin{aligned} & \text { Security } \\ & \hline \text { DPI Datalinks } \end{aligned}$	Port Mask Act	885	Logic Mask Act	886	Write Mask Act	887	Write Mask Cfg	888
		Data In A1	895	Data $\ln \mathrm{C} 1$	899	Data Out A1	905	Data Out C1	909
		Data $\ln \mathrm{A} 2$	896	Data $\ln \mathrm{C} 2$	900	Data Out A2	906	Data Out C2	910
		Data In B1	897	Data In D1	901	Data Out B1	907	Data Out D1	911
		Data In B2	898	Data \ln D2	902	Data Out B2	908	Data Out D2	912
	Owners	Stop Owner	919	Jog Owner	921	Clear Flt Owner	923	Ref Select 0wner	925
		Start 0wner	920	Dir Owner	922	Manual Owner	924		
Diagnostics	Status	Speed Ref Source	930	Last StrtInhibit	934	Drive OL Count	940	Drive Temp C	944
		Last StartSource	931	Drive Status 1	935	IGBT Temp Pct	941	At Limit Status	945
		Last Stop Source	932	Drive Status 2	936	IGBT Temp C	942	Safety Port Sts	946
		Start Inhibits	933	Condition Sts 1	937	Drive Temp Pct	943		
	Fault/Alarm Info	Minor Flt Cfg	950	Status1 at Fault	954	Fault Bus Volts	958	AlarmA at Fault	962
		Last Fault Code	951	Status2 at Fault	955	Alarm Status A	959	AlarmB at Fault	963
		Fault Status A	952	Fault Frequency	956	Alarm Status B	960		
		Fault Status B	953	Fault Amps	957	Type 2 Alarms	961		
	Peak Detection ${ }^{755}$	PkDtct Stpt Real	1035	PkDtct1PresetSel	1038	PeakDetect1 Out	1041	Peak2 Cfg	1044
		PkDtct Stpt DInt	1036	Peak1 ffg	1039	PkDtct2 In Sel	1042	Peak 2 Change	1045
		PkDtct1 In Sel	1037	Peak 1 Change	1040	PkDtct2PresetSel	1043	PeakDetect2 Out	1046

File	Group	Parameters							
Applications	Process PID	PID Cfg	1065	PID Fdbk AnlgHi	1073	PID Upper Limit	1081	PID Status	1089
		PID Control	1066	PID Fdbk AnlgLo	1074	PID Lower Limit	1082	PID Ref Meter	1090
		PID Ref Sel	1067	PID FBLoss SpSel	1075	PID Deadband	1083	PID Fdbk Meter	1091
		PID Ref AnlgHi	1068	PID FBLoss TqSel	1076	PID LP Filter BW	1084	PID Error Meter	1092
		PID Ref AnlgLo	1069	PID Fdbk	1077	PID Preload	1085	PID Output Meter	1093
		PID Setpoint	1070	PID Fdbk Mult	1078	PID Prop Gain	1086		
		PID Ref Mult	1071	PID Output Sel	1079	PID Int Time	1087		
		PID Fdbk Sel	1072	PID Output Mult	1080	PID Deriv Time	1088		
	Torque Prove ${ }^{755}$	Trq Prove Cfg	1100	Trq Lmt SlewRate	1104	Brk Set Time	1108	MicroPsnScalePct	1112
		Trq Prove Setup	1101	Speed Dev Band	1105	Brk Alarm Travel	1109	ZeroSpdFloatTime	1113
		DI FloatMicroPsn	1102	SpdBand Intgrtr	1106	Brk Slip Count	1110	Brake Test Torq ${ }^{755}$	1114
		Trq Prove Status	1103	Brk Release Time	1107	Float Tolerance	1111		
	Fibers Function	Fiber Control	1120	Traverse Inc	1123	P Jump	1126		
		Fiber Status	1121	Traverse Dec	1124	DI Fiber SyncEna	1129		
		Sync Time	1122	Max Traverse	1125	DI Fiber TravDis	1130		
	Adjustable VItg	Adj VItg Config	1131	Adj VItg Trim Lo	1138	Adj VItg Preset3	1144	Adj VItg Scurve	1150
		Adj VItg Select	1133	Adj Vltg Command	1139	Adj VItg Preset4	1145	Adj VItg TrimPct	1151
		Adj VItg Ref Hi	1134	Adj VItg AccTime	1140	Adj VItg Preset5	1146	Min Adj Voltage	1152
		Adj VItg Ref Lo	1135	Adj VItg DecTime	1141	Adj VItg Preset6	1147	Dead Time Comp	1153
		Adj VItg TrimSel	1136	Adj VItg Preset1	1142	Adj VItg Preset7	1148	DC Offset Ctrl	1154
		Adj VItg Trim Hi	1137	Adj VItg Preset2	1143	Adj VItg RefMult	1149		
	Pump Jack	Rod Speed	1165	TorqAlarm Dwell	1170	Max Rod Speed	1175	PCP Pump Sheave	1180
		Rod Torque	1166	TorgAlarm Level	1171	Max Rod Torque	1176	Gearbox Limit	1181
		Rod Speed Cmd	1167	TorqAlm Timeout	1172	Min Rod Speed	1177	Gearbox Rating	1182
		TorqAlarm Action	1168	TorqAlarm TOActn	1173	Motor Sheave	1178	Gearbox Ratio	1183
		TorqAlarm Config	1169	Total Gear Ratio	1174	OilWell Pump Cfg	1179	Gearbox Sheave	1184
	Pump 0ff	Pump Off Config	1187	Set Top ofStroke	1193	Lift Torque	1199	Day Stroke Count	1205
		Pump Off Setup	1188	Torque Setpoint	1194	Pct Drop Torque	1200	DI PumpOff Disbl	1206
		Pump Off Action	1189	Pump Off Level	1195	Stroke Pos Count	1201	Pump OffSleepLvl	1207
		Pump Off Control	1190	Pump Off Speed	1196	Stroke Per Min	1202		
		Pump Off Status	1191	Pump Off Time	1197	Pump Off Count	1203		
		Pump Cycle Store	1192	Pct Cycle Torque	1198	PumpOff SleepCnt	1204		

File	Group	Parameters						
Applications	Profiling ${ }^{755}$	Profile Status	1210	DI StrtStep Sel0	1222	Step 1, 2, 3... 16 Type	1230, 1240, 1250... 1380	
Appliation		Units Traveled	1212	DI StrtStep Sel1	1223	Step 1, 2, 3...16 Velocity	1231, 1241, 1251... 1381	
		Profile Command	1213	DI StrtStep Sel2	1224	Step 1, 2, 3... 16 Accel	1232, 1242, 1252... 1382	
		Counts Per Unit	1215	DI StrtStep Sel3	1225	Step 1, 2, 3... 16 Decel	1233, 1243, 1253... 1383	
		ProfVel Override	1216	DI StrtStep Sel4	1226	Step 1, 2, 3... 16 Value	1234, 1244, 1254... 1384	
		Prof DI Invert	1217			Step 1, 2, 3... 16 Dwell	1235, 1245, 1255... 1385	
		DI Hold Step	1218			Step 1, 2, 3... 16 Batch	1236, 1246, 1256... 1386	
		DI Abort Step	1219			Step 1, 2, 3... 16 Next	1237, 1247, 1257... 1387	
		DI Abort Profile	1220			Step 1, 2, 3...16 Action	1238, 1248, 1258... 1388	
		DI Vel Override	1221			Step 1, 2, 3... 16 Dig In	1239, 1249, 1259... 1389	
	Camming ${ }^{755}$	PCAM Control	1390	PCAM Scale X	1397	PCAM Main Pt X 0, 1, 2... 15	1407, 1409, 1411... 1437	
		PCAM Mode	1391	PCAM Span Y	1398	PCAM Main Pt Y 0, 1, 2... 15	1408, 1410, 1412... 1438	
		PCAM Psn Select	1392	PCAM ScaleY Sel	1399	PCAM Aux EndPnt	1439	
		PCAM Psn Stpt	1393	PCAM ScaleYSetPt	1400	PCAM Aux Types	1440	
		PCAM Psn Ofst	1394	PCAM VelScaleSel	1401	PCAM Aux Pt X 1, 2, 3 ... 15	1441, 1443, 1445... 1469	
		PCAM PsnOfst Eps	1395	PCAM VelScaleSP	1402	PCAM Aux Pt Y 1, 2, 3... 15	1442, 1444, 1446... 1470	
		PCAM Span X	1396	PCAM Slope Begin	1403	PCAM Status	1471	
				PCAM Slope End	1404	PCAM Vel Out	1472	
				PCAM Main EndPnt	1405	PCAM Psn 0ut	1473	
				PCAM Main Types	1406	DI PCAM Start	1474	
	Roll Position ${ }^{755}$	Roll Psn Config	1500	Roll Psn Preset	1504	RP Rvls Output 1508	RP Unit Out	1512
		Roll Psn Status	1501	Roll Psn Offset	1505	RP Unwind 1509		
		RP Psn Fdbk Stpt	1502	RP EPR Input	1506	RP Unit Scale 1510		
		RP Psn Fdbk Sel	1503	RP Rvis Input	1507	RP Psn Output 1511		
	Torque Boost ${ }^{755}$	PsnTrqBst Ctrl	1515	PsnTrqBst UNWCnt	1519	PsnTrqBst Ps X4 1523	PsnTrqBst Trq Y4	1527
		PsnTrqBst Sts	1516	PsnTrqBst Ps X1	1520	PsnTrqBst Ps X5 1524	PsnTrqBst Trq0ut	1528
		PsnTrqBst RefSel	1517	PsnTrqBst Ps X2	1521	PsnTrqBst Trq Y2 1525		
		PsnTrqBstPsn0fst	1518	PsnTrqBst Ps X3	1522	PsnTrqBst Trq Y3 1526		
	Variable Boost	VB Config	1535	VB Maximum	1540	VB Flux Thresh 1545	VB Cur Thresh	1550
		VB Status	1536	VB Accel Rate	1541	VB Flux Lag Freq 1546	VB Rate Lag Freq	1551
		VB Voltage	1537	VB Decel Rate	1542	VB Filt Flux Cur 1547		
		VB Time	1538	VB Frequency	1543	VB Current Rate 1548		
		VB Minimum	1539	VB Min Freq	1544	VB Current Hyst 1549		
	Spindle Orient ${ }^{755}$	SO Config	1580	SO EPR Input	1584	SO Unit Scale 1588	SO Decel Time	1592
		SOStatus	1581	SO Rvis Input	1585	SO Position Out 1589	SO Fwd Vel Lmt	1593
		SO Setpoint	1582	SO Rvis Output	1586	SO Unit Out 1590	SORev Vel Lmt	1594
		SO Offset	1583	SO Cnts per Rvis	1587	SO Accel Time 1591		
	Id Compensation 75	Id Comp Enbl	1600	Id Comp Mtrng 4	1607	IdCompRegen 1 lq 1614	Id Comp Regen 5	1621
		Id Comp Mtrng 1	1601	IdCompMtrng 41 l	1608	Id Comp Regen 21615	IdCompRegen 519	1622
		IdCompMtrng 1 lq	1602	Id Comp Mtrng 5	1609	IdCompRegen 2 lq 1616	Id Comp Regen 6	1623
		Id Comp Mtrng 2	1603	IdCompMtrng 5 lq	1610	Id Comp Regen 31617	IdCompRegen 6 Iq	1624
		IdCompMtrng 2 lq	1604	Id Comp Mtrng 6	1611	IdCompRegen 3 lq 1618		
		Id Comp Mtrng 3	1605	IdCompMtrng 61 lq	1612	Id Comp Regen 41619		
		IdCompMtrng 3 lq	1606	Id Comp Regen 1	1613	IdCompRegen 4 lq 1620		

Expert Parameter View (Port 0)

Parameter 301 [Access Level] set to option 2 "Expert."

File	Group	Parameters							
Monitor	Metering	Output Frequency Commanded SpdRef Mtr Vel Fdbk Commanded Trq Torque Cur Fdbk	1	Flux Cur Fdbk	6	DC Bus Volts	11	Elpsd Mtr MWHrs	16
			2	Output Current	7	DC Bus Memory	12	Elpsd Rgn MWHrs	17
			3	Output Voltage	8	Elapsed MWH	13	Elpsd Mtr kWHrs	18
			4	Output Power	9	Elapsed kWH	14	Elpsd Rgn kWHrs	19
			5	Output Powr Fctr	10	Elapsed Run Time	15		
	Drive Data	Rated Volts	20	Rated Amps	21	Rated kW	22		
Motor Control	Motor Data	Motor NP Volts	25	Motor NP Hertz	27	Mtr NP Pwr Units	29	Motor Poles	31
		Motor NP Amps	26	Motor NP RPM	28	Motor NP Power	30		
	Mtr Ctrl Options	Motor Ctrl Mode Maximum Voltage Maximum Freq PWM Frequency Mtr Options Cfg Common Mode Type	35	Bus Utilization	42	Econ At Ref Ki	47	IPM V FB HP Filt	1648
			36	Flux Up Enable	43	Econ AccDec Ki	48	IPM SpdEst Filt	1649
			37	Flux Up Time	44	Econ AccDec Kp	49	IPM SpdEst Kp	1650
			38	Flux Down Ki	45	Stability Filter	50	IPM SpdEst Ki	1651
			40	Flux Down Kp	46	Stab Volt Gain	51	IPM SpdEst KiAdj	1652
			41			Stab Angle Gain	52	IPM Tran PWM	1653
								IPMTran PWM Hyst	1654
								IPM Tran Mode	1655
								IPM TranMod Hyst	1656
								IPM Tran Filt Lo	1657
								IPM Tran Filt Hi	1658
								IPM Tran Angle	1659
								IPM Stc Ofsist K	1660
								IPM Lq Cmd BW	1661
								Parameters 1648... 16 by drive frames $1 . . .7$	1 used ly.
	Volts per Hertz	Start Acc Boost	60	Break Voltage	62	SVC Boost Filter	64		
		Run Boost	61	Break Frequency	63	VHz Curve	65		
	Autotune	Autotune	70	Encrirlss VItComp	79	PM IR Voltage	87	IPM_Lg_50_pct	1631
		Autotune Torque	71	PM Cfg	80	PM IXq Voltage ${ }^{755}$	88	IPM_Lg_75_pct	1632
		IR Voltage Drop	73	PM PriEnc Offset	81	PM IXd Voltage ${ }^{755}$	89	IPM_Lg_100_pct	1633
		Ixo Voltage Drop	74	PM AltEnc Offset	82	PM Vqs Reg Kp	91	IPM_Lg_125_pct	1634
		Flux Current Ref	75	PM OfstTst Cur	83	PM Vqs Reg Ki	92	IPM_Ld_0_pct	1635
		Total Inertia	76	PM Ofstst CRamp	84	PM Dir Test Cur	93	IPM_Ld_100_pct	1636
		Inertia Test Lmt	77	PM Ofstst FRamp	85	PM IXqVoltage 125	120	IPM PrioffstComp	1646
		Encdrlss AngComp	78	PM CEMF Voltage	86	IPM_Lg_25_pct	1630	IPM AltOffstComp	1647
	Vector Regulator	VCL Cur Reg BW	95	Flux Reg Enable	103	Trq Comp Regen	111	IPMVqFFwdLdddWe ${ }^{755}$	1638
		VCL Cur Reg Kp	96	Flux Reg Ki	104	Slip Adapt Iqs	112	IPMVdFFwdLq\|qWe ${ }^{755}$	1639
		VCL Cur Reg Ki	97	Flux Reg Kp	105	SFAdapt SlewLmt	113	IPM Max Cur ${ }^{755}$	1640
		VEncdls FReg Kp	98	Trq Adapt Speed	106	SFAdaptSlewRate	114	IPM Max Spd ${ }^{75}$	1641
		VEncdls FReg Ki	99	Trq Adapt En	107	SFAdapt CnvrgLvl	115	IPM TrqTrim Kp ${ }^{75}$	1642
		Slip Reg Enable	100	Phase Delay Comp	108	SFAdapt CnvrgLmt	116	IPM TrqTrim Ki ${ }^{\text {7 }}$	1643
		Slip Reg Ki	101	Trq Comp Mode	109	IPM Bus Prot ${ }^{\text {75 }}$	1629	IPM TrqTrim HLim ${ }^{755}$	1644
		Slip Reg Kp	102	Trq Comp Mtring	110	IPMVqFFwdCemf ${ }^{755}$	1637	IPM TrqTrim LLim ${ }^{755}$	1645

File	Group	Parameters							
Feedback \& 1/0	Feedback	Pri Vel Fdbk Sel	125	Alt Vel Feedback	130	Psn Fdbk Sel	135	Virtual EncDelay ${ }^{755}$	140
		Pri Vel FdbkFltr	126	Active Vel Fdbk	131	Load Psn FdbkSel ${ }^{755}$	136	Virtual Enc EPR ${ }^{755}$	141
		Pri Vel Feedback	127	Aux Vel Fdbk Sel	132	Open Loop Fdbk	137	Virtual Enc Psn ${ }^{75}$	142
		Alt Vel Fdbk Sel	128	Aux Vel FdbkFItr	133	Simulator Fdbk	138		
		Alt Vel FdbkFltr	129	Aux Vel Feedback	134	Delayed Spd Ref ${ }^{755}$	139		
	Digin Functions	Digital In Cfg	150	DIJ $\operatorname{Jog} 1$	166	DIMOP Dec	178	DIPID Hold	192
		DI Enable	155	DI Jog 1 Forward	167	DI Accel 2	179	DIPID Reset	193
		DI Clear Fault	156	DI Jog 1 Reverse	168	DI Decel 2	180	DI PID Invert	194
		DI Aux Fault	157	DI $\operatorname{Jog} 2$	169	DI SpTqPs Sel 0	181	DI Torque StptA	195
		DI Stop	158	DI Jog 2 Forward	170	DI SpTqPs Sel 1	182	DI Fwd End Limit	196
		DI Cur Lmt Stop	159	DI Jog 2 Reverse	171	DI Stop Mode B	185	DIFwd Dec Limit	197
		DI Coast Stop	160	DI Manual Ctrl	172	DI BusReg Mode B	186	DI Rev End Limit	198
		DI Start	161	DI Speed Sel 0	173	DI PwrLoss ModeB	187	DI Rev Dec Limit	199
		DI Fwd Reverse	162	DI Speed Sel 1	174	DI Pwr Loss	188	DIPHdwr OvrTrvl	200
		DI Run	163	DI Speed Sel 2	175	DI Precharge	189	DI NHdwr OvrTrul	201
		DI Run Forward	164	DI HOA Start	176	DI Prchrg Seal	190		
		DI Run Reverse	165	DIMOP Inc	177	DIPID Enable	191		
	Control Board 1075	Digital In Sts	220						
	Digital Inputs ${ }^{753}$	Digital In Sts	220	Dig In Filt Mask	222	Dig In Filt	223		
	Digital Outputs ${ }^{753}$	Dig 0ut Sts	225	ROO Level Sel	231	R00 Off Time	235	T00 Level CmpSts	243
		Dig Out Invert	226	ROO Level	232	T00 Sel	240	T00 On Time	244
		Dig Out Setpoint	227	ROO Level CmpSts	233	TOO Level Sel	241	TOO Off Time	245
		ROO Sel	230	ROO On Time	234	T00 Level	242		
	Motor PTC 75	PTC Cfg	250	PTC Sts	251				
	Analog Inputs ${ }^{173}$	Anlg In Type	255	Anlg In0 Value	260	Anlg $\ln 0$ LssActn	263	Anlg In0 Filt BW	266
		Anlg In Sqrt	256	Anlg $\ln 0 \mathrm{Hi}$	261	Anlg In0 Raw Val	264		
		Anlg In Loss Sts	257	Anlg InO Lo	262	Anlg In0 Filt Gn	265		
	Analog Outputs ${ }^{753}$	Anlg Out Type	270	Anlg Out0 Stpt	276	Anlg Out0 DataLo	279	Anlg Out0 Val	282
		Anlg Out Abs	271	Anlg Out0 Data	277	Anlg Out0 Hi	280		
		Anlg Out0 Sel	275	Anlg Out0 DataHi	278	Anlg Out0 Lo	281		
	R0 Predict Main ${ }^{753}$	RO PredMaint Sts	285	R00 Load Amps	287	R00 Elapsedlife	289	R00 LifeEvntLvl	291
		R00 Load Type	286	R00 Totallife	288	R00 RemainLife	290	R00 LifeEvntActn	292

File	Group	Parameters							
Drive Cfg	Preferences	Speed Units	300	Access Level	301	Language	302		
	Control Cfg	Voltage Class	305	SpdTrqPsn Mode B	310	SLAT Err Stpt	314	Prchrg Err Cfg	323
		Duty Rating	306	SpdTrqPsn Mode C	311	SLAT Dwell Time	315		
		Direction Mode	308	SpdTrqPsn Mode D	312	Prchrg Control	321		
		SpdTrqPsn Mode A	309	Actv SpTqPs Mode	313	Prchrg Delay	322		
	Auto Manual Ctrl	Logic Mask	324	Manual Cmd Mask	326	Alt Man Ref Sel	328	Alt Man Ref AnLo	330
		Auto Mask	325	Manual Ref Mask	327	Alt Man Ref AnHi	329	Manual Preload	331
	Drive Memory	Reset Meters	336						
	Start Features	Start At PowerUp	345	Sleep Wake Mode	350	Wake Time	355	FS Speed Reg Kp	360
		PowerUp Delay	346	SleepWake RefSel	351	FlyingStart Mode	356	FS Excitation Ki	361
		Auto Retry Fault	347	Sleep Level	352	FS Gain	357	FS Excitation Kp	362
		Auto Rstrt Tries	348	Sleep Time	353	FS Ki	358	FS Reconnect Dly	363
		Auto Rstrt Delay	349	Wake Level	354	FS Speed Reg Ki	359	FS Msrmnt CurLvl	364
	Braking Features	Stop Mode A	370	Bus Limit ACR Kp	379	Flux Braking Ki	390	DC Brk Vd Fltr	399
		Stop Mode B	371	Bus Reg Ki	380	Flux Braking Kp	391	Fast Braking Ki	400
		Bus Reg Mode A	372	Bus Reg Kp	381	Stop Dwell Time	392	Fast Braking Kp	401
		Bus Reg Mode B	373	DB Resistor Type	382	DC Brake Lvl Sel	393	Brake Off Adj 1	402
		Bus Reg Lvl Cfg	374	DB Ext Ohms	383	DC Brake Level	394	Brake Off Adj 2	403
		Bus Reg Level	375	DB Ext Watts	384	DC Brake Time	395	Dec Inhibit Actn	409
		Bus Limit Kp	376	DB ExtPulseWatts	385	DC Brake Ki	396		
		Bus Limit Kd	377	Flux Braking En	388	DC Brake Kp	397		
		Bus Limit ACR Ki	378	Flux Braking Lmt	389	DC Brk Vq Fltr	398		
Protection Motor Overload		Motor OL Actn	410	Mtr OL Factor	413	Mtr0L Reset Time	416		
		Mtr OL at Pwr Up	411	Mtr OL Hertz	414	Mtr OL Counts	418		
		Mtr OL Alarm Lvl	412	Mtr OL Reset Lvl	415	Mtr OL Trip Time	419		
	Load Limits	Drive OL Mode	420	Motor Power Lmt	427	Shear Pin Cfg	434	Load Loss Action	441
		Current Lmt Sel	421	Current Limit Kd	428	Shear Pin 1 Actn	435	Load Loss Level	442
		Current Limit 1	422	Current Limit Ki	429	Shear Pin1 Level	436	Load Loss Time	443
		Current Limit 2	423	Current Limit Kp	430	Shear Pin 1 Time	437	OutPhaseLossActn	444
		Active Cur Lmt	424	Id Lo FreqCur Kp	431	Shear Pin 2 Actn	438	Out PhaseLossLvl	445
		Current Rate Lmt	425	Iq Lo FreqCur Kp	432	Shear Pin2 Level	439		
		Regen Power Lmt	426	Jerk Gain	433	Shear Pin 2 Time	440		
	Power Loss	Power Loss Actn	449	Pwr Loss Mode B	453	PwrLoss RT BusKd	457	UnderVItg Level	461
		Pwr Loss Mode A	450	Pwr Loss B Level	454	PwrLoss RT ACRKp	458	InPhase LossActn	462
		Pwr Loss A Level	451	Pwr Loss B Time	455	PwrLoss RT ACRKi	459	InPhase Loss Lvl	463
		Pwr Loss A Time	452	PwrLoss RT BusKp	456	UnderVItg Action	460	DC Bus Mem Reset	464
	Ground Fault	Ground Warn Actn	466	Ground Warn Lvl	467				
	Predictive Main	PredMaint Sts	469	HSFan Derate	488	MtrBrngTotalLife	502	MchBrngTotalLife	511
		PredMaintAmbTemp	470	HSFan TotalLife	489	MtrBrngElpsdLife	503	MchBrngElpsdLife	512
		PredMaint Rst En	471	HSFan ElpsdLife	490	MtrBrngRemainLif	504	MchBrngRemainLif	513
		PredMaint Reset	472	HSFan RemainLife	491	MtrBrngEventLvl	505	MchBrngEventLvl	514
		CbFan Derate ${ }^{755(8+)}$	481	HSFan EventLevel	492	MtrBrngEventActn	506	MchBrngEventActn	515
		CbFan TotalLife ${ }^{755(8+)}$	482	HSFan EventActn	493	MtrBrng ResetLog	507	MchBrngResetLog	516
		CbFan ElpsdLife ${ }^{755(8+)}$	483	HSFan ResetLog ${ }^{(1)}$	494	MtrLubeElpsdHrs	508	MchLubeElpsdHrs	517
		CbFan RemainLife ${ }^{755(8+)}$	484	InFan Derate	495	MtrLubeEventLvl	509	MchLube EventLvl	518
		CbFan EventLevel ${ }^{755}(8+$)	485	InFan TotalLife	496	MtrLubeEventActn	510	MchLubeEventActn	519
		CbFan EventActn ${ }^{755(8+)}$	486	InFan ElpsdLife	497				
				InFan RemainLife	498				
				InFan EventLevel	499				
				InFan EventActn	500				
				InFan ResetLog ${ }^{(1)}$	501	${ }^{(1)} 755$ Frames 1...7 only.			

File	Group	Parameters							
Speed Control	Speed Limits	Max Fwd Speed	520	Min Rev Speed	523	Skip Speed 1	526	Skip Speed Band	529
Speed contron		Max Rev Speed	521	Overspeed Limit	524	Skip Speed 2	527		
		Min Fwd Speed	522	Zero Speed Limit	525	Skip Speed 3	528		
	Speed Ramp Rates	Accel Time 1	535	Decel Time 1	537	Jog Acc Dec Time	539	S Curve Decel	541
		Accel Time 2	536	Decel Time 2	538	S Curve Accel	540		
	Speed Reference	Spd Ref A Sel	545	Spd Ref Scale	555	DI ManRef AnlgLo	565	Spd Ref Filter	588
		Spd Ref A Stpt	546	Jog Speed 1	556	MOP Init Select	566	Spd Ref Fltr BW	589
		Spd Ref A AnlgHi	547	Jog Speed 2	557	MOP Init Stpt	567	Spd Ref FltrGain	590
		Spd Ref A AnlgLo	548	MOP Reference	558	Preset Speed 1	571	Spd Ref Sel Sts	591
		Spd Ref A Mult	549	Save MOP Ref	559	Preset Speed 2	572	Selected Spd Ref	592
		Spd Ref B Sel	550	MOP Rate	560	Preset Speed 3	573	Limited Spd Ref	593
		Spd Ref B Stpt	551	MOP High Limit	561	Preset Speed 4	574	Ramped Spd Ref	594
		Spd Ref B AnlgHi	552	MOP Low Limit	562	Preset Speed 5	575	Filtered Spd Ref	595
		Spd Ref B AnlgLo	553	DI ManRef Sel	563	Preset Speed 6	576	Speed Rate Ref	596
		Spd Ref B Mult	554	DI ManRef AnlgHi	564	Preset Speed 7	577	Final Speed Ref	597
	Speed Trim	Trim Ref A Sel	600	Trim Ref B Stpt	605	TrmPct RefA AnHi	610	TrmPct RefB AnLo	615
		Trim Ref A Stpt	601	Trim RefB AnlgHi	606	TrmPct RefA AnLo	611	SpdTrimPrcRefSrc	616
		Trim RefA AnlgHi	602	Trim RefB AnlgLo	607	TrmPct RefB Sel	612	Spd Trim Source	617
		Trim RefA AnlgLo	603	TrmPct RefA Sel	608	TrmPct RefB Stpt	613		
		Trim Ref B Sel	604	TrmPct RefA Stpt	609	TrmPct RefB AnHi	614		
	Slip/Droop Comp	Droop RPM at FLA	620	Slip RPM at FLA	621	Slip Comp BW	622	VHzSV SpdTrimReg	623
	Speed Regulator	Spd Options Ctrl	635	SpdReg AntiBckup	643	AltSpdErr FltrBW	651	SReg OutFltr BW	659
		Speed Reg BW	636	Spd Err Fltr BW	644	SReg Trq Preset	652	SReg Output	660
		SReg FB Fltr Sel	637	Speed Reg Kp	645	Spd Loop Damping	653	VHzSV Spd Reg Kp	663
		SReg FB FltrGain	638	Speed Reg Max Kp	646	Spd Reg Int Out	654	VHzSV Spd Reg Ki	664
		SReg FB Fltr BW	639	Speed Reg Ki	647	Spd Reg Pos Lmt	655	Active Vel Fdbk	131
		Filtered SpdFdbk	640	Alt Speed Reg BW	648	Spd Reg Neg Lmt	656		
		Speed Error	641	Alt Speed Reg Kp	649	SReg OutFItr Sel	657		
		Servo Lock Gain ${ }^{755}$	642	Alt Speed Reg Ki	650	SReg OutFltrGain	658		
	Speed Comp	Speed Comp Sel	665	Speed Comp Gain	666	Speed Comp Out	667		
Torque Control	Torque Limits	Pos Torque Limit	670	Neg Torque Limit	671				
	Torque Reference	Trq Ref A Sel	675	Trq Ref A Mult	679	Trq Ref B AnlgLo	683	Notch Fltr Freq	687
		Trq Ref A Stpt	676	Trq Ref B Sel	680	Trq Ref B Mult	684	Notch Fltr Atten	688
		Trq Ref A AnlgHi	677	Trq Ref B Stpt	681	Selected Trq Ref	685	Filtered Trq Ref	689
		Trq Ref A AnlgLo	678	Trq Ref B AnlgHi	682	Torque Step	686	Limited Trq Ref	690
	Inertia Comp ${ }^{755}$	Inertia CompMode	695	Inertia Dec Gain	697	Inertia Comp Out	699		
		Inertia Acc Gain	696	Inert Comp LPFBW	698	Ext Ramped Ref	700		
	Inertia Adaption ${ }^{755}$	InAdp LdObs Mode	704	InertiaAdaptGain	706	InertiaTrqAdd	708	InertAdptFltrBW	710
		Inertia Adapt BW	705	Load Estimate	707	IA LdObs Delay	709	Load Observer BW	711
	Friction Comp ${ }^{755}$	FrctnComp Mode	1560	FrctnComp Hyst	1562	FrctnComp Stick	1564	FrctnComp Rated	1566
		FrctnComp Trig	1561	FrctnComp Time	1563	FrctnComp Slip	1565	FrctnComp Out	1567

File	Group	Parameters							
Diagnostics	Status	Speed Ref Source	930	Last StrtInhibit	934	Drive OL Count	940	Drive Temp C	944
		Last StartSource	931	Drive Status 1	935	IGBT Temp Pct	941	At Limit Status	945
		Last Stop Source	932	Drive Status 2	936	IGBT Temp C	942	Safety Port Sts	946
		Start Inhibits	933	Condition Sts 1	937	Drive Temp Pct	943		
	Fault/Alarm Info	Minor Flt Cfg	950	Status1 at Fault	954	Fault Bus Volts	958	AlarmA at Fault	962
		Last Fault Code	951	Status2 at Fault	955	Alarm Status A	959	AlarmB at Fault	963
		Fault Status A	952	Fault Frequency	956	Alarm Status B	960	MCB FPGA Actn	964
		Fault Status B	953	Fault Amps	957	Type 2 Alarms	961		
	Testpoints	Testpoint Sel 1	970	Testpoint Sel 2	974	Testpoint Sel 3	978	Testpoint Sel 4	982
		Testpoint Fval 1	971	Testpoint Fval 2	975	Testpoint Fval 3	979	Testpoint Fval 4	983
		Testpoint Lval 1	972	Testpoint Lval 2	976	Testpoint Lval 3	980	Testpoint Lval 4	984
	Peak Detection ${ }^{755}$	PkDtct Stpt Real	1035	PkDtct1PresetSel	1038	PeakDetect1 Out	1041	Peak2 Cfg	1044
		PkDtct Stpt Dint	1036	Peak1 ffg	1039	PkDtct2 In Sel	1042	Peak 2 Change	1045
		PkDtct1 In Sel	1037	Peak 1 Change	1040	PkDtct2PresetSel	1043	PeakDetect2 Out	1046
Applications	Process PID	PID Cfg	1065	PID Fdbk AnlgHi	1073	PID Upper Limit	1081	PID Status	1089
		PID Control	1066	PID Fdbk AnlgLo	1074	PID Lower Limit	1082	PID Ref Meter	1090
		PID Ref Sel	1067	PID FBLoss SpSel	1075	PID Deadband	1083	PID Fdbk Meter	1091
		PID Ref AnlgHi	1068	PID FBLoss TqSel	1076	PID LP Filter BW	1084	PID Error Meter	1092
		PID Ref AnlgLo	1069	PID Fdbk	1077	PID Preload	1085	PID Output Meter	1093
		PID Setpoint	1070	PID Fdbk Mult	1078	PID Prop Gain	1086		
		PID Ref Mult	1071	PID Output Sel	1079	PID Int Time	1087		
		PID Fdbk Sel	1072	PID Output Mult	1080	PID Deriv Time	1088		
	Torque Prove ${ }^{755}$	Trq Prove Cfg	1100	Trq Lmt SlewRate	1104	Brk Set Time	1108	MicroPsnScalePct	1112
		Trq Prove Setup	1101	Speed Dev Band	1105	Brk Alarm Travel	1109	ZeroSpdFloatTime	1113
		DI FloatMicroPsn	1102	SpdBand Intgrtr	1106	Brk Slip Count	1110	Brake Test Torq ${ }^{755}$	1114
		Trq Prove Status	1103	Brk Release Time	1107	Float Tolerance	1111		
	Fibers Function	Fiber Control	1120	Traverse Inc	1123	P Jump	1126		
		Fiber Status	1121	Traverse Dec	1124	DI Fiber SyncEna	1129		
		Sync Time	1122	Max Traverse	1125	DI Fiber TravDis	1130		
	Adjustable VItg	Adj VItg Config	1131	Adj VItg Trim Lo	1138	Adj VItg Preset3	1144	Adj VItg Scurve	1150
		Adj VItg Select	1133	Adj VItg Command	1139	Adj VItg Preset4	1145	Adj VItg TrimPct	1151
		Adj VItg Ref Hi	1134	Adj VItg AccTime	1140	Adj VItg Preset5	1146	Min Adj Voltage	1152
		Adj VItg Ref Lo	1135	Adj VItg DecTime	1141	Adj VItg Preset6	1147	Dead Time Comp	1153
		Adj VItg TrimSel	1136	Adj VItg Preset1	1142	Adj VItg Preset7	1148	DC Offset Ctrl	1154
		Adj VItg Trim Hi	1137	Adj VItg Preset2	1143	Adj VItg RefMult	1149		
	Pump Jack	Rod Speed	1165	TorqAlarm Dwell	1170	Max Rod Speed	1175	PCP Pump Sheave	1180
		Rod Torque	1166	TorqAlarm Level	1171	Max Rod Torque	1176	Gearbox Limit	1181
		Rod Speed Cmd	1167	TorqAlm Timeout	1172	Min Rod Speed	1177	Gearbox Rating	1182
		TorqAlarm Action	1168	TorqAlarm TOActn	1173	Motor Sheave	1178	Gearbox Ratio	1183
		TorqAlarm Config	1169	Total Gear Ratio	1174	OilWell Pump Cfg	1179	Gearbox Sheave	1184
	Pump 0ff	Pump Off Config	1187	Set Top ofStroke	1193	Pct Lift Torque	1199	Day Stroke Count	1205
		Pump Off Setup	1188	Torque Setpoint	1194	Pct Drop Torque	1200	DI PumpOff Disbl	1206
		Pump Off Action	1189	Pump Off Level	1195	Stroke Pos Count	1201	Pump OffSleepLvl	1207
		Pump Off Control	1190	Pump Off Speed	1196	Stroke Per Min	1202		
		Pump Off Status	1191	Pump Off Time	1197	Pump Off Count	1203		
		Pump Cycle Store	1192	Pct Cycle Torque	1198	PumpOff SleepCnt	1204		

File	Group	Parameters						
Applications	Profiling ${ }^{755}$	Profile Status	1210	DI Vel Override	1221	Step 1, 2, 3... 16 Type	1230, 1240, 1250... 1380	
		Units Traveled	1212	DI StrtStep Sel0	1222	Step 1, 2, 3...16 Velocity	1231, 1241, 1251... 1381	
		Profile Command	1213	DI StrtStep Sel1	1223	Step 1, 2, 3... 16 Accel	1232, 1242, 1252... 1382	
		Counts Per Unit	1215	DI StrtStep Sel2	1224	Step 1, 2, 3... 16 Decel	1233, 1243, 1253.. 1383	
		ProfVel Override	1216	DI StrtStep Sel3	1225	Step 1, 2, 3... 16 Value	1234, 1244, 1254... 1384	
		Prof DI Invert	1217	DI StrtStep Sel4	1226	Step 1, 2, 3... 16 Dwell	1235, 1245, 1255 .. 1385	
		DI Hold Step	1218			Step 1, 2, 3... 16 Batch	1236, 1246, 1256... 1386	
		DI Abort Step	1219			Step 1, 2, 3...16 Next	1237, 1247, 1257... 1387	
		DI Abort Profile	1220			Step 1, 2, 3... 16 Action	1238, 1248, 1258... 1388	
						Step 1, 2, 3... 16 Dig In	1239, 1249, 1259... 1389	
	Camming ${ }^{755}$	PCAM Control	1390	PCAM Span X	1396	PCAM Main Pt X 0, 1, 2... 15	1407, 1409, 1411... 1437	
		PCAM Mode	1391	PCAM Scale X	1397	PCAM Main Pt Y 0, 1, 2 ... 15	1408, 1410, 1412... 1438	
		PCAM Psn Select	1392	PCAM Span Y	1398	PCAM Aux EndPnt	1439	
		PCAM Psn Stpt	1393	PCAM ScaleY Sel	1399	PCAM Aux EndPnt PCAM Aux Types	1440	
		PCAM Psn Ofst	1394	PCAM ScaleYSetPt	1400	PCAM Aux Pt X 1, 2, 3... 15	1441, 1443, 1445... 1469	
		PCAM Psn0fst Eps	1395	PCAM VelScaleSel	1401	PCAM Aux Pt Y 1, 2, 3... 15	1442, 1444, 1446... 1470	
				PCAM VelScaleSP	1402	PCAM Status	1471	
				PCAM Slope Begin	1403	PCAM Vel Out	1472	
				PCAM Slope End	1404	PCAM Psn Out	1473	
				PCAM Main EndPnt	1405	DI PCAM Start	1474	
				PCAM Main Types	1406			
	Roll Position ${ }^{755}$	Roll Psn Config	1500	Roll Psn Preset	1504	RP Rvls Output 1508	RP Unit 0ut	1512
		Roll Psn Status	1501	Roll Psn Offset	1505	RP Unwind 1509		
		RP Psn Fdbk Stpt	1502	RP EPR Input	1506	RP Unit Scale 1510		
		RP Psn Fdbk Sel	1503	RP Rvis Input	1507	RP Psn Output 1511		
	Torque Boost ${ }^{755}$	PsnTrqBst Ctrl	1515	PsnTrqBst UNWCnt	1519	PsnTrqBst Ps X4 1523	PsnTrqBst Trq Y4 PsnTrqBst Trq0ut	1527
		PsnTrqBstSts	1516	PsnTrqBst Ps X1	1520	PsnTrqBst Ps X5 1524		1528
		PsnTrqBst RefSel	1517	PsnTrqBst Ps X2	1521	PsnTrqBst Trq Y2 1525		
		PsnTrqBstPsnOfst	1518	PsnTrqBst Ps X3	1522	PsnTrqBst Trq Y3 1526		
	Variable Boost	VB Config	1535	VB Maximum	1540	VB Flux Thresh 1545	VB Cur Thresh VB Rate Lag Freq	1550
		VB Status	1536	VB Accel Rate	1541	VB Flux Lag Freq 1546		1551
		VB Voltage	1537	VB Decel Rate	1542	VB Filt Flux Cur 1547		
		VB Time	1538	VB Frequency	1543	VB Current Rate 1548		
		VB Minimum	1539	VB Min Freq	1544	VB Current Hyst 1549		
	Spindle Orient ${ }^{755}$	SO Config	1580	SO EPR Input	1584	SO Unit Scale 1588		1592
		SO Status	1581	SO RvIs Input	1585	SO Position Out 1589	SO Fwd Vel Lmt	1593
		SOSetpoint	1582	SO Rvis Output	1586	SO Unit Out 1590	SO Rev Vel Lmt	1594
		SO Offset	1583	SO Cnts per Ruls	1587	SO Accel Time 1591		
	Id Compensation ${ }^{755}$	Id Comp Enbl	1600	Id Comp Mtrng 4	1607	Id Comp Regen 11613	Id Comp Regen 4	1619
		Id Comp Mtrng 1	1601	IdCompMtrng 4 Iq	1608	$\text { IdCompRegen } 1 \text { lq } 1614$	IdCompRegen 4 Iq	1620
		IdCompMtrng 1 Iq	1602	Id Comp Mtrng 5	1609	Id Comp Regen 21615	Id Comp Regen 5	1621
		Id Comp Mtrng 2	1603	IdCompMtrng 5 lq	1610	IdCompRegen 2 lq 1616	IdCompRegen 5 lq	1622
		IdCompMtrng 2 lq	1604	Id Comp Mtrng 6	1611	Id Comp Regen 31617	Id Comp Regen 6	1623
		Id Comp Mtrng 3	1605	IdCompMtrng 61 lq	1612	IdCompRegen 3 lq 1618	IdCompRegen 619	1624
		IdCompMtrng 3 lq	1606					

Inverter Common (Port 10)

Inverter Common parameters are only used by PowerFlex 755 Frame 8 and larger drives.
Parameter descriptions begin on page 212.

File	Group	Parameters							
Inverter Common	System Ratings	Sys Rated Amps	1	11 Rated Amps	3	13 Rated Amps	5		
		Sys Rated Volts	2	12 Rated Amps	4				
	Status	Online Status	10	Fault Status	12	Alarm Status	13		
	Metering	Ground Current	18	Recfg Acknowledg	20	Effctv I Rating	21		
	Testpoints	Testpoint Sel 1	30	Testpoint Val 1	31	Testpoint Sel 2	32	Testpoint Val 2	33

Inverter \boldsymbol{n} (Port 10)

Inverter n parameters are only used by PowerFlex 755 Frame 8 and larger drives.
Parameter descriptions begin on page 214.

File	Group	Parameters					
Inverter n	Status	11 Fault Status	105	12 Fault Status	205	13 Fault Status	305
		11 Alarm Status	107	12 Alarm Status	207	13 Alarm Status	307
	Metering	11 U Phase Curr	115	12 U Phase Curr	215	13 U Phase Curr	315
		11.1 Phase Curr	116	12 V Phase Curr	216	132 V Phase Curr	316
		11 W Phase Curr	117	12 W Phase Curr	217	13 W Phase Curr	317
		11 Gnd Current	118	12 Gnd Current	218	13 Gnd Current	318
		11 DC Bus Volt	119	12 DC Bus Volt	219	13 DC Bus Volt	319
		11 Heatsink Temp	120	12 Heatsink Temp	220	13 Heatsink Temp	320
		11 IGBT Temp	121	12 IGBT Temp	221	13 IGBT Temp	321
		11 HSFan Speed	124	12 HSFan Speed	224	13 HSFan Speed	324
		11 InFan 1 Speed	125	12 InFan 1 Speed	225	13 InFan 1 Speed	325
		11 InFan 2 Speed	126	$12 \ln$ Fan 2 Speed	226	13 InFan 2 Speed	326
	Predictive Main	11 PredMainReset	127	12 PredMainReset	227	13 PredMainReset	327
		11 HSFanElpsdlif	128	12 HSFanElpsdLif	228	13 HSFanElpsdLif	328
		11 InFanElpsdLif	129	12 InFanElpsdLif	229	13 InFanElpsdLif	329
	Testpoints	11 Testpt Sel 1	140	12 Testpt Sel 1	240	13 Testpt Sel 1	340
		11 Testpt Val 1	141	12 Testpt Val 1	241	13 Testpt Val 1	341
		11 Testpt Sel 2	142	12 Testpt Sel 2	242	13 Testpt Sel 2	342
		11 Testpt Val 2	143	12 Testpt Val 2	243	13 Testpt Val 2	343

Converter Common (Port 11)

Converter Common parameters are only used by AC input PowerFlex 755 Frame 8 and larger drives.
Parameter descriptions begin on page 217.

File	Group	Parameters						
Converter Common	System Ratings	Sys Rated Amps	1	C1 Rated Amps	3	C3 Rated Amps	5	
		Sys Rated Volts	2	C2 Rated Amps	4		13	

Converter n (Port 11)

Converter n parameters are only used by AC input PowerFlex 755 Frame 8 and larger drives.
Parameter descriptions begin on page 220.

File Converter n	$\begin{aligned} & \hline \text { Group } \\ & \hline \text { Status } \end{aligned}$	Parameters					
		C1 Fault Status 1	105	C2 Fault Status 1	205	C3 Fault Status 1	305
Temptran		C1 Fault Status2	106	C2Fault Status2	206	C3 Fault Status2	306
		C1 Alarm Status1	107	C2 Alarm Status1	207	C3 Alarm Status1	307
	Metering	C1 L1 Phase Curr	115	C2L1 Phase Curr	215	C3L1 Phase Curr	315
		C1 L2 Phase Curr	116	C2 L2 Phase Curr	216	C3 L2 Phase Curr	316
		C1 L3 Phase Curr	117	C2 L3 Phase Curr	217	C3 L3 Phase Curr	317
		C1 Gnd Current	118	C2 Gnd Current	218	C3 Gnd Current	318
		C1 DC Bus Volt	119	C2 DC Bus Volt	219	C3 DC Bus Volt	319
		C1 Heatsink Temp	120	C2 Heatsink Temp	220	C3 Heatsink Temp	320
		C1 SCR Temp	121	C2 SCR Temp	221	C3 SCR Temp	321
		C1 GateBoardTemp	122	C2 GateBoardTemp	222	C3 GateBoardTemp	322
		C1 ACLine Freq	123	C2 AC Line Freq	223	C3 AC Line Freq	323
		C1 L12 Line Volt	125	C2 L12 Line Volt	225	C3 L12 Line Volt	325
		C1 L23 Line Volt	126	C2 L23 Line Volt	226	C3 L23 Line Volt	326
		C1 L31 Line Volt	127	C2 L31 Line Volt	227	C3 L31 Line Volt	327
	Predictive Main	C1 PredMainReset	137	C2 PredMainReset	237	C3 PredMainReset	337
		C1 CbFanElpsdLif	138	C2 CbFanElpsdLif	238	C3 CbFanElpsdlif	338
	Testpoints	C1 Testpt Sel 1	140	C2 Testpt Sel 1	240	C3 Testpt Sel 1	340
		C1 Testpt Val 1	141	C2 Testpt Val 1	241	C3 Testpt Val 1	341
		C1 Testpt Sel 2	142	C2 Testpt Sel 2	242	C3 Testpt Sel 2	342
		C1 Testpt Val 2	143	C2 Testpt Val 2	243	C3Testpt Val 2	343

Precharge Common (Port 11)

Precharge Common parameters are only used by DC input PowerFlex 755 Frame 8 and larger drives.
Parameter descriptions begin on page 223.

File	Group	Parameters							
Precharge Common	System Ratings	Sys Rated Amps	1	P1 Rated Amps	3	P3 Rated Amps	5		
		Sys Rated Volts	2	P2 Rated Amps	4				
riatareman	Status	Online Status	10	Fault Status	12	Alarm Status	13		
	Metering	Gate Board Temp	25	Main DC Bus Volt	18				
	Testpoints	Testpoint Sel 1	30	Testpoint Val 1	31	Testpoint Sel 2	32	Testpoint Val 2	33

Precharge \boldsymbol{n} (Port 11)

Precharge n parameters are only used by DC input PowerFlex 755 Frame 8 and larger drives.
Parameter descriptions begin on page 225.

File	Group	Parameters					
Precharge n	Status	P1 Board Status	104	P2 Board Status	204	P3 Board Status	304
-		P1 Fault Status 1	105	P2 Fault Status1	205	P3 Fault Status1	305
		P1 Fault Status2	106	P2 Fault Status2	206	P3 Fault Status2	306
		P1 Alarm Status1	107	P2 Alarm Status1	207	P3 Alarm Status1	307
	Metering	P1 DC Bus Volts	110	P2 DC Bus Volts	210	P3 DC Bus Volts	310
		P1 Main DC Volts	111	P2 Main DC Volts	211	P3 Main DC Volts	311
		P1 240VSplyVolts	112	P2 240VSplyVolts	212	P3 240VSplyVolts	312
		P1 GateBoardTemp	122	P2 GateBoardTemp	222	P3 GateBoardTemp	322
	Predictive Main	P1 PredMainReset	137	P2 PredMainReset	237	P3 PredMainReset	337
		P1 CbFanElpsdLif	138	P2 CbFanElpsdLif	238	P3 CbFanElpsdLif	338
	Testpoints	P1 Testpt Sel 1	140	P2 Testpt Sel 1	240	P3 Testpt Sel 1	340
		P1 Testpt Val 1	141	P2 Testpt Val 1	241	P3 Testpt Val 1	341
		P1 Testpt Sel 2	142	P2 Testpt Sel 2	242	P3 Testpt Sel 2	342
		P1 Testpt Val 2	143	P2 Testpt Val 2	243	P3 Testpt Val 2	343

Embedded EtherNet/IP (Port 13)

Parameter descriptions begin on page 230.

File	Group	Parameters							
Embedded EtherNet//P Host Groups	N/A	DL From Net 01	1	Port Number	33	Flt Cfg DL 01	60	DLs Fr Peer Cfg	76
		DL From Net 02	2	DLs From Net Act	34	Flt Cfg DL 02	61	DLs Fr Peer Act	77
		DL From Net 03	3	DLs To Net Act	35	Flt Cfg DL 03	62	Logic Src Cfg	78
		DL From Net 04	4	B00TP	36	Flt Cfg DL 04	63	Ref Src Cfg	79
		DL From Net 05	5	Net Addr Src	37	Flt Cfg DL 05	64	Fr Peer Timeout	80
		DL From Net 06	6	IP Addr Cfg 1	38	Flt Cfg DL 06	65	Fr Peer Addr 1	81
		DL From Net 07	7	IP Addr Cfg 2	39	Flt Cfg DL 07	66	Fr Peer Addr 2	82
		DL From Net 08	8	IP Addr Cfg 3	40	Flt Cfg DL 08	67	Fr Peer Addr 3	83
		DL From Net 09	9	IP Addr Cfg 4	41	Flt Cfg DL 09	68	Fr Peer Addr 4	84
		DL From Net 10	10	Subnet Cfg 1	42	Flt Cfg DL 10	69	Fr Peer Enable	85
		DL From Net 11	11	Subnet Cfg 2	43	Flt Cfg DL 11	70	Fr Peer Status	86
		DL From Net 12	12	Subnet Cfg 3	44	Flt Cfg DL 12	71	DLs To Peer Cfg	87
		DL From Net 13	13	Subnet Cfg 4	45	Flt Cfg DL 13	72	DLs To Peer Act	88
		DL From Net 14	14	Gateway Cfg 1	46	Flt Cfg DL 14	73	To Peer Period	89
		DL From Net 15	15	Gateway Cfg 2	47	Flt Cfg DL 15	74	To Peer Skip	90
		DL From Net 16	16	Gateway Cfg 3	48	Flt Cfg DL 16	75	To Peer Enable	91
		DL To Net 01	17	Gateway Cfg 4	49				
		DL To Net 02	18	Net Rate Cfg	50				
		DL To Net 03	19	Net Rate Act	51				
		DL To Net 04	20	Web Enable	52				
		DL To Net 05	21	Web Features	53				
		DL To Net 06	22	Comm Flt Action	54				
		DL To Net 07	23	Idle Flt Action	55				
		DL To Net 08	24	Peer Flt Action	56				
		DL To Net 09	25	Msg Flt Action	57				
		DL To Net 10	26	Flt Cfg Logic	58				
		DL To Net 11	27	Flt Cfg Ref	59				
		DL To Net 12	28						
		DL To Net 13	29						
		DL To Net 14	30						
		DL To Net 15	31						
		DL To Net 16	32						

Embedded DeviceLogix (Port 14)

Embedded DeviceLogix parameters are only used by PowerFlex 755 drives.
Parameter descriptions begin on page 239.

File	Group	Parameters							
Embedded DeviceLogix Host Groups	Analog Outputs	DLX Out 01	1	DLX Out 05	5	DLX Out 09	9	DLX Out 13	13
		DLX Out 02	2	DLX Out 06	6	DLX Out 10	10	DLX Out 14	14
		DLX Out 03	3	DLX Out 07	7	DLX Out 11	11	DLX Out 15	15
		DLX Out 04	4	DLX Out 08	8	DLX Out 12	12	DLX Out 16	16
	Analog Inputs	DLX In 01	17	DLX $\ln 05$	21	DLXIn 09	25	DLXIn 13	29
		DLXIn 02	18	DLXIn 06	22	DLXIn 10	26	DLXIn 14	30
		DLX $\ln 03$	19	DLX $\ln 07$	23	DLXIn 11	27	DLXIn 15	31
		DLXIn 04	20	DLX $\ln 08$	24	DLXIn 12	28	DLXIn 16	32
	Digital Inputs	DLX DIP 01	33	DLX DIP 05	37	DLX DIP 09	41	DLX DIP 13	45
		DLX DIP 02	34	DLX DIP 06	38	DLX DIP 10	42	DLX DIP 14	46
		DLX DIP 03	35	DLX DIP 07	39	DLX DIP 11	43	DLX DIP 15	47
		DLX DIP 04	36	DLX DIP 08	40	DLX DIP 12	44	DLX DIP 16	48
	Status \& Cntl	DLX Digln Sts	49	DLX DigOut Sts	50	DLX Prog Cond	52	DLX Operation	53
				DLX DigOut Sts2	51				
	Internal Regs	DLX Real SP1	54	DLX DINT SP1	70	DLX Real InSP1	82	DLX DINT InSP1	98
		DLX Real SP2	55	DLX DINT SP2	71	DLX Real InSP2	83	DLX DINT InSP2	99
		DLX Real SP3	56	DLX DINT SP3	72	DLX Real InSP3	84	DLX DINT InSP3	100
		DLX Real SP4	57	DLX DINT SP4	73	DLX Real InSP4	85	DLX DINT InSP4	101
		DLX Real SP5	58	DLX DINT SP5	74	DLX Real InSP5	86	DLX DINT OutSP1	102
		DLX Real SP6	59	DLX DINT SP6	75	DLX Real InSP6	87	DLX DINT OutSP2	103
		DLX Real SP7	60	DLX DINT SP7	76	DLX Real InSP7	88	DLX DINT OutSP3	104
		DLX Real SP8	61	DLX DINT SP8	77	DLX Real InSP8	89	DLX DINT OutSP4	105
		DLX Real SP9	62	DLX Bool SP1	78	DLX Real OutSP1	90		
		DLX Real SP10	63	DLX Bool SP2	79	DLX Real OutSP2	91		
		DLX Real SP11	64	DLX Bool SP3	80	DLX Real OutSP3	92		
		DLX Real SP12	65	DLX Bool SP4	81	DLX Real OutSP4	93		
		DLX Real SP13	66			DLX Real OutSP5	94		
		DLX Real SP14	67			DLX Real OutSP6	95		
		DLX Real SP15	68			DLX Real OutSP7	96		
		DLX Real SP16	69			DLX Real OutSP8	97		

How Option Module Parameters are Organized

Option module parameters are only available when that option is installed in a host drive. To view and edit option module parameters, select the port number of the device you want to access from the Status Screen.

11-Series I/O Modules

Parameter descriptions begin on page 242.

File	Group	Parameters							
11-Series I/0	Digital Inputs	Dig In Sts	1	Dig In Filt Mask	2	Dig In Filt	3		
Host Groups	Digital Outputs	Dig Out Sts	5	ROO Sel	10	R01 Sel	20	T01 Sel	30
- TI. Pilisco		Dig Out Invert	6	ROO Level Sel	11	T00 Sel	20	T01 Level Sel	31
		Dig Out Setpoint	7	ROO Level	12	R01 Level Sel	21	T01 Level	32
				ROO Level CmpSts	13	T00 Level Sel	21	T01 Level CmpSts	33
				ROO On Time	14	R01 Level	22	T01 On Time	34
				R00 Off Time	15	T00 Level	22	T01 Off Time	35
						R01 Level CmpSts	23		
						T00 Level CmpSts	23		
						R01 On Time	24		
						TOO On Time	24		
						R01 Off Time	25		
						T00 Off Time	25		
	Motor PTC	ATEX Sts	41						
	Analog Inputs	Anlg In Type	45	Anlg In0 Value	50				
		Anlg In Sqrt	46	Anlg InO Hi	51				
		Anlg In Loss Sts	47	Anlg In 0 Lo	52				
				Anlg In0 LssActn	53				
				Anlg In0 Raw Val	54				
				Anlg In0 Filt Gn	55				
				Anlg In0 Filt BW	56				
	Analog Outpts	Anlg Out Type	70	Anlg Out0 Sel	75				
		Anlg Out Abs	71	Anlg Out0 Stpt	76				
				Anlg Out0 Data	77				
				Anlg Out0 DataHi	78				
				Anlg Out0 Datalo	79				
				Anlg Out0 Hi	80				
				Anlg Out0 Lo	81				
				Anlg Out0 Val	82				
	Predictive Main	PredMaint Sts	99	ROO Load Type	100	R01 Load Type	110		
				R00 Load Amps	101	R01 Load Amps	111		
				ROO Totallife	102	R01 Totallife	112		
				R00 ElapsedLife	103	R01 ElapsedLife	113		
				R00 RemainLife	104	R01 RemainLife	114		
				R00 LifeEvntLvl	105	R01 LifeEvntLvI	115		
				ROO LifeEvntActn	106	R01 LifeEvntActn	116		

22-Series I/O Modules

Parameter descriptions begin on page 242.

File	Group	Parameters							
22-Series I/0	Digital Inputs	Dig In Sts	1	Dig In Filt Mask	2	Dig \ln Filt	3		
Host Groups	Digital Outputs	Dig Out Sts	5	ROO Sel	10	R01 Sel	20	T01 Sel	30
2स-5 ¢resio		Dig Out Invert	6	R00 Level Sel	11	T00 Sel	20	T01 Level Sel	31
		Dig Out Setpoint	7	R00 Level	12	R01 Level Sel	21	T01 Level	32
				ROO Level CmpSts	13	T00 Level Sel	21	T01 Level CmpSts	33
				R00 On Time	14	R01 Level	22	T01 On Time	34
				R00 Off Time	15	TOO Level	22	T01 Off Time	35
						R01 Level CmpSts	23		
						TOO Level CmpSts	23		
						R01 On Time	24		
						TOO On Time	24		
						R01 Off Time	25		
						T00 Off Time	25		
	Motor PTC	PTC Cfg	40	PTC Sts	41	PTC Raw Value	42		
	Analog Inputs	Anlg In Type	45	Anlg In0 Value	50	Anlg ln1 Value	60		
		Anlg In Sqrt	46	Anlg $\ln 0 \mathrm{Hi}$	51	Anlg $\ln 1 \mathrm{Hi}$	61		
		Anlg In Loss Sts	47	Anlg $\ln 0 \mathrm{Lo}$	52	Anlg $\ln 1 \mathrm{Lo}$	62		
				Anlg In0 LssActn	53	Anlg ln1 LssActn	63		
				Anlg In0 Raw Val	54	Anlg ln1 Raw Val	64		
				Anlg $\ln 0$ Filt Gn	55	Anlg ln 1 Filt Gn	65		
				Anlg In0 Filt BW	56	Anlg $\ln 1$ Filt BW	66		
	Analog Outpts	Anlg Out Type	70	Anlg Out0 Sel	75	Anlg Out1 Sel	85		
		Anlg Out Abs	71	Anlg Out0 Stpt	76	Anlg Out1 Stpt	86		
				Anlg Out0 Data	77	Anlg Out1 Data	87		
				Anlg Out0 DataHi	78	Anlg Out1 DataHi	88		
				Anlg Out0 DataLo	79	Anlg Out1 DataLo	89		
				Anlg Out0 Hi	80	Anlg Out1 Hi	90		
				Anlg Out0 Lo	81	Anlg Out1 Lo	91		
				Anlg Out0 Val	82	Anlg Out1 Val	92		
	Predictive Main	PredMaint Sts	99	R00 Load Type	100	R01 Load Type	110		
				R00 Load Amps	101	R01 Load Amps	111		
				R00 TotalLife	102	R01 TotalLife	112		
				R00 ElapsedLife	103	R01 ElapsedLife	113		
				R00 RemainLife	104	R01 RemainLife	114		
				R00 LifeEvntLvl	105	R01 LifeEvntLvl	115		
				ROO LifeEvntActn	106	R01 LifeEvntActn	116		

Single Incremental Encoder Module

Parameter descriptions begin on page 263.

File	Group	Parameters							
Single Incremental Encoder Host Groups	N/A	Encoder Cfg	1	Fdbk Loss Cfg	3	Encoder Status	5	Phase Loss Count	7
		Encoder PPR	2	Encoder Feedback	4	Error Status	6	Quad Loss Count	8
Smat ham meatil									

Dual Incremental Encoder Module

Parameter descriptions begin on page 266.

File	Group	Parameters							
Dual Incremental Encoder Host Groups	Encoder 0	Enc 0 Cfg	1	Enc 0 FB Lss Cfg	3	Enc 0 Sts	5	Enc 0 PhsLss Cnt	7
		Enc 0 PPR	2	Enc 0 FB	4	Enc 0 Error Sts	6	Enc 0 QuadlssCnt	8
	Encoder 1	Enc 1 Cfg	11	Enc 1 FB Lss Cfg	13	Enc 1 Sts	15	Enc 1 PhsLss Cnt	17
		Enc 1 PPR	12	Enc 1 FB	14	Enc 1 Error Sts	16	Enc 1 QuadlssCnt	18
	Homing Cfg	Homing Cfg	20						
\square	Module Status	Module Sts	21						

Universal Feedback Module

Parameter descriptions begin on page 271.

File	Group	Parameters							
Universal Feedback Host Groups	Module	Module Sts 1		1					
		Modul Err Reset 2		2					
	Feedback 0	FBO Position	5	FBO Cfg	8	FBO Inc Cfg	16	FBO SSI Turns	22
Travirata		FBO Device Sel	6	FBO Loss Cfg	9	FBO Inc Sts	17	FBO Lin CPR	25
		FBO Identify	7	FBO Sts	10	FBOSSICfg	20	FBO Lin Upd Rate	26
				FBO IncAndSC PPR	15	FBOSSI Resol	21	FBO LinStahl Sts	27
	Feedback 1	FB1 Position	35	FB1 ffg	38	FB1 Inc Cfg	46	FB1 SSI Turns	52
		FB1 Device Sel	36	FB1 Loss Cfg	39	FB1 Inc Sts	47	FB1 Lin CPR	55
		FB1 Identify	37	FB1 Sts	40	FB1 SSI Cfg	50	FB1 Lin Upd Rate	56
				FB1 IncAndSC PPR	45	FB1 SSI Resol	51	FB1 LinStahl Sts	57
	Encoder Out	Enc Out Sel	80	Enc Out FD PPR	82	Enc Out Z Offset	83		
		Enc Out Mode	81			Enc Out 2 PPR	84		
	Registration	Rgsn Arm	90	Rgsn Latch 1 Cfg	100	Rgsn Latch1 Psn	101	Rgsn Latch1 Time	102
		Rgsn In 0 Filter	91	Rgsn Latch2 2 fg	103	Rgsn Latch2 Psn	104	Rgsn Latch2 Time	105
		Rgsn $\ln 1$ Filter	92	Rgsn Latch 3 Cfg	106	Rgsn Latch3 Psn	107	Rgsn Latch3 Time	108
		Rgsn Hmln Filter	93	Rgsn Latch4 Cfg	109	Rgsn Latch4 Psn	110	Rgsn Latch4 Time	111
		Rgsn Sts	94	Rgsn Latch5 Cfg	112	Rgsn Latch5 Psn	113	Rgsn Latch5 Time	114
				Rgsn Latch6 Cfg	115	Rgsn Latch6 Psn	116	Rgsn Latch6 Time	117
				Rgsn Latch 7 Cfg	118	Rgsn Latch7 Psn	119	Rgsn Latch7 Time	120
				Rgsn Latch8 Cfg	121	Rgsn Latch8 Psn	122	Rgsn Latch8 Time	123
				Rgsn Latch9 Cfg	124	Rgsn Latch9 Psn	125	Rgsn Latch9 Time	126
				Rgsn Latch10 Cfg	127	Rgsn Latch10 Psn	128	Rgsn Latch10 Time	129

Safe Speed Monitor Module

Parameter descriptions begin on page 289.

File	Group	Parameters							
Safe Speed Monitor Host Groups	Security	Password	1	Reset Defaults	7	Password Command	17	Config Flt Code	70
		Lock State	5	Signature ID	10	Security Code	18		
		Operating Mode	6	New Password	13	Vendor Password	19		
	General	Cascaded Config	20	Reset Type	22	SS Out Mode	72		
		Safety Mode	21	OverSpd Response	24	SLS Out Mode	73		
	Feedback	Fbk Mode	27	Fbk 1 Type	28	Fbk 2 Units	34	Fbk Speed Ratio	39
				Fbk 1 Units	29	Fbk 2 Polarity	35	Fbk Speed Tol	40
				Fbk 1 Polarity	30	Fbk 2 Resolution	36	Fbk Pos Tol	41
				Fbk 1 Resolution	31	Fbk 2 Volt Mon	37	Direction Mon	42
				Fbk 1 Volt Mon	32	Fbk 2 Speed	38	Direction Tol	43
				Fbk 1 Speed	33				
	Stop	Safe Stop Input	44	Stop Mon Delay	46	Standstill Speed	48	Decel Ref Speed	50
		Safe Stop Type	45	Max Stop Time	47	Standstill Pos	49	Stop Decel Tol	51
	Limited Speed	Lim Speed Input	52	Enable SW Input	54	Safe Speed Limit	55	Speed Hysteresis	56
		LimSpd Mon Delay	53						
	Door Control	Door Out Type	57	DM Input	58	Lock Mon Enable	59	Door Out Mode	74
						Lock Mon Input	60		
	Max Speed	Max Speed Enable	61	Max Spd Stop Typ	63	Safe Accel Limit	65		
		Safe Max Speed	62	Max Accel Enable	64	Max Acc Stop Typ	66		
	Faults	Fault Status	67	Config Flt Code	70	SS Out Mode	72		
		Guard Status	68			SLS Out Mode	73		
		10 Diag Status	69			Door Out Mode	74		

Drive Port 0 Parameters

This chapter lists and describes the PowerFlex 750-Series Port 0 drive parameters. The parameters can be programmed (viewed/edited) using a Human Interface Module (HIM). Refer to Enhanced PowerFlex 7-Class Human Interface Module (HIM) User Manual, publication 20HIM-UM001, for information on using the HIM to view and edit parameters. As an alternative, programming can also be performed using DriveTools" software and a personal computer.

Parameter File	Page
Drive (Port 0) Monitor File	48
Drive (Port 0) Motor Control File	50
Drive (Port 0) Feedback \& // File	64
Drive (Port 0) Cfg File	80
Drive (Port 0) Protection File	95
Drive (Port 0) Speed Control File	108
Drive (Port 0) Torque Control File	123
Drive (Port 0) Position Control File	130
Drive (Port 0) Communication File	145
Drive (Port 0) Diagnostics File	152
Drive (Port 0) Applications File	171

Drive (Port 0) Monitor File

$\stackrel{\text { 준 }}{ }$	은	No.	Display Name Full Name Description	Values			
$\begin{aligned} & \text { 을 } \\ & \text { 을 } \end{aligned}$		14	Elapsed kWH Elapsed Kilowatt Hour Accumulated output energy of the drive. Use P336 [Reset Meters] to reset this parameter.	Units: Default: Min/Max:	kWh 0.000 $0.000 / 4294967296.000$	R0	Real
		15	Elapsed Run Time Elapsed Run Time Accumulated time drive is outputting power. Use P336 [Reset Meters] to reset this parameter.	Units: Default: Min/Max:	Hrs 0.000 $0.000 / 220000000.000$	R0	Real
		16	Elpsd Mtr MWHrs Elapsed Motor Megawatt Hours Accumulated output energy to the motor.	Units: Default: Min/Max:	MWh 0.0 $0.0 / 220000000.0$	R0	Real
		17	Elpsd Rgn MWHrs Elapsed Regenerated Motor Megawatt Hours Accumulated input energy from the motor.	Units: Default: Min/Max	MWh 0.0 $0.0 / 220000000.0$	R0	Real
		18	Elpsd Mtr kWHrs Elapsed Motor Kilowatt Hours Accumulated output energy to the motor.	Units: Default: Min/Max:	kWh 0.0000 $0.0000 / 220000000.0000$	R0	Real
		19	Elpsd Rgn kWHrs Elapsed Regenerated Motor Kilowatt Hours Accumulated input energy from the motor.	Units: Default: Min/Max:	kWh 0.0000 $0.0000 / 220000000.0000$	R0	Real

$\stackrel{\text { ² }}{\text { ¢ }}$	言	No.	Display Name Full Name Description	Values		\|l	
$\begin{aligned} & \text { 을 } \\ & \text { 을 } \end{aligned}$		20	Rated Volts Rated Voltage Input voltage class ($208,240,400$ etc.) of the drive. This value may change depending on the setting of parameters 305 [Voltage Class] or 306 [Duty Rating].	Units: Default: Min/Max:	VAC Based on Drive Rating 0.00/690.00	R0	Real
		21	Rated Amps Rated Amperage Continuous current rating of drive. This value may change depending on the setting of parameters 305 [Voltage Class] or 306 [Duty Rating].	Units: Default: Min/Max:	Amps Based on Drive Rating 0.00 / Dependent on Frame Rating	R0	Real
		22	Rated kW Rated Kilowatts Continuous power rating of drive.	Units: Default: Min/Max:	kW Based on Drive Rating 0.00 / Dependent on Frame Rating	R0	Real

Drive (Port 0) Motor Control

File

쁯	은	No.	Display Name Full Name Description	Values			$\begin{gathered} \stackrel{y}{\beth} \\ \underset{\sim}{\leftrightarrows} \\ \underset{\sim}{0} \end{gathered}$
연 릉 응 2		25 \square	Motor NP Volts Motor Nameplate Volts Rated volts shown on the motor nameplate.	Units: Default: Min/Max:	VAC Based on Drive Rating and Voltage Class $0.10 \times$ P25 [Motor NP Volts] / Based on Drive Rating and Voltage Class	RW	Real
		26	Motor NP Amps Motor Nameplate Amps Rated full load amps shown on the motor nameplate.	Units: Default: Min/Max:	Amps Based on Drive Rating $0.01 \times$ P21 [Rated Amps] / 14200.00	RW	Real
		27	Motor NP Hertz Motor Nameplate Hertz Rated frequency shown on the motor nameplate.	Units: Default: Min/Max:	$\begin{array}{\|l\|} \hline \text { Hz } \\ \text { Based on Drive Rating } \\ 2.00 / 650.00 \end{array}$	RW	Real
		28	Motor NP RPM Motor Nameplate Revolutions Per Minute Rated RPM shown on the motor nameplate. Note: The value of this parameter must reflect the slip speed of the motor. For example, for a $60 \mathrm{~Hz}, 4$ pole motor, a value of 1800 is synchronous speed, and 1750 is slip speed.	Units: Default: Min/Max:	RPM Based on Drive Rating $1.0 / 40000.0$	RW	Real
		29 \mathscr{H}	Mtr NP Pwr Units Motor Nameplate Power Units Power units shown on the motor nameplate.	Default: Options:	Based on Drive Rating $\begin{aligned} & 0-\mathrm{HP} \\ & 1-\mathrm{kW} \end{aligned}$	RW	32-bit Integer
		30 \square	Motor NP Power Motor Nameplate Power Rated power shown on the motor nameplate.	Units: Default: Min/Max:	$\begin{aligned} & \text { HP (P29 = 0) } \\ & \text { kW (P29 = 1) } \\ & \text { Based on Drive Rating } \\ & 0.01 / 2000.00 \end{aligned}$	RW	Real
		31	Motor Poles Motor Poles Number of poles in the motor. $\text { Poles }=\frac{120 \times[\text { Motor NP Hertz] }}{[\text { Motor NP RPM }]}$	Units: Default: Min/Max:	$\begin{aligned} & \text { Pole } \\ & 4 \\ & 2 / 200 \end{aligned}$	RW	32-bit Integer

| | | No.
 Display Name
 Full Name
 Description | Values | |
| :--- | :--- | :--- | :--- | :--- | :--- |

츺	릉	No.	Display Name Full Name Description	Values			$$
$\begin{aligned} & \text { 훌 } \\ & \text { 응 } \\ & \text { 응 } \end{aligned}$		1659	IPM Tran Angle IPM Transition Angle Difference Threshold between High and Low angle control to allow transition. Note: This parameter is not used by Frame 8 drives and larger.	Units: Default: Min/Max:	Cnts 100.0 $5.0 / 500.0$	RW	Real
		1660	IPM Stc OfsTst K IPM Static Offset Test Constant Reduction factor for Static Offset test pulses. Note: This parameter is not used by Frame 8 drives and larger.	Default: Min/Max:	$\begin{aligned} & 1.00 \\ & 0.10 / 9.00 \end{aligned}$	RW	Real
		$\begin{array}{r} 1661 \\ \hline \end{array}$	IPM Lq Cmd BW IPM Lq Command Bandwidth IqFddk Filter Bandwidth (BW) used to select the Active Lq for the IPM control. Note: This parameter is not used by Frame 8 drives and larger.	Units: Default: Min/Max:	R/S 10.0 1.0/999.9	RW	Real

흘	은	No.	Display Name Full Name Description	Values			
은 8 0 0 0 0		70	Autotune Autotune Provides a manual or automatic method for setting P73 [IR Voltage Drop], P74 [Ixo Voltage Drop] and P75 [Flux Current Ref]. Valid only when parameter P35 [Motor Ctrl Mode] is set to 1 "Induction SV", 2 "Induct Econ", or 3 "Induction FV." Ready (0) - Parameter returns to this setting following a "Static Tune" or "Rotate Tune", at which time another start transition is required to operate the drive in normal mode. It also permits manually setting P73 [IR Voltage Drop], P74 [Ixo Voltage Drop] and P75 [Flux Current Ref]. Calculate (1) - Uses motor nameplate data to automatically set P73 [IR Voltage Drop], P74 [lxo Voltage Drop], P75 [Flux Current Ref] and P621 [Slip RPM at FLA]. Static Tune (2) - A temporary command that initiates a non-rotational motor stator resistance test for the best possible automatic setting of P73 [IR Voltage Drop] in all valid modes and a non-rotational motor leakage inductance test for the best possible automatic setting of P74 [lxo Voltage Drop] in a Flux Vector (FV) mode. A start command is required following initiation of this setting. Used when motor cannot be rotated. Rotate Tune (3) - A temporary command that initiates a "Static Tune" followed by a rotational test for the best possible automatic setting of P75 [Flux Current Ref]. In Flux Vector (FV) mode, with encoder feedback, a test for the best possible automatic setting of P621 [Slip RPM at FLA] is also run. A start command is required following initiation of this setting. Important: If using rotate tune for a Sensorless Vector (SV) mode, the motor should be uncoupled from the load or results may not be valid. With a Flux Vector (FV) mode, either a coupled or uncoupled load will produce valid results. ATTENTION: Rotation of the motor in an undesired direction can occur during this procedure. To guard against possible injury and/or equipment damage, it is recommended that the motor be disconnected from the load before proceeding. Inertia Tune (4) - A temporary command that initiates an inertia test of the motor/load combination. The motor will ramp up and down while the drive measures the amount of inertia. This option only applies to FV modes selected in P35 [Motor Ctrl Mode]. Final test results should be obtained with load coupled to the motor.	Default: Options:	1-Calculate 0 - Ready 1-Calculate 2 - Static Tune 3 - Rotate Tune 4 - Inertia Tune	RW	32-bit Integer
		71 \qquad	Autotune Torque Autotune Torque The motor torque applied to the motor during the flux current and inertia tests.	Units: Default: Min/Max:	$\begin{array}{\|l\|} \hline \% \\ 50.00 \\ 0.00 / 200.00 \end{array}$	RW	Real
		73	IR Voltage Drop IR Voltage Drop Value of voltage drop across the resistance of the motor stator at rated motor current. Used only when P35 [Motor Ctrl Mode] is set to 1 "Induction SV", 2 "Induct Econ", or 3 "Induction FV." This parameter cannot be changed unless P70 [Autotune] is set to 0 "Ready."	Units: Default: Min/Max:	Volt Based on Drive Rating 0.00 / Based on Drive Rating and Voltage Class	RW	Real
		74	Ixo Voltage Drop Ixo Voltage Drop Value of voltage drop across the leakage inductance of the motor at rated motor current. Used only when P35 [Motor Ctrl Mode] is set to 3 "Induction FV." This parameter cannot be changed unless P70 [Autotune] is set to 0 "Ready."	Units: Default: Min/Max:	V AC Based on Drive Rating and Voltage Class 0.00 / P25 [Motor NP Volts]	RW	Real
		75	Flux Current Ref Flux Current Reference Value of amps for full motor flux. This parameter cannot be changed unless P70 [Autotune] is set to 0 "Ready."	Units: Default: Min/Max:	Amps P21 [Rated Amps] x 0.35 0.00 / P21 [Rated Amps] x 0.995	RW	Real
		76	Total Inertia Total Inertia Time in seconds for a motor coupled to a load to accelerate from zero to base speed at rated motor torque. Calculated during auto-tune. Only use this parameter when P35 [Motor Ctrl Mode] is set to 3 "Induction FV."	Units: Default: Min/Max:	$\begin{aligned} & \text { Secs } \\ & 2.00 \\ & 0.01 / 600.00 \end{aligned}$	RW	Real

은	을	No.	Display Name Full Name Description	Values			
을 응 응 2	Vector Regulator	106	Trq Adapt Speed Torque Adaption Speed Operating frequency (speed) at which the adaptive torque control regulators become active as a percent of motor nameplate frequency. As frequency (speed) increases, the torque adapter turns on at a value that is 10% higher than the value set in this parameter. However, as frequency (speed) decreases, the torque adapter turns off at the value set in this parameter. For example: If this parameter is set to 10.00 , as the frequency (speed) increases, the adapter turns on when the value of this parameter reaches 20.00 . As the frequency (speed) decreases, the adapter turns off when the value of this parameter reaches 10.00 . This selection is active only in motor control mode flux vector induction (P35 [Motor Ctrl Mode] $=3$ "Induction FV").	Units: Default: Min/Max:	$\begin{aligned} & \hline \% \\ & 10.00 \\ & 0.00 / 100.00 \end{aligned}$	RW	Real
		107	Trq Adapt En Torque Adaption Enable Enables or disables the adaptive torque control. This selection is active only in motor control mode flux vector induction (P35 [Motor Ctrl Mode] = 3 "Induction FV").	Default: Options:	$\begin{aligned} & 1 \text { - Enabled } \\ & 0 \text { - Disabled } \\ & 1 \text { - Enabled } \end{aligned}$	RW	32-bit Integer
		108	Phase Delay Comp Phase Delay Compensation Used to adjust the sample delay compensation gain for the current feedback. The gain compensation is scaled to the sample time (for example, +1.0 would be a compensation of positive 1 sample time).	Default: Min/Max:	$\begin{aligned} & 0.00 \\ & -/+100.00 \end{aligned}$	RW	Real
		109	Trq Comp Mode Torque Compensation Mode Automatic: Updates the torque compensation gains (P110 [Trq Comp Mtring] and P111 [Torque Comp Regen]) after autotune.	Default: Options:	$\begin{aligned} & 1 \text { - Auto } \\ & 0 \text { - Manual } \\ & 1 \text { - Auto } \end{aligned}$	RW	32-bit Integer
		110	Trq Comp Mtring Torque Compensation Motoring Motor torque compensation applied to the torque command for motoring power. This parameter can be set manually or determined automatically during autotune. (See P109 [Trq Comp Mode].) In manual mode, a value of 5% will increase the commanded torque by 5% (gain of 1.05). This is used for flux vector motor control mode (P35 [Motor Ctrl Mode] $=3$ "Induction FV").	Units: Default: Min/Max:	$\begin{array}{\|l} \hline \% \\ 0.00 \\ -/+50.00 \end{array}$	RW	Real
		111	Trq Comp Regen Torque Compensation Regeneration Motor torque compensation applied to the torque command for regenerating torque. This parameter can be set manually or determined automatically during autotune. (See P109 [Trq Comp Mode].) In manual mode, a value of -3\% will decrease the commanded torque by 3\% (gain of 0.97). This is used for flux vector motor control modes (P35 [Motor (trl Mode]).	Units: Default: Min/Max:	$\begin{aligned} & \% \\ & 0.00 \\ & -/+50.00 \end{aligned}$	RW	Real
		112	Slip Adapt Iqs Slip Adaption Iqs Level of per unit lqs at which the adaptive slip frequency regulator becomes active. Active when P35 [Motor Ctrl Mode] = 3 "Induction FV."	Default: Min/Max:	$\begin{aligned} & 0.05 \\ & 0.00 / 1.00 \end{aligned}$	RW	Real
		113	SFAdapt SlewLmt Slip and Flux Adaption Slew Limit Time that the slip, flux, and torque regulators are allowed to converge before the regulators are turned on after the motor speed reaches the level set in P106 [Trq Adapt Speed]. Active when P35 [Motor Ctrl Mode] = 3 "Induction FV."	Units: Default: Min/Max:	$\begin{aligned} & \text { Secs } \\ & 0.00 \\ & 0.00 / 60.00 \end{aligned}$	RW	Real
		114	SFAdapt SlewRate Slip and Flux Adaption Slew Rate Rate that the slip and flux regulators can converge before the regulators are enabled. Active when P35 [Motor Ctrl Mode] = 3 "Induction FV."	Default: Min/Max:	$\begin{array}{\|l\|} \hline 0.005 \\ 0.00001 / 1.000000 \end{array}$	RW	Real
		115	SFAdapt CnvrgLvl Slip and Flux Adaption Converge Level Slip and flux regulator error level that indicates convergence. Active when P35 [Motor Ctrl Mode] = 3 "Induction FV."	Default: Min/Max:	$\begin{aligned} & 0.01 \\ & 0.00001 / 1.000000 \end{aligned}$	RW	Real

Drive (Port 0) Feedback \& $1 / 0$
File

	$\begin{aligned} & \text { 을 } \\ & \text { 은 } \end{aligned}$	No.	Display Name Full Name Description	Values		\|l	
	픔읗푼	$\begin{array}{\|c} 125 \\ \leftrightarrows \end{array}$	Pri Vel Fdbk Sel Primary Velocity Feedback Select Selects the source of the P3 [Mtr Vel Fdbk] and P131 [Active Vel Fdbk] that will be used when the drive is in operation without an Automatic Tach Switchover. Possible selections include: Port 0 - Open Loop Fdbk, Port 0 - Simulator Fdbk, and any Port that contains a feedback module (for example, Encoder). The Disabled and Open Loop Fdbk selections are functionally equivalent, with Open Loop being the default setting. Open Loop velocity feedback is estimated based on P1 [Output Frequency] and P5 [Torque Cur Fdbk], adjusted using P621 [Slip RPM at FLA]. Simulator Fdbk is available in the Flux Vector selections for P35 [Motor Ctrl Mode]. Simulator velocity feedback is calculated based on P690 [Limited Trq Ref] and P76 [Total Inertia]. This selection is useful for drive operational checkout and test when motor movement is undesired. In simulation mode, gating of the power inverter section of the drive is disabled. Selection of any option module port that contains an encoder module results in P3 [Mtr Vel Fdbk] based on a measured value. Data obtained from the selected feedback module will be used to determine motor velocity feedback. Primary feedback refers to the Automatic Feedback Loss Switchover option. This option will automatically switch from the primary to the alternate feedback source upon loss of the primary feedback source. If this option is not being used, then the primary feedback will always be the active feedback source. The active feedback source is typically the primary feedback.	Default: Min/Max:	$\begin{aligned} & \hline 137 \\ & 1 / 159999 \end{aligned}$	RW	32-bit Integer
FEEDBACK \& I/O		126	Pri Vel FdbkFItr Primary Velocity Feedback Filter Adjusts a filter setting that is applied to the motor velocity feedback source that is selected by P125 [Pri Vel Fdbk Sel]. The purpose of this filter is to reduce the level of noise in the feedback signal. Make a selection for a value that is higher than the value in parameter 636 [Speed Reg BW]. This is moving average type filter that has a delay setting of N, where N is an integer number ($0,1,2 \ldots$). A setting of zero provides no filtering and no delay. Larger values of N result in more filtering and more delay. The best setting for this filter depends on the level of noise in the feedback signal and the bandwidth setting of the velocity regulator. In the Flux Vector selections for P35 [Motor Ctrl Mode], setting P636 [Speed Reg BW] to a non-zero setting places the drive in an automatic gain/filter adjustment mode. When the drive is in this automatic adjustment mode, the value of P666 [Speed Comp Gain] and possibly P644 [Spd Err Fltr BW] are adjusted, based on the setting of P126 [Pri Vel FdbkFItr]. The automatic setting of P644 [Spd Err Fltr BW] becomes independent of the feedback filter setting when P704 [InAdp LdObs Mode] is set to 1 "InertiaAdapt."	Default: Options:	$\begin{aligned} & 3-50 \mathrm{R} / \mathrm{S} \text { Noise } \\ & 0-190 R / S \text { Noise } \\ & 1-160 \mathrm{R} / \mathrm{SNoise} \\ & 2-100 \mathrm{R} / \mathrm{SNoise} \\ & 3-50 \mathrm{R} / \mathrm{S} \text { Noise } \\ & 4-25 R / S \text { Noise } \\ & 5-12 R / S \text { Noise } \\ & 6-6 R / \text { Noise } \\ & 7-3 R / \text { S Noise } \end{aligned}$	RW	$\begin{aligned} & \text { 32-bit } \\ & \text { Integer } \end{aligned}$
		127	Pri Vel Feedback Primary Velocity Feedback Output of the Primary Velocity Feedback Delay filter, in units of Hz or RPM, depending on the value of P300 [Speed Units]. Adjustment of the delay filter is made using P126 [Pri Vel FdbkFItr]. The Primary Velocity Feedback is used when the drive is operating without an Automatic Tach Switchover.	Units: Default: Min/Max:	$\begin{aligned} & \text { Hz } \\ & \text { RPM } \\ & 0.00 \\ & -/+ \text { P27 [Motor NP Hertz] } \\ & -/+ \text { P28 [Motor NP RPM] x } 8 \end{aligned}$	RO	Real
		$\begin{gathered} 128 \\ \leftrightarrows \end{gathered}$	Alt Vel Fdbk Sel Alternate Velocity Feedback Select Selects the source of the P3 [Mtr Vel Fdbk] and P131 [Active Vel Fdbk] to be used when the drive is in operation with an Automatic Tach Switchover. See P635 [Spd Options Ctrl], bit 7 "Auto Tach SW." Alternate feedback refers to the Automatic Feedback Loss Switchover option. This option will automatically switch from the primary to the alternate feedback source upon loss of the primary feedback source. If this option is not being used, then the primary feedback will always be the active feedback source. The active feedback source is typically the primary feedback.	Default: Min/Max:	$\begin{aligned} & 137 \\ & 1 / 159999 \end{aligned}$	RW	32-bit Integer

츺	응	No.	Display Name Full Name Description	Values			$\begin{aligned} & \stackrel{\rightharpoonup}{20} \\ & \stackrel{\rightharpoonup}{\lambda} \\ & \stackrel{y}{0} \\ & \stackrel{0}{0} \end{aligned}$
		150	Digital In Cfg Digital Input Configure Defines operation for DI Run type parameters. Run Edge (0) - Control function requires a rising edge (open to close transition) in order for the drive to run. Run Level (1) - Provides a run level input. Does not require a transition for enable or fault, but a transition is required for a stop. When set to 1 "Run Level" the absence of a run command is indicated as a stop asserted and parameter 935 [Drive Status 1] Bit 0 will be low.	Default: Options:	$\begin{aligned} & 0-\text { Run Edge } \\ & 0-\text { Run Edge } \\ & 1 \text { - Run Level } \end{aligned}$	RW	32-bit Integer

!
ATTENTION: Equipment damage and/or personal injury may result if this parameter is used in an inappropriate application. Do not use this function without considering applicable local, national and international codes, standards, regulations, or industry guidelines.

$\stackrel{\otimes}{i}$	$\begin{aligned} & \text { O} \\ & \frac{2}{3} \\ & \hline \end{aligned}$	No.	Display Name Full Name Description	Values			
		$\begin{gathered} 198 \\ \square \\ \leftrightarrows \end{gathered}$	DI Rev End Limit Digital Input Reverse End Limit Assigns a digital input used to trigger a Reverse End Limit. The resulting action depends on whether the drive is operating as a speed, torque or position regulator. The mode of operation is indicated by parameter 935 [Drive Status 1] Bit 21 "Speed Mode," Bit 22 "PositionMode" and Bit 23 "Torque Mode." When the drive is operating as a speed regulator, the resulting action is to execute a "Fast Stop" command. After the drive stops in this case, it will only restart in the opposite direction (if given a new start command). This function is usually used with a limit switch near the point at which the drive should stop. When the drive is operating as a torque regulator, the resulting action is to execute a "Fast Stop" command. After the drive stops in this case, it will restart and continue operation (if given a new start command). When the drive is operating as a position regulator, the resulting action is to execute a "Fast Stop" command. After the drive stops in this case, it will restart and continue to move towards the position reference (if given a new start command).	Default: Min/Max:	$\begin{aligned} & \hline 0.00 \\ & 0.00 / 159999.15 \end{aligned}$	RW	32-bit Integer
		199 $\mathscr{H} \Leftrightarrow$	DI Rev Dec Limit Digital Input Reverse Deceleration Limit Assigns a digital input used to trigger a Reverse Decel Limit. The resulting action depends on whether the drive is operating as a speed, torque or position regulator. The mode of operation is indicated by parameter 935 [Drive Status 1] Bit 21 "Speed Mode," Bit 22 "PositionMode" and Bit 23 "Torque Mode." When the drive is operating as a speed regulator, the resulting action is to override the speed reference and decelerate to Preset Speed 1. This function is usually used with a limit switch and initiates the slowing down process prior to encountering the End Limit. When the drive is operating as a torque regulator, the drive ignores this signal and continues operating at its torque reference. When the drive is operating as a position regulator, the drive ignores this signal and continues moving towards its position reference.	Default: Min/Max:	$\begin{aligned} & 0.00 \\ & 0.00 / 159999.15 \end{aligned}$	RW	32-bit Integer
		$\begin{gathered} 200 \\ \square \end{gathered}$	DI PHdwr OvrTrvl Digital Input Positive Hardware Over Travel Assigns a digital input used to trigger a Positive Hardware Over-travel. The resulting action is to immediately fault and produce zero torque. After the drive is stopped, the condition will need to be cleared and the fault will need to be reset. The drive will restart (if given a new start command), and continue operation. It will follow any speed reference, position reference or torque reference. The drive's direction is not modified or limited after the restart.	Default: Min/Max:	$\begin{aligned} & 0.00 \\ & 0.00 / 159999.15 \end{aligned}$	RW	32-bit Integer
		201 \mathscr{H}	DI NHdwr OvrTrvI Digital Input Negative Hardware Over Travel Assigns a digital input used to trigger a Negative Hardware Over-travel. The resulting action is to immediately fault and produce zero torque. After the drive is stopped, the condition will need to be cleared and the fault will need to be reset. The drive will restart (if given a new start command), and continue operation. It will follow any speed reference, position reference or torque reference. The drive's direction is not modified or limited after the restart.	Default: Min/Max:	$\begin{aligned} & 0.00 \\ & 0.00 / 159999.15 \end{aligned}$	RW	32-bit Integer

을	은	No.	Display Name Full Name Description	Values			
		225	753 Dig Out Sts Digital Output Status Status of the digital outputs.	$\begin{aligned} & 0=\text { Condition False } \\ & 1=\text { Condition True } \end{aligned}$		RO	16-bit Integer
		226	753 Dig Out Invert Digital Output Invert Inverts the selected digital output.	$\begin{aligned} & =\text { Conditior } \\ & =\text { Conditior } \end{aligned}$		RO	16-bit Integer
		227	753 Dig Out Setpoint Digital Output Setpoint Controls Relay or Transistor Outputs when chosen as the source. Can be used to control	utputs from = Condition = Condition	communication False rue	RO	16-bit Integer
		230	753 ROO Sel Relay Output 0 Select Selects the source that will energize the relay output. Any status parameter bit can be used as an output source. For example P935 [Drive Status 1] Bit 7 "Faulted."	Default: Min/Max:	$\begin{aligned} & 0 \\ & 0 / 159999.15 \end{aligned}$	RW	$\begin{aligned} & \text { 32-bit } \\ & \text { Integer } \end{aligned}$
		231	753 ROO Level Sel Relay Output 0 Level Select Selects the source of the level that will be compared.	Default: Min/Max		RW	$\begin{aligned} & \text { 32-bit } \\ & \text { Integer } \end{aligned}$
		232	753 ROO Level Relay Output 0 Level Sets the level compare value.	Default: Min/Max:	$\begin{aligned} & 0.0 \\ & -/+1000000.0 \end{aligned}$	RW	Real

츤	$\begin{aligned} & \text { 은 } \\ & \text { 훈 } \end{aligned}$	No.	Display Name Full Name Description	Values			
	$\begin{aligned} & \text { 若 } \\ & \frac{\partial}{訁} \\ & \frac{0}{5} \\ & \stackrel{0}{0} \end{aligned}$	244	753 TOO On Time Transistor Output 0 On Time Sets the "ON Delay" time for the digital outputs. This is the time between the occurrence of a condition and activation of the relay or transistor.	Units: Default: Min/Max:	$\begin{aligned} & \hline \text { Secs } \\ & 0 \\ & 0 / 159999 \end{aligned}$	RW	32-bit Integer
		245	753 T00 Off Time Transistor Output 0 Off Time Sets the "OFF Delay" time for the digital outputs. This is the time between the disappearance of a condition and de-activation of the relay or transistor.	Units: Default: Min/Max	$\begin{array}{\|l\|} \hline \text { Secs } \\ 0.0 \\ -/+1000000.0 \end{array}$	RW	Real

읖	응	No.	Display Name Full Name Description	Values		(1)	
	$\begin{aligned} & \text { 는 } \\ & \vdots \vdots . ~ \\ & \stackrel{0}{2} \end{aligned}$	250	753 PTC Cfg Positive Temperature Coefficient Configuration Sets the action that will be taken when the PTC is indicating over temperature. "Ignore" (0) - No action is taken. "Alarm" (1) - Type 1 alarm indicated. "Flt Minor" (2) - Minor fault indicated. If running, drive continues to run. Enable with P950 [Minor Flt Cfg]. If not enabled, acts like a major fault. "FItCoastStop" (3) - Major fault indicated. Coast to Stop. "FIt RampStop" (4) - Major fault indicated. Ramp to Stop. "Flt CL Stop" (5) - Major fault indicated. Current Limit Stop.	Default: Options:	$\begin{aligned} & \hline 0 \text { - Ignore } \\ & 0 \text { - Ignore } \\ & 1 \text { - Alarm } \\ & 2 \text { FIt Minor } \\ & 3 \text { FltCoastStop } \\ & 4 \text { Flt RampStop } \\ & 5 \text { Flt CL Stop } \end{aligned}$	RW	$\begin{aligned} & \text { 32-bit } \\ & \text { Inteaer } \end{aligned}$
		251	753 PTC Sts Positive Temperature Coefficient Status Status of the PTC. Bit 0 "PTC Ok" - PTC is within the acceptable temperature range. Bit 2 "Over Temp" - PTC is indicating over temperature	Conditi Conditi		R0	16-bit Integer

츺	릉	No.	Display Name Full Name Description	Values		\%	$\begin{aligned} & \text { 品 } \\ & \substack{\mathbf{N} \\ \stackrel{y}{0} \\ \hline} \end{aligned}$
		256	753 Anlg In Sqrt Analog Input Square Root Enables/disables the square root function for each input. Options	$\begin{aligned} & 0=\text { Square Root Disabled } \\ & 1=\text { Square Root Enabled } \end{aligned}$		R0	16-bit Integer
		257	753 Anlg In Loss Sts Analog Input Loss Status Status of the analog input loss.	$\begin{aligned} & 0=\text { Loss not Present } \\ & 1=\text { Loss Present } \end{aligned}$		RO	16-bit Integer
		260	753 Anlg In0 Value Analog Input 0 Value Value of the Analog input after filter, square root, and loss action.	Units: Default: Min/Max	Volt mA 0.000 Volts 0.000 mA $-/+10.000$ Volts $0.000 / 20.000 \mathrm{~mA}$	RO	Real
		261	753 Anlg $\operatorname{In} 0 \mathrm{Hi}$ Analog Input 0 High Sets the highest input value to the analog input scaling block.	Units: Default: Min/Max	Volt mA 10.000 Volts 20.000 mA $-/+10.000$ Volts $0.000 / 20.000 \mathrm{~mA}$	RW	Real
		262	753 Anlg In0 Lo Analog Input 0 Low Sets the lowest input value to the analog input scaling block.	Units Default: Min/Max	Volts mA 0.000 Volts 0.000 mA $-/+10.000$ Volts $0.000 / 20.000 \mathrm{~mA}$	RW	Real
		263	753 Anlg In0 LssActn Analog Input 0 Loss Action Selects drive action when an analog signal loss is detected. Signal loss is defined as an analog signal less than 1 V or 2 mA . The signal loss event ends and normal operation resumes when the input signal level is greater than or equal to 1.5 V or 3 mA . "Ignore" (0) - No action is taken. "Alarm" (1) - Type 1 alarm indicated. "Flt Minor" (2) - Minor fault indicated. If running, drive continues to run. Enable with P950 [Minor Flt Cfg]. If not enabled, acts like a major fault. "FItCoastStop" (3) - Major fault indicated. Coast to Stop. "FIt RampStop" (4) - Major fault indicated. Ramp to Stop. "Flt CL Stop" (5) - Major fault indicated. Current Limit Stop. "Hold Input" (6) - Holds input at last value. "Set Input Lo" (7) - Sets input to P262 [Anlg In0 Lo]. "Set Input Hi" (8) - Sets input to P261 [Anlg In0 Hi].	Default: Options:	$\begin{aligned} & 0=\text { "Ignore" } \\ & 0=\text { "Ignore" } \\ & 1=\text { "Alarm" } \\ & 2=\text { "Flt Minor" } \\ & 3=\text { "FltCoastStop" } \\ & 4=\text { "Flt RampStop" } \\ & 5=\text { "Flt CL Stop" } \\ & 6=\text { "Hold Input" } \\ & 7=\text { "Set Input Lo" } \\ & 8=\text { "Set Input Hi" } \end{aligned}$	RW	32-bit Integer

츺	응	No.	Display Name Full Name Description	Values			
		264	753 Anlg In0 Raw Val Analog Input 0 Raw Value Raw Value of the analog input.	Units: Default: Min/Max:	Volt mA 0.000 Volts 0.000 mA $-/+10.000$ Volts $0.000 / 20.000 \mathrm{~mA}$	R0	Real
		265	753 Anlg $\ln 0$ Filt Gn Analog Input 0 Filter Gain Sets the analog input filter gain. The default setting represents no filtering.	Default: Min/Max:	$\begin{aligned} & 1.00 \\ & -/+5.00 \end{aligned}$	RW	Real
		266	753 Anlg In0 Filt BW Analog Input 0 Filter Bandwidth Sets the analog input filter bandwidth. The default setting represents no filtering.	Default: Min/Max:	$\begin{array}{\|l\|} \hline 0.0 \\ 0.0 / 500.0 \end{array}$	RW	Real

츺	$\begin{aligned} & \text { O} \\ & \text { 은 } \end{aligned}$	No.	Display Name Full Name Description	Values			$\begin{aligned} & \stackrel{0}{2} \\ & \stackrel{\rightharpoonup}{Z} \\ & \stackrel{y}{0} \\ & \stackrel{y}{0} \end{aligned}$	
		279	753 Anlg Out0 DataLo Analog Output 0 Data Low Sets the low value for the data range of analog out scale.	Default: Min/Max:	$\begin{aligned} & 0.00 \\ & -/+214748000.00 \end{aligned}$	RW	Rea	eal
		280	$753 \quad$ Anlg Out0 $\mathbf{~ H i}$ Analog Output 0 High Sets the high value for the analog output value when the data value is at its maximum.	Units: Default: Min/Max:	Volt mA 10.000 Volts 20.000 mA $-/+10.000$ Volts $0.000 / 20.000 \mathrm{~mA}$	RW	Rea	
		281	753 Anlg Out0 Lo Analog Output 0 Low Sets the low value for the analog output value when the data value is at its minimum.	Units: Default: Min/Max:	Volt mA 0.000 Volts 0.000 mA $-/+10.000$ Volts $0.000 / 20.000 \mathrm{~mA}$	RW	Rea	
		282	753 Anlg Out0 Val Analog Output 0 Value Displays the analog output value.	Units: Default: Min/Max:	Volt mA 10.000 Volts 20.000 mA $-/+10.000$ Volts $0.000 / 20.000 \mathrm{~mA}$	RO	Rea	

Drive (Port 0) Cfg File

은	을	No.	Display Name Full Name Description	Values			
		$\begin{gathered} 300 \\ \stackrel{O}{\leftrightarrows} \end{gathered}$	Speed Units Speed Units Selects the units to be used for all speed related parameters. This parameter is only reset when Set Defaults "All" (not recommended) is executed.	Default: Options:	Current Selection $\begin{aligned} & 0=" \mathrm{~Hz}^{\prime \prime} \\ & 1=\mathrm{RPM}^{\prime} \end{aligned}$	RW	32-bit Integer
$\begin{aligned} & \text { 는 } \end{aligned}$	【	301 $\stackrel{L}{\leftrightarrows}$	Access Level Access Level Sets the access level for parameters and option choices. "Basic" (0) - Provides the smallest, simplest, and most user friendly view. "Advanced" (1) - May be required to use advanced features. "Expert" (2) - Not normally recommended (makes the list very long), and shows extra parameters that should rarely be required. When the access level is changed, PC-based tools (for example Drive Tools and Drive Explorer) will require a reconnect. This parameter is only reset when Set Defaults "All" (not recommended) is executed.	Default: Options:	$\begin{aligned} & \text { Current Selection } \\ & 0=\text { "Basic" } \\ & 1=\text { "Advanced" } \\ & 2=\text { "Expert" } \end{aligned}$	RW	32-bit Integer
릉	$\begin{aligned} & \text { U. } \\ & \text { Li 2 } \end{aligned}$	302	Language Language Select display language. This parameter is only reset when Set Defaults "All" (not recommended) is executed.	Default: Options:	$\begin{aligned} & 0=\text { "Not Selected" } \\ & 0=\text { "Not Selected" } \\ & 1=\text { "English" } \\ & 2=\text { "French" } \\ & 3=\text { "Spanish" } \\ & 4=\text { "Italian" } \\ & 5=\text { "German" } \\ & 6=\text { "Japanese" } \\ & 7=\text { "Portuguese" } \\ & 8=\text { "Chinese" } \\ & 9=\text { "Reserved" } \\ & 10=\text { "Reserved" } \\ & 11=\text { "Korean" } \end{aligned}$	RW	32-bit Integer

ATTENTION: Enabling the Bipolar Direction Mode can cause unexpected direction changes. Equipment damage and/or personal injury can result if this parameter is used in an inappropriate application. Do Not use this function without considering all applicable local, national, and international codes standards, regulations, or industry guidelines.

를	은	No.	Display Name Full Name Description	Values		\|l	
$\begin{aligned} & \text { 는 } \\ & \text { 总 } \\ & \text { 足 } \end{aligned}$	$\begin{aligned} & \text { 은 } \\ & \text { O} \\ & \text { B } \\ & \hline 0 \end{aligned}$	$\begin{aligned} & 309 \\ & 310 \\ & 311 \\ & 312 \end{aligned}$	SpdTrqPsn Mode A SpdTrqPsn Mode B SpdTrqPsn Mode C SpdTrqPsn Mode D Speed Torque Position Mode A, B, C, D Applies only to the Flux Vector control modes in P35 [Motor Ctrl Mode], options 3 "Induction FV," 6 "PM FV," and 10 "IPM FV." It selects between speed regulation, torque regulation, or position regulation operation of the drive. The source of P685 [Selected Trq Ref] will be determined by the selection in this parameter when P181 [DI SpTqPS Sel 0] and P182 [DI SpTqPs Sel 1] have selected "Disabled" or selected bits that are logic low. In P935 [Drive Status 1] three bits are provided that indicate the regulation mode of the drive when it is running. Bit 21 "Speed Mode" will become set when the drive is running with the speed regulator active. Similarly, Bit 22 "PositionMode" and Bit 23 "Torque Mode" indicate when their respective regulation modes are active. Under some conditions, the active torque mode may be forced into speed mode regardless of the setting of Speed/Torque/Position. The P313 [Actv SpTqPs Mode] parameter will indicate this and will reflect the mode selection that is in use. Possible selections for Speed/Torque/Position are: "Zero Torque" (0) - Drive operates as a torque regulator with P685 [Selected Trq Ref] forced to a constant value of zero torque. "Speed Reg" (1) - Drive operates as a speed regulator. P685 [Selected Trq Ref] comes from P660 [SReg Output] plus P699 [Inertia Comp Out]. "Torq Reg" (2) - Drive operates as a torque regulator. P685 [Selected Trq Ref] comes from P4 [Commanded Trq]. Under some conditions such as jogging or performing a ramp to stop operation, the drive will automatically bypass this selection and temporarily switch to speed regulation mode. "SLAT Min" (3) - Drive operates in "Speed Limited Adjustable Torque - Minimum select" mode. This is a special mode of operation used primarily in web handling applications. The drive will typically operate as a torque regulator, provided that the P4 [Commanded Trq] value is algebraically smaller in value than the speed regulator's output. The drive may automatically enter speed regulation mode, based on conditions within the speed regulator and the magnitude of the speed regulator's output relative to the torque reference. "SLAT Max" (4) - Drive operates in "Speed Limited Adjustable Torque - Maximum select" mode. This is a special mode of operation used primarily in web handling applications. The drive will typically operate as a torque regulator, provided that the P4 [Commanded Trq] value is algebraically larger in value than the speed regulator's output. The drive may automatically enter speed regulation mode, based on conditions within the speed regulator and the magnitude of the speed regulator's output relative to the torque reference. "Sum" (5) - Drive operates as a speed regulator. P685 [Selected Trq Ref] comes from P660 [SReg Output] plus torque adders summed with P4 [Commanded Trq]. "Profilier" (6) - Drive uses the Speed Profiler / Position Indexer function. The drive operates as either a speed or position regulator. Mode of operation will depend on the configuration of the Step Types in the Profiler / Indexer table. See page 413. "Psn PTP" (7) - Drive operates as a position regulator. P685 [Selected Trq Ref] has the same source as in Sum mode. The position control is active in Point-to-Point mode and uses its Point-to-point position reference. To jog in the Position mode, set P635 [Spd Options Ctrl] Bit 6. "Psn Camming" (8) - Drive operates as a position regulator. P685 [Selected Trq Ref] has the same source as in Sum mode. The position control is active in Position CAM mode and uses its PCAM Planner position and speed reference. "Psn PLL" (9) - Drive operates as a position regulator. P685 [Selected Trq Ref] has the same source as in Sum mode. The position control is active in Position Phase Lock Loop mode and uses its PLL Planner position and speed reference. "Psn Direct" (10) - Drive operates as a position regulator. P685 [Selected Trq Ref] has the same source as in Sum mode. The position control is active in Direct mode and uses its Direct Position Reference. "Psn SpdIOrnt" (11) - Drive operates in the positioning mode to position the load side of a machine to P1582 [SO Setpoint]	Default: Options:	$\begin{aligned} & 1=\text { ="Speed Reg" } \\ & 0=\text { "Zero Torque" } \\ & 1=\text { "Speed Reg" } 11 \\ & 2=\text { "Torque Reg" } \\ & 3=\text { ""LLAT Min" } \\ & 4=\text { "SLAT Max" } \\ & 5=\text { "Sum" } \\ & 6=\text { "Profilier" } 7351 \\ & 7=\text { "Psn PTP" } \\ & 8=\text { "Psn Camming" } \\ & 9=\text { "Psn PLL" } 735 \\ & 10=\text { "Psn Direct" } \\ & 11=\text { "Psn SpdIOrnt" } \\ & \hline 135 \end{aligned}$ (1) All options, except "Speed Reg," require the drive to be set to a Flux Vector motor control mode. See P35 [Motor Ctrl Mode].	RW	$\begin{aligned} & \text { 32-bit } \\ & \text { Integer } \end{aligned}$

츺	릉	No.	Display Name Full Name Description	Values			
$\begin{aligned} & \text { 는 } \\ & \text { 름 } \end{aligned}$	$\begin{aligned} & \text { 은 } \\ & 0 \\ & 0.4 \\ & 0 \end{aligned}$	313	Actu SpTqPs Mode Active Speed Torque Position Mode Displays the Speed, Torque, Position Mode that is active, based on the dynamic selection of modes A, B, C, and D, per P309...P312, and digital input conditions programmed via P181 and P182. In some cases, such as operation in the SLAT min/max modes, the final regulation mode may be forced into Speed Regulation. Refer to the Speed, Torque, and Position mode bits in P935 [Drive Status 1] that indicate the final regulation mode of the drive when it is running.	Default: Options:		R0	32-bit Integer
		314	SLAT Err Stpt Speed Limited Adjustable Torque, Error Setpoint Sets the magnitude of P641 [Speed Error] at which the SLAT function will release its Forced Speed Mode signal. This condition must exist for the time specified by P315 [SLAT Dwell Time]. Once released, the drive can operate as a torque regulator, depending on the relative levels of P660 [SReg Output] and P4 [Commanded Trq]. This parameter will be entered in units of Hz or RPM, depending on the value of P300 [Speed Units].	Units: Default: Min/Max:	Hz RPM 0.00 0.00 / P27 [Motor NP Hertz] 0.00 / P28 [Motor NP RPM]	RW	Real
		315	SLAT Dwell Time Speed Limited Adjustable Torque, Dwell Time Sets the time period that P641 [Speed Error] must exceed the P314 [SLAT Err Stpt] magnitude in order to return to min/max torque mode.	Units: Default: Min/Max	$\begin{aligned} & \text { Secs } \\ & 0.00 \\ & 0.00 / 2.00 \end{aligned}$	RW	Real
		321	Prchrg Control Precharge Control When disabled, the drive will stay in the precharge mode and will not be able to run. When enabled, the normal precharge operation is run. This parameter allows programmable control of the completion of the precharge function and may be used to coordinate the precharge of a system of drives or to reset P12 [DC Bus Memory] in the drive.	Default: Options:	$\begin{aligned} & 1=\text { "Enabled" } \\ & 0=\text { "Disabled" } \\ & 1=\text { "Enabled" } \end{aligned}$	RW	$\begin{aligned} & \text { 32-bit } \\ & \text { Integer } \end{aligned}$
		322	Prchrg Delay Precharge Delay Adjustable delay between the time all other precharge conditions have been met and the time the drive leaves the precharge state. This can be used to control the sequences of precharge completion in a drive system.	Units: Default: Min/Max	Secs 0.50 $0.10 / 30.00$	RW	Real
		323	Prchrg Err Cfg Precharge Error Confirguration Selects the action to take when P190 [DI Prchrg Seal] is used to indicate that an external precharge circuit has opened.	Default: Options:	$\begin{aligned} & 3=\text { "FltCoastStop" } \\ & 3=\text { "FltCoastStop" } \\ & 4=\text { "FIt RampStop" } \\ & 5=\text { "Flt CL Stop" } \end{aligned}$	RW	32-bit Integer

$\stackrel{\otimes}{\underline{Z}}$	을	No.	Display Name Full Name Description	Values	年	$\stackrel{\ddot{2}}{\stackrel{\text { n}}{5}}$
		324	Logic Mask Logic Mask		RW	16-bit Integer

Enables/disables ports to control the logic command (such as start and direction). Does not mask Stop commands.

Options		$\stackrel{ \pm}{ \pm}$	$\begin{aligned} & \frac{m}{2} \\ & \vdots \\ & \hline \end{aligned}$		$\underset{\sim}{\underset{\sim}{\Sigma}}$	$\begin{aligned} & \text { E } \\ & \frac{0}{7} \\ & \stackrel{t}{0} \end{aligned}$	-		$\begin{aligned} & \infty \\ & 5 \\ & \hline \end{aligned}$	N	$\begin{aligned} & 0 \\ & \stackrel{⿺}{0} \\ & \hline 2 . \end{aligned}$	$\begin{aligned} & n \\ & \vdots \\ & 0 \\ & 2 \\ & \hline \end{aligned}$	$\stackrel{\rightharpoonup}{\grave{a}}$	$\begin{aligned} & m \\ & \stackrel{y}{0} \\ & \hline \end{aligned}$	$\stackrel{\stackrel{1}{0}}{2}$	들		
Default	0	1	1	0	1	1	1	1		1	1	1	1	1	1	1	1	
Bit	15	14	13	12	11	10	9	8		7	6	5	4	3	2	1	0	

(1) 755 Frame 8 drives and larger only.

Enables/disables ports to control the logic command (such as start and direction), while in Auto mode. Does not mask Stop commands.

(1) 755 drives only.

\%	$\begin{aligned} & \text { 은 } \\ & \hline \end{aligned}$	No.	Display Name Full Name Description	Values			$\begin{aligned} & \text { D } \\ & \stackrel{\rightharpoonup}{2} \\ & \\ & \stackrel{N}{0} \end{aligned}$
$\begin{aligned} & \text { 논 } \\ & \text { 总 } \\ & \text { 品 } \end{aligned}$		336	Reset Meters Reset Meters Resets selected meters to zero. The value will automatically be returned to 0 . "MWH and kWh" (1) - Resets P13 [Elapsed MWH], P14 [Elapsed kWH], P16 [Elpsd Mtr MWHrs], P17 [Elpsd Rgn MWHrs], P18 [Elpsd Mtr kWHrs], and P19 [Elpsd Rgn kWHrs]. "Elapsed Time" (2) - Resets P15 [Elapsed Run Time].	Default: Options:	$\begin{aligned} & 0=\text { "Ready" } \\ & 0=\text { "Ready" } \\ & 1=\text { "MWH and kWh" } \\ & 2=\text { "Elapsed Time" } \end{aligned}$	RW	$\begin{array}{\|l\|} \hline \text { 32-bit } \\ \text { Integer } \end{array}$

$\stackrel{\text { ® }}{\text { ¢ }}$	$\begin{aligned} & \text { O} \\ & \text { 응 } \end{aligned}$	No.	Display Name Full Name Description	Values			¢
		345	Start At PowerUp Start At Power Up Enables/disables a feature to issue a Run command and automatically resume running at commanded speed after drive input power is restored. Requires a digital input, P 163 [DI Run], P164 [DI Run Forward], or P165 [DI Run Reverse], is configured for Run and a valid start contact.	Default: Options:	$\begin{aligned} & 0=\text { "Disabled" } \\ & 0=\text { "Disabled" } \\ & 1=\text { "Enabled" } \end{aligned}$	RW	32-bit Integer

ATTENTION: Equipment damage and/or personal injury may result if this parameter is used in an inappropriate application. Do not use this function without considering applicable local, national and international codes, standards, regulations or industry guidelines.

346	PowerUp Delay Power Up Delay Defines the programmed delay time, in seconds, before a start command is accepted after power up.	Units: Default: Min/Max:	Secs 0.00 $0.00 / 10800.00$	RW	Real

ATTENTION: Equipment damage and/or personal injury may result if this parameter is used in an inappropriate application. Do not use this function without considering applicable local, national and international codes, standards, regulations or industry guidelines.

349	Auto Rstrt Delay Automatic Restart Delay Sets the time between restart attempts when $348[$ Auto Rstrt Tries $]$ is set to a value other than zero.	Units: Default: Min/Max:	Secs 1.00 $0.50 / 30.00$	RW	Real

츷	은	No.	Display Name Full Name Description	Values			
		350	Sleep Wake Mode Sleep Wake Mode Enables/disables the Sleep/Wake function. Important: When enabled, the following conditions must be met: - A proper value must be programmed for 352 [Sleep Level] and 354 [Wake Level]. - A sleep / wake reference must be selected in 351 [SleepWake RefSel]. - At least one of the following must be programmed (and input closed) in P155 [DI Enable], P158 [DI Stop], P163 [DI Run], P164 [DI Run Forward], or P165 [DI Run Reverse].	Default: Options:	$\begin{aligned} & 0=\text { "Disabled" } \\ & 0=\text { "Disabled" } \\ & 1=\text { "Direct" (Enabled) } \\ & 2=\text { "Invert" (Enabled) }{ }^{(7)} \end{aligned}$	RW	32-bit Integer

ATTENTION: Enabling the Sleep/Wake function can cause unexpected machine operation during the Wake mode. Equipment damage and/or personal injury can result if this parameter is used in an inappropriate application. Do Not use this function without considering the information below. In addition, all applicable local, national, and international codes, standards, regulations, or industry guidelines must be considered.

Conditions Required to Start Drive ${ }^{(1)(2)(3)}$

Input	After Power-Up	After a Drive Fault		After a Stop Command
		Reset by HIM or Software "Stop"	Reset by HIM, Network/Software, or Digital Input "Clear Faults"	HIM, Network/Software or Digital Input "Stop"
Stop ${ }^{(4)}$	Stop Closed Wake Signal New Start or Run Cmd. ${ }^{(5)}$	Stop Closed Wake Signal New Start or Run Cmd. ${ }^{(5)}$	Stop Closed Wake Signal	Stop Closed Direct Mode: SleepWake RefSel Signal > Sleep Level ${ }^{(7)}$ Invert Mode: SleepWake RefSel Signal < Sleep Level ${ }^{(8)}$ New Start or Run Command ${ }^{(5)}$
Enable	Enable Closed Wake Signal	Enable Closed Wake Signal New Start or Run Cmd. ${ }^{(5)}$	Enable Closed Wake Signal	Enable Closed Direct Mode: SleepWake RefSel Signal > Sleep Level ${ }^{(7)}$ Invert Mode: SleepWake RefSel Signal < Sleep Level ${ }^{(8)}$ New Start or Run Command ${ }^{(5)}$
Run Run Fwd Run Rev	Run Closed Wake Signal	New Run Cmd. ${ }^{(6)}$ Wake Signal	Run Closed Wake Signal	New Run Command Direct Mode: SleepWake RefSel Signal > Sleep Level ${ }^{(7)}$ Invert Mode: SleepWake RefSel Signal < Sleep Level ${ }^{(8)}$

(1) When power is cycled, if all conditions are present after power is restored, restart will occur.
(2) If all conditions are present when [Sleep-Wake Mode] is "enabled," the drive will start.
(3) The active speed reference. The Sleep/Wake function and the speed reference may be assigned to the same input.
(4) Cannot use P159 [DI Cur Lmt Stop] or P160 [DI Coast Stop] as the only Stop Input. This will cause the drive to go into a Sleep Cfg Alarm - Event No. 161.
(5) Command must be issued from HIM, terminal block, or network.
(6) Run Command must be cycled.
(7) SleepWake Ref Sel signal does not need to be greater than the wake level.
(8) SleepWake Ref Sel signal does not need to be less than the wake level.

$\stackrel{\text { 늘 }}{i}$	을	No.	Display Name Full Name Description	Values			
		361	FS Excitation Ki Flying Start Excitation Integral Gain P356 [FlyingStart Mode] = 1 "Enhanced": Integral term used in the current regulator which controls the excitation function when the need is determined by the reconnect function. P356 [FlyingStart Mode] = 2 "Sweep": Integral term used to control initial output voltage.	Default: Min/Max:	$\begin{aligned} & \hline 60.0 \\ & 0.0 / 32767.0 \end{aligned}$	RW	Real
		362	FS Excitation Kp Flying Start Excitation Proportional Gain P356 [FlyingStart Mode] = 1 "Enhanced": Proportional term used in the current regulator which controls the excitation function when the need is determined by the reconnect function. P356 [FlyingStart Mode] = 2 "Sweep": Proportional term used to control initial output voltage.	Default: Min/Max:	$\begin{aligned} & 1200.00 \\ & 0.0 / 32767.0 \end{aligned}$	RW	Real
		363	FS Reconnect Dly Flying Start Reconnect Delay Delay time used between the issued start command and the start of the reconnect function.	Units: Default: Min/Max:	mSec 50.00 $0.10 / 10000.00$	RW	Real
논		364	FS Msrmnt CurLvI Flying Start Measurement Current Level P356 [FlyingStart Mode] = 1 "Enhanced": Level of the current used during the measurement stage of the reconnect function. P356 [FlyingStart Mode] = 2 "Sweep": Adjustment for the V/Hz end point. Used to change the slope of the V / Hz curve during the frequency sweep. Note: A value of 4096 is equal to drive rated current.	Default: Min/Max:	$\begin{aligned} & 44.97 \\ & 0.00 / 4096.00 \end{aligned}$	RW	Real
		365	FS Brk LvI Flying Start Break Level Enter the level of DC braking current that the drive can use for the Flying Start function. The Flying Start function will apply DC brake current to the motor when it determines the motor is spinning near zero speed. It can do this to bring the motor to a complete stop before attempting to restart it.	Units: Default: Min/Max:	Amps Same as P394 Same as P394	RW	Real
		366	FS Brk Time Flying Start Break Time Enter the amount of time the drive can apply the $D C$ braking current for the Flying Start function. The DC braking will be applied on every start when this time is not zero, even is flying start is not enabled.	Units: Default: Min/Max:	$\begin{aligned} & \text { Secs } \\ & 0.00 \\ & 0.00 / 1800.00 \end{aligned}$	RW	Real
		367	FS ZSpd Thresh Flying Start Zero Spd Threshold Enter a value to set the threshold the Flying Start function uses for zero speed detection. The Flying Start function uses this for DC braking.	Units: Default: Min/Max:	$\begin{aligned} & \text { Secs } \\ & 200.00 \\ & 0.00 / 10000.00 \end{aligned}$	RW	Real

츺	$\begin{aligned} & \text { O} \\ & \hline \frac{3}{3} \\ & \hline \end{aligned}$	No.	Display Name Full Name Description	Values		(\%	
		$\begin{aligned} & \hline 370 \\ & 371 \end{aligned}$	Stop Mode A Stop Mode B Stop Mode A, B Method of stopping the drive when a stop command is given. Normal Stop command and the RUN input changing from true to false will command a Normal Stop. When using TorqProve, parameter 1100 [Trq Prove Cfg] Bit 0 "TP Enable" $=1$, the stop mode must be set to option 1 "Ramp." "Coast" (0) - Power removed from motor, motor coasts to zero. "Ramp" (1) - Decelerates to zero speed at the decel rate. Power is removed when zero speed is reached. "Ramp to Hold" (2) - Decelerates to zero speed at the decel rate, followed by DC braking until the next start sequence. "DC Brake" (3) - DC braking is immediately applied (does not follow programmed decel ramp). May have to adjust parameter 397 [DC Brake Kp]. "DCBrkAutoOff" (4) - Applies DC braking until zero speed is reached or DC brake time is reached, whichever is shorter. "Current Lmt" (5) - Max torque / current applied until zero speed. "Fast Brake" (6) - High slip braking for maximum braking performance above base speed.	Default Options:	$\begin{aligned} & 1=\text { ="Ramp" } \\ & 0=\text { "Coast" } \\ & 0=\text { "Coast" } \\ & 1=\text { "Ramp" } \\ & 2=\text { "Ramp to Hold" } \\ & 3=\text { "DC Brake" } \\ & 4=\text { "DCBrkAutooff" } \\ & 5=\text { "Current Lmt" } \\ & 6=\text { "Fast Brake" } \end{aligned}$	RW	32-bit Integer
$\begin{aligned} & \text { 농 } \\ & \text { 름 } \end{aligned}$		$\begin{aligned} & 372 \\ & 373 \end{aligned}$	Bus Reg Mode A Bus Reg Mode B Bus Regulation Mode A, B Method and sequence of the $D C$ bus regulator voltage. Choices are dynamic brake, frequency adjust or both. Sequence is determined by programming or digital input to the terminal block. Using options 1,3 , or 4 , may result in extended decel times. Typically, only P372 [Bus Reg Mode A] is used. P373 [Bus Reg Mode B] is only used when P187 [DI PwrLoss ModeB] is programmed and its corresponding input is high. Dynamic Brake Setup If a dynamic brake resistor is connected to the drive, both of these parameters must be set to either option 2,3 or 4 . When using any of the dynamic braking settings increase P426 [Regen Power Lmt] from its default setting of 50%. A setting of 200% will result in more effective braking.	Default: Options:	$\begin{aligned} & 1=\text { "Adjust Freq" } \\ & 4=\text { "Both-Frq 1st" } \\ & 0=\text { "Disabled" } \\ & 1=\text { "Adjust Freq" } \\ & 2=\text { "Dyn Brake" } \\ & 3=\text { "Both DB 1st" } \\ & 4=\text { "Both Frq 1st" } \end{aligned}$	RW	32-bit Integer

!
ATTENTION: The drive does not offer protection for externally mounted brake resistors. A risk of fire exists if external braking resistors are not protected. External resistor packages must be self-protected from over-temperature or the protective circuit shown in Figure 4 on page 356 (or equivalent) must be supplied.

| 374 | Bus Reg LvI Cfg
 Bus Regulation Level Configuration
 Selects the reference used to determine the bus voltage regulation level for the bus
 voltage regulator and the reference used for the dynamic brake.
 "Bus Memory" (0) - References are determined based on P12 [DC Bus Memory].
 "BusReg Level" (1) - References are determined based on the voltage set in the bus
 regulator level parameter P375 [Bus Reg Level]. If coordinated operation of the dynamic
 brakes of common bus system is desired, use this selection and set the P375 [Bus Reg
 Level] to coordinate the brake operation of the common bus drives. | Default:
 Options: | $0=$ "Bus Memory"
 $0=$ "Bus Memory"
 $1=$ "BusReg Level" | | RW |
| :--- | :--- | :--- | :--- | :--- | :--- | | 32-bit |
| :--- |
| Integer |

$\stackrel{\text { ² }}{\underline{\text { ² }}}$	응	No.	Display Name Full Name Description	Values			
		376	Bus Limit Kp Bus Limit Proportional Gain Not functional when any of the FV motor control modes are selected.	Units: Default: Min/Max:	A/V 1170.0 $0.0 / 1000000.0$	RW	Real
		377	Bus Limit Kd Bus Limit Derivative Gain Not functional when any of the FV motor control modes are selected.	Units: Default: Min/Max:	Secs 152.0 $0.0 / 1000000.0$	RW	Real
		378	Bus Limit ACR Ki Bus Limit Active Current Regulator Integral Gain Not functional when any of the FV motor control modes are selected.	Default: Min/Max:	$\begin{aligned} & \mid 2045.0 \\ & 0.0 / 50000.0 \end{aligned}$	RW	Real
		379	Bus Limit ACR Kp Bus Limit Active Current Regulator Proportional Gain Not functional when any of the FV motor control modes are selected.	Units: Default: Min/Max:	Hz / A 524.0 $0.0 / 100000.0$	RW	Real
		380	Bus Reg Ki Bus Regulator Integral Gain Integral gain for the bus voltage regulator. Sets the responsiveness of the bus voltage regulator.	Default: Min/Max:	$\begin{aligned} & 100.000 \\ & 0.000 / 65535.000 \end{aligned}$	RW	Real
		381	Bus Reg Kp Bus Regulator Proportional Gain Proportional gain for the bus voltage regulator. Sets the responsiveness of the bus voltage regulator.	Default: Min/Max:	$\begin{aligned} & 10.000 \\ & 0.000 / 65535.000 \end{aligned}$	RW	Real
$\begin{aligned} & \text { 눌 } \\ & \text { 品 } \end{aligned}$		382	DB Resistor Type Dynamic Brake Resistor Type Selects whether the internal or external DB protection will be used. Important: Only one DB resistor can be connected to Frame 2 drives. If an external dynamic brake is used with a Frame 2 drive, the internal dynamic brake resistor must be disconnected. Connecting both an internal and external resistor is likely to cause drive damage. If a dynamic brake resistor is connected to the drive, P372 [Bus Reg Mode A] and P373 [Bus Reg Mode B] must be set to either option 2, 3, or 4; otherwise the dynamic brake will not turn on.	Default: Options:	$\begin{aligned} & 0=" \text { "Internal" } \\ & 0=" \text { Internal" } \\ & 1=\text { "External" } \end{aligned}$	RW	32-bit Integer

ATTENTION: Equipment damage may result if a drive mounted (internal) resistor is installed and this parameter is set to "External." Thermal protection for the internal resistor will be disabled, resulting in possible device damage.

ATTENTION: The drive does not offer protection for externally mounted brake resistors. A risk of fire exists if external braking resistors are not protected. External resistor packages must be self-protected from over-temperature or the protective circuit shown in Figure 4 on page 356 (or equivalent) must be supplied.

383	DB Ext Ohms Dynamic Brake External Ohms Used to calculate the maximum negative torque available from the dynamic brake and is used for the external resistor dynamic brake protection.	Units: Default: Min/Max:	Ohms Based on Drive Rating Internal / 10000.00	RW	Real
384	DB Ext Watts Dynamic Brake External Watts Sets the continuous rated power reference for the external dynamic brake resistor. Only valid when an external dynamic brake resistor is selected (P382 [DB Resistor Type] =1 External"). The DB continuous watts are used in the dynamic brake thermal protection algorithm. Important: If customer-suplied protection is to be used in place of the drive's calculated resistor thermal protection, set the [DB Ext Watts] to its maximum value.	Units: Default: Min/Max:	Watt 100.00 $1.00 / 500000.00$	RW	Real

은	$\begin{aligned} & \text { 을 } \\ & \text { 운 } \end{aligned}$	No.	Display Name Full Name Description	Values			
		385	DB ExtPulseWatts Dynamic Brake External Pulse Watts Sets the thermal transient response of the external dynamic brake resistor defined by the maximum allowable power to the dynamic brake resistor for 1 second without exceeding the resistor's element temperature. This parameter is only valid when an external dynamic brake resistor is selected (P382 [DB Resistor Type] = 1 "External"). If this value is not available from the resistor vendor it can be approximated by 1 or 2 below: 1. [DB ExtPulseWatts] $=75,000 \mathrm{x}$ weight (lb), where weight is the weight of the resistor wire in pounds (not the weight of the entire resistor). 2. [DB ExtPulseWatts] = Time Constant x Brake Watts, where the Time Constant equals the amount of time to reach 63% of its rated temperature while the maximum power is applied to the resistor and Brake Watts is the maximum continuous power rating of the resistor. Many external resistor pulse watts settings are provided in the PowerFlex Dynamic Braking Resistor Calculator, publication PFLEX-AT001, or consult the resistor manufacturer for this specification. Note: If the value of this parameter is set equal to the value of P384 [DB Ext Watts], an F5 "Overvoltage" fault can occur. Important: If customer supplied protection is to be used in place of the drive's calculated resistor thermal protection, set the [DB ExtPulse Watts] to its maximum value. This information may show up on your resistor in Joules or Watt-seconds. Use that value in this parameter. Contact the resistor manufacturer if that information is not provided.	Units: Default: Min/Max:	$\begin{array}{\|l\|} \hline \text { Watt } \\ 2000.00 \\ 1.00 / 100000000.00 \end{array}$	RW	Real

ATTENTION: If a hazard of injury due to movement of equipment or material exists, an auxiliary mechanical braking device must be used.

ATTENTION: This feature should not be used with synchronous or permanent magnet motors. Motors may be demagnetized during braking.

쁯	릉	No.	Display Name Full Name Description	Values			$\begin{aligned} & \stackrel{0}{2} \\ & \stackrel{\rightharpoonup}{2} \\ & \stackrel{y}{0} \\ & \stackrel{5}{0} \end{aligned}$
		395	DC Brake Time DC Brake Time Sets the amount of time DC brake current is "injected" into the motor. When the active stop mode, $\mathrm{P} 370 / 371$ [Stop Mode n] $=2$ "Ramp to Hold," this parameter is ignored and $D C$ braking is applied continuously. Functional in all motor control modes.	Units: Default: Min/Max:	Secs 0.00 $0.00 / 90.00$	RW	Real
		396	DC Brake Ki DC Brake Integral Gain Sets the integral term used in the current regulator which controls the DC Brake function. Functional in all motor control modes.	Default: Min/Max:	$\begin{array}{\|l\|} \hline 10.0 \\ 0.0 / 1000.0 \end{array}$	RW	Real
		397	DC Brake Kp DC Brake Proportional Gain Sets the proportional term used in the current regulator which controls the DC Brake function.	Default: Min/Max	$\begin{array}{\|l\|} 1000.0 \\ 0.0 / 10000.0 \end{array}$	RW	Real
		398	DC Brk Vq Fltr DC Brake Vq Filter Sets the level of filtering used on the Vq signal when the active stop mode P370/371 [Stop Mode n] = 4 "DCBrkAutofff."	Default: Min/Max:	$\begin{aligned} & 250.0 \\ & 50.0 / 2000.0 \end{aligned}$	RW	Real
		399	DC Brk Vd Fltr DC Brake Vd Filter Sets the level of filtering used on the Vd signal when the active stop mode P370/371 [Stop Mode n] = 4 "DCBrkAutofff."	Default: Min/Max:	$\begin{array}{l\|} \hline 250.0 \\ 50.0 / 2000.0 \end{array}$	RW	Real
		400	Fast Braking Ki Fast Braking Integral Gain Sets the integral term used in the speed regulator which controls the Fast Braking function. Functional in all motor control modes.	Default: Min/Max:	$\begin{aligned} & \mid 0.10 \\ & 0.00 / 10.00 \end{aligned}$	RW	Real
		401	Fast Braking Kp Fast Braking Proportional Gain Sets the proportional term used in the speed regulator which controls the Fast Braking function. Functional in all motor control modes.	Default: Min/Max:	$\begin{aligned} & 0.0015 \\ & 0.0000 / 10.0000 \end{aligned}$	RW	Real
		402	Brake Off Adj 1 Brake Off Adjustment 1 When Fast Braking is the selected Stop Mode, this parameter sets the power sensitivity to transition from Fast Braking to DC Brake. When DC Brake w/Auto Shutoff is selected, this parameter sets the level sensitivity for shut off.	Default: Min/Max:	$\begin{aligned} & 1.00 \\ & 0.01 / 5.00 \end{aligned}$	RW	Real
		403	Brake Off Adj 2 Brake Off Adjustment 2 When Fast Braking is the selected Stop Mode, this parameter sets the frequency sensitivity to transition from Fast Braking to DC Brake. When DC Brake w/Auto ShutOff is selected, this parameter sets the time sensitivity for shut off.	Default: Min/Max:	$\begin{aligned} & 1.00 \\ & 0.01 / 5.00 \end{aligned}$	RW	Real
		409	Dec Inhibit Actn Deceleration Inhibit Action Configures the response to a Decel Inhibit condition, which occurs when the drive is not decelerating. One possible cause could be bus voltage regulation. "Ignore" (0) - No action is taken. "Alarm" (1) - Type 1 alarm indicated. "Flt Minor" (2) - Minor fault indicated. If running, drive continues to run. Enable with P950 [Minor Flt Cfg]. If not enabled, acts like a major fault. "FltCoastStop" (3) - Major fault indicated. Coast to Stop.	Default: Options:	$\begin{aligned} & 3=\text { "FltCoastStop" } \\ & 0=\text { "lgnore" } \\ & 1=\text { "Alarm" } \\ & 2=\text { "Flt Minor" } \\ & 3=\text { "FltCoastStop" } \end{aligned}$	RW	$\begin{aligned} & \text { 32-bit } \\ & \text { Integer } \end{aligned}$

Drive (Port 0) Protection File

$\stackrel{\text { OT}}{\underline{I}}$	$\begin{aligned} & \text { 을 } \\ & \text { 인 } \end{aligned}$	No.	Display Name Full Name Description	Values			
		410	Motor OL Actn Motor Overload Action Configures the response to a motor overload condition. If "Flt Minor" (2) is selected, enable P950 [Minor Flt Cfg] Bit 0 . "Ignore" (0) - No action is taken. "Alarm" (1) - Type 1 alarm indicated. "Flt Minor" (2) - Minor fault indicated. If running, drive continues to run. Enable with P950 [Minor Flt Cfg]. If not enabled, acts like a major fault. "FltCoastStop" (3) - Major fault indicated. Coast to Stop. "FIt RampStop" (4) - Major fault indicated. Ramp to Stop. "Flt CL Stop" (5) - Major fault indicated. Current Limit Stop.	Default: Options:	$\begin{aligned} & 3=\text { "FltCoastStop" } \\ & 0=\text { "Ignore" } \\ & 1=\text { ="Alarm" } \\ & 2=\text { "Flt Minor" } \\ & 3=\text { "FltCoastStop" } \\ & 4=\text { "Flt RampStop" } \\ & 5=\text { "Flt CL Stop" } \end{aligned}$	RW	32-bit Integer
		411	Mtr OL at Pwr Up Motor Overload At Power Up Selects the mode to use for initial value of the motor overload counter, upon drive power-up. "Assume Cold" (0) - P418 [Mtr OL Counts] will be reset to zero the next time the drive is powered up. "UseLastValue" (1) - The value of P418 [Mtr OL Counts] will be retained at power down and restored the next time the drive is powered up. "RealTimeCIk" (2) - The value of P418 [Mtr OL Counts] begins to decrease at drive power down, reflecting the cooling of the motor, and stops at drive power-up or when zero is reached. This option is only available when the real time clock is active on the drive.	Default: Options:	$\begin{aligned} & 0=\text { "Assume Cold" } \\ & 0=\text { "Assume Cold" } \\ & 1=\text { "UseLastValue" } \\ & 2=\text { "RealTimeCIk" } \end{aligned}$	RW	$\begin{aligned} & \text { 32-bit } \\ & \text { Integer } \end{aligned}$
든		412	Mtr OL Alarm LvI Motor Overload Alarm Level Sets the level of P418 [Mtr OL Counts] for which a motor overload alarm will occur. Useful to provide warning prior to the drive taking action that is selected by P410 [Motor OL Actn]. This alarm level is different than, and independent of, the "Alarm" action selected by P410 [Motor OL Actn].	Units: Default: Min/Max:	$\begin{aligned} & \hline \% \\ & 0.00 \\ & 0.00 / 100.00 \end{aligned}$	RW	Real
		413	Mtr OL Factor Motor Overload Factor Sets the minimum level of current (in percent or P26 [Motor NP Amps]) that causes the motor overload counter to increment. Current levels below this value will decrement the overload counter. For example, a service factor of 1.15 implies continuous operation up to 115% of nameplate motor current.	Default: Min/Max:	$\begin{aligned} & 1.00 \\ & 0.20 / 2.00 \end{aligned}$	RW	Real
		414	Mtr OL Hertz Motor Overload Hertz Selects the output frequency below which the motor operating current is derated (more sensitive) to account for the reduced self-cooling capability of typical motors, operating at slower speeds. For motors with extra low speed cooling capacity (for example 10:1 or blower cooled), reduce this setting to take full advantage of the motor being used.	Units: Default: Min/Max:	$\begin{aligned} & \mathrm{Hz} \\ & 20.00 \\ & 0.00 / 4096.00 \end{aligned}$	RW	Real
		415	Mtr OL Reset LvI Motor Overload Reset Level Sets the level that resets a motor overload condition, and allows a fault (if selected as the motor overload action) to be manually reset.	Units: Default: Min/Max:	$\begin{array}{\|l\|} \hline \% \\ 0.00 \\ 0.00 / 100.00 \end{array}$	RW	Real
		416	MtrOL Reset Time Motor Overload Reset Time Displays the time it will take to restart the drive after a motor overload fault has occurred and the value in P418 [Mtr 0L Counts] is less than the P415 [Mtr OL Reset Lvl].	Units: Default: Min/Max:	$\begin{aligned} & \text { Secs } \\ & 0.00 \\ & -/+99999.00 \end{aligned}$	RW	Real

	No.	Display Name Full Name Description	Values				

쁜		No.	Display Name Full Name Description	Values		\%	
은		441	Load Loss Action Load Loss Action Configures the action to take when the load is less than or equal to P442 [Load Loss Level] for the amount of time set in P443 [Load Loss Time]. "Ignore" (0) - No action is taken. "Alarm" (1) - Type 1 alarm indicated. "Flt Minor" (2) - Minor fault indicated. If running, drive continues to run. Enable with P950 [Minor Flt Cfg]. If not enabled, acts like a major fault. "FItCoastStop" (3) - Major fault indicated. Coast to Stop. "FIt RampStop" (4) - Major fault indicated. Ramp to Stop. "Flt CL Stop" (5) - Major fault indicated. Current Limit Stop.	Default: Options:	$\begin{aligned} & 0=\text { "Ignore" } \\ & 0=\text { "Ignore" } \\ & 1=\text { "Alarm" } \\ & 2=\text { "Flt Minor" } \\ & 3=\text { "FlCOastSto"" } \\ & 4=\text { "Ilt RampStop" } \\ & 5=\text { "Flt CL Stop" } \end{aligned}$	RW	$\begin{array}{\|l\|} \hline \text { 32-bit } \\ \text { Integer } \end{array}$
		442	Load Loss Level Load Loss Level Sets the percentage of motor nameplate torque (absolute value) associated with activation of the load loss function, P441 [Load Loss Action]. See P5 [Torque Cur Fdbk] motor nameplate torque.	Units: Default: Min/Max:	$\begin{array}{\|l\|} \hline \% \\ 200.00 \\ 0.00 / 800.00 \end{array}$	RW	Real
		443	Load Loss Time Load Loss Time Sets the time associated with activation of the load loss function (see P441 [Load Loss Action]).	Units: Default: Min/Max:	Secs 0.00 $0.00 / 300.00$	RW	Real
		444	OutPhaseLossActn Output Phase Loss Action Selects action to take if output phase loss is detected. "Ignore" (0) - No action is taken. "Alarm" (1) - Type 1 alarm indicated. "Flt Minor" (2) - Minor fault indicated. If running, drive continues to run. Enable with P950 [Minor Flt Cfg]. If not enabled, acts like a major fault. "FItCoastStop" (3) - Major fault indicated. Coast to Stop. "Flt RampStop" (4) - Major fault indicated. Ramp to Stop. "Flt CL Stop" (5) - Major fault indicated. Current Limit Stop.	Default: Options:	$\begin{aligned} & 0=\text { "Ignore" } \\ & 0=\text { "Ignore" } \\ & 1=\text { "Alarm" } \\ & 2=\text { "Flt Minor" } \\ & 3=\text { "FltCoastStop" } \\ & 4=\text { "Flt RampStop" } \\ & 5=\text { "Flt CL Stop" } \end{aligned}$	RW	$\begin{array}{\|l\|} \text { 32-bit } \\ \text { Integer } \end{array}$
		445	Out PhaseLossLvl Output Phase Loss Level Sets the threshold level which is used to determine an output phase loss condition. Each motor phase must exceed this value. Decreasing this parameter's value lowers sensitivity.	Default: Min/Max:.	$\begin{aligned} & 200 \\ & 0 / 1000 \end{aligned}$	RW	$\begin{array}{\|l\|} \text { 32-bit } \\ \text { Integer } \end{array}$

을	을	No.	Display Name Full Name Description	Values		¢	
		449	Power Loss Actn Power Loss Action Configures the drive's response to a power loss timeout condition. Time is set in P452/ 455 [Pwr Loss n Time]. "Ignore" (0) - No action is taken. "Alarm" (1) - Type 1 alarm indicated. "Flt Minor" (2) - Minor fault indicated. If running, drive continues to run. Enable with P950 [Minor Flt Cfg]. If not enabled, acts like a major fault. "FItCoastStop" (3) - Major fault indicated. Coast to Stop.	Default: Options:	$\begin{aligned} & 1=\text { "Alarm" } \\ & 0=\text { "Ignore" } \\ & 1=\text { "Alarm" } \\ & 2=\text { "Flt Minor" } \\ & 3=\text { "FltCoastStop" } \end{aligned}$	RW	$\begin{array}{\|l\|} \hline \text { 32-bit } \\ \text { Integer } \end{array}$
		$\begin{aligned} & 450 \\ & 453 \end{aligned}$	Pwr Loss Mode A Pwr Loss Mode B Power Loss Mode A, B Configures the drive's response to a loss of input power as sensed by a drop in bus voltage. The bus voltage drop is specified in P451/454 [Pwr Loss n Level] and compared to the bus voltage memory P12 [DC Bus Memory]. "Coast" (0) - When a power loss occurs, the drive stops modulating. Use this option on low inertia loads. "Decel" (1) - The drive will decelerate the motor to help maintain the bus voltage. Use this option on high inertia loads. "Continue" (2) - The drive will continue to run through a power loss. Improper use of this option can cause drive damage.	Default: Options:	$\begin{aligned} & 0=\text { "Coast" } \\ & 0=\text { "Coast" } \\ & 1=\text { "Decel" } \\ & 2=\text { "Continue" } \end{aligned}$	RW	32-bit Integer
흔	ü On 20 0.0	$\begin{array}{\|l\|} \hline 451 \\ 454 \end{array}$	Pwr Loss A Level Pwr Loss B Level Power Loss Mode A, B Level Sets the bus voltage level at which ride-through begins and modulation ends. When bus voltage falls below this level, the drive prepares for an automatic restart. Enter a percentage of the bus voltage derived from the high voltage setting for the voltage class. The trip level is calculated as: P7 [DC Bus Memory] - P451 [Pwr Loss A Level] or P454 [Pwr Loss B Level] For example: on a $400 / 480 \mathrm{~V}$ drive, $0.3913 \times 480 \mathrm{VAC} \times \sqrt{ } 2=265.62 \mathrm{VDC}$	Units: Default: Min/Max:	$\begin{aligned} & \text { V DC } \\ & \text { P20 [Rated Volts] x } 0.3913 \\ & 0.0 \text { / P20 [Rated Volts] x } 1.41 \end{aligned}$	RW	Real
		$\begin{aligned} & 452 \\ & 455 \end{aligned}$	Pwr Loss A Time Pwr Loss B Time Power Loss Mode A, B Time Sets the time that the drive will remain in power loss mode before a fault is detected.	Units: Default: Min/Max:	Secs 2.00 $0.00 / 60.00$	RW	Real
		456	PwrLoss RT BusKp Power Loss Ride Through Bus Kp Proportional gain that adjusts the response of the bus regulator when power loss ride through is enabled and detected. This parameter is not functional when any of the FV motor control modes are selected.	Units: Default: Min/Max:	A/V 585.0 $0.0 / 1000000.0$	RW	Real
		457	PwrLoss RT BusKd Power Loss Ride Through Bus Kd Derivative gain that adjusts the response of the bus regulator when power loss ride through is enabled and detected. This parameter is not functional when any of the FV motor control modes are selected.	Units: Default: Min/Max:	Secs 50.0 $0.0 / 1000000.0$	RW	Real
		458	PwrLoss RT ACRKp Power Loss Ride Through Active Current Regulator Kp Proportional gain that adjusts the response of the active current regulator portion of the bus regulator when power loss ride through is enabled and detected. This parameter is not functional when any of the FV motor control modes are selected.	Units: Default: Min/Max:	Hz / A 524.0 $0.0 / 100000.0$	RW	Real
		459	PwrLoss RT ACRKi Power Loss Ride Through Active Current Regulator Ki Integral gain that adjusts the response of the active current regulator portion of the bus regulator when power loss ride through is enabled and detected. This parameter is not functional when any of the FV motor control modes are selected.	Units: Default: Min/Max:	$\begin{aligned} & \mathrm{Hz} / \mathrm{A} \\ & 2045.0 \\ & 0.0 / 50000.0 \end{aligned}$	RW	Real

츨	른	No.	Display Name Full Name Description	Values			
$\begin{aligned} & \text { 즌 } \\ & \text { 흔 } \\ & \text { 范 } \end{aligned}$		466	Ground Warn Actn Ground Warning Action Selects the action to take when a ground current event is detected. The Ground Warning feature detects a ground current that exceeds the level set in P467 [Ground Warn Lvl]. An alarm is displayed until the ground current falls below the level set in P467 [Ground Warn Lvl] while the drive continues to run. A fault will stop the drive. A fault cannot be cleared until the ground current is below the level set in P467 [Ground Warn Lvl]. "Ignore" (0) - No action is taken. "Alarm" (1) - Type 1 alarm indicated. "Flt Minor" (2) - Minor fault indicated. If running, drive continues to run. Enable with P950 [Minor Flt Cfg]. If not enabled, acts like a major fault. "FltCoastStop" (3) - Major fault indicated. Coast to Stop. "FIt RampStop" (4) - Major fault indicated. Ramp to Stop. "Flt CL Stop" (5) - Major fault indicated. Current Limit Stop.	Default: Options:	$\begin{aligned} & 0=\text { "Ignore" } \\ & 0=\text { "Ignore" } \\ & 1=\text { "Alarm" } \\ & 2=\text { "Flt Minor" } \\ & 3=\text { "FltCoastStop" } \\ & 4=\text { "FIt RampStop" } \\ & 5=\text { "Flt CL Stop" } \end{aligned}$	RW	$\begin{array}{\|l\|} \hline \text { 32-bit } \\ \text { Integer } \end{array}$
		467	Ground Warn LvI Ground Warning Level Sets the level at which a ground warning alarm will occur.	Units: Default: Min/Max:	$\begin{array}{\|l\|} \hline \text { Amps } \\ 4.00 \\ 1.00 / 5.00 \end{array}$	RW	Real

흔	을	No.	Display Name Full Name Description	Values			
은	Predictive Maintenance	484	755 (8+) CbFan RemainLife Cabinet Fan Remaining Life Remaining number of hours until estimated end of life for cabinet fans, and is the difference between P482 [CbFan Totallife] and P483 [CbFan ElpsdLife]. All negative values of this parameter need to be treated as excessive use ($>100 \%$), and trigger the appropriate action chosen by P486 [CbFan EventActn]. Frame 8 drives have a single converter, and therefore have a single cabinet fan. The value of this parameter reflects the remaining life of that fan. Frame 9 drives have two converters, and therefore two cabinet fans. Frame 10 drives have three converters, and therefore three cabinet fans. For frame 9 and 10 drives, the value of this parameter reflects the shortest remaining life of all the cabinet fans.	Units: Default: Min/Max:	$\begin{aligned} & \hline \text { Hrs } \\ & 0.00 \\ & -21474836.48 / 21474836.47 \end{aligned}$	R0	$\begin{aligned} & \text { 32-bit } \\ & \text { Integer } \end{aligned}$
		485	755 (8+) CbFan EventLevel Cabinet Fan Event Level Percent of total expected cabinet fan life for which an early warning alarm or fault can be programmed.	Units: Default: Min/Max:	$\begin{array}{\|l\|} \hline \% \\ 80.000 \\ 0.000 / 100.000 \end{array}$	RW	Real
		486	755 (8+) CbFan EventActn Cabinet Fan Event Action Configures the response to a cabinet fan event, which occurs when P485 [CbFan EventLevel] is met or exceeded. "Ignore" (0) - No action is taken. "Alarm" (1) - Type 1 alarm indicated. "Flt Minor" (2) - Minor fault indicated. If running, drive continues to run. Enable with P950 [Minor Flt Cfg]. If not enabled, acts like a major fault. "FItCoastStop" (3) - Major fault indicated. Coast to Stop. "FIt RampStop" (4) - Major fault indicated. Ramp to Stop. "FIt CL Stop" (5) - Major fault indicated. Current Limit Stop.	Default: Options:	$\begin{aligned} & 0=\text { "Ignore" } \\ & 0=\text { "Ignore" } \\ & 1=\text { "Alarm" } \\ & 2=\text { "Flt Minor" } \\ & 3=\text { "FltCoastStop" } \\ & 4=\text { "FIt RampStop" } \\ & 5=\text { "Flt CL Stop" } \end{aligned}$	RW	32-bit Integer
		488	HSFan Derate Heatsink Fan Derate Derating factor applied to P489 [HSFan TotalLife]. Used to adjust total fan life for poor air quality or vibration.	Default: Min/Max:	$\begin{aligned} & 1.00 \\ & 0.01 / 1.00 \end{aligned}$	RW	Real
		489	HSFan TotalLife Heatsink Fan Total Life Total number of hours expected over the life of a single heatsink fan. Calculated as a function of fan manufacturer's life data (from frame rating table), P470 [PredMaintAmbTemp] and P488 [HSFan Derate].	Units: Default: Min/Max:	$\begin{array}{\|l\|} \hline \text { Hrs } \\ 0.00 \\ 0.00 / 21474836.47 \text { (31 bits) } \end{array}$	R0	32-bit Integer
		490	HSFan ElpsdLife Heatsink Fan Elapsed Life Accumulated hours of heatsink fan run time. Use P472 [PredMaint Reset] to reset this parameter. Frame 8 drives have a single inverter, and therefore have a single heatsink fan. The value of this parameter reflects the elapsed life of that fan. Frame 9 drives have two inverters, and therefore two heatsink fans. Frame 10 drives have three inverters, and therefore three heatsink fans. For frame 9 and 10 drives, the value of this parameter reflects the longest elapsed life of all the heatsink fans. Individual elapsed life values are available at parameters 128 [I1 HSFanElpsdLif], 228 [I2 HSFanElpsdLif] and 328 [I3 HSFanElpsdLif] in port 10.	Units: Default: Min/Max:	Hrs 0.00 $0.00 / 21474836.47$ (31 bits)	R0	32-bit Integer

른	은	No.	Display Name Full Name Description	Values		\|l	汞
		491	HSFan RemainLife Heatsink Fan Remaining Life Remaining number of hours until estimated end of life for heatsink fans, and is the difference between P489 [HSFan Totallife] and P490 [HSFan ElpsdLLife]. All negative values of this parameter need to be treated as excessive use (>100\%), and trigger the appropriate action chosen by P493 [HSFan EventActn]. Use P472 [PredMaint Reset] to reset this parameter. 755 (8+) Frame 8 drives have a single inverter, and therefore a single heatsink fan. The value of this parameter reflects the remaining life of that fan. Frame 9 drives have two inverters, and therefore two heatsink fans. Frame 10 drives have three inverters, and therefore three heatsink fans. For frame 9 and 10 drives, the value of this parameter reflects the shortest remaining life of all the heatsink fans.	Units: Default: Min/Max:	Hrs 0.00 $-21474836.48 / 21474836.47$	RO	32-bit Integer
		492	HSFan EventLevel Heatsink Fan Event Level Percent of total expected heatsink fan life for which an early warning alarm or fault can be programmed.	Units: Default: Min/Max	$\begin{array}{\|l\|} \hline \% \\ 80.000 \\ 0.000 / 100.000 \end{array}$	RW	Real
은		493	HSFan EventActn Heatsink Fan Event Action Configures the response to a heatsink fan event, which occurs when P492 [HSFan EventLevel] is met or exceeded. "Ignore" (0) - No action is taken. "Alarm" (1) - Type 1 alarm indicated. "Flt Minor" (2) - Minor fault indicated. If running, drive continues to run. Enable with P950 [Minor Flt Cfg]. If not enabled, acts like a major fault. "FItCoastStop" (3) - Major fault indicated. Coast to Stop. "FIt RampStop" (4) - Major fault indicated. Ramp to Stop. "Flt CL Stop" (5) - Major fault indicated. Current Limit Stop.	Default: Options:	$\begin{aligned} & 0=\text { "Ignore" } \\ & 0=\text { "Ignore" } \\ & 1=\text { "Alarm" } \\ & 2=\text { "Flt Minor" } \\ & 3=\text { "FltCoastStop" } \\ & 4=\text { "Flt RampStop" } \\ & 5=\text { "Flt CL Stop" } \end{aligned}$	RW	32-bit Integer
		494	HSFan ResetLog Heatsink Fan Reset Log Total number of resets performed on the P490 [HSFan ElpsdLife] parameter. Note: This parameter is not used by PowerFlex 755 Frame 8 drives and larger.	Default: Min/Max:	$\begin{aligned} & 0 \\ & 0 / 255 \text { (unsigned } 8 \text { bits) } \end{aligned}$	RO	$\begin{aligned} & \text { 32-bit } \\ & \text { Integer } \end{aligned}$
		495	InFan Derate Internal Fan Derate Derating factor applied to P496 [InFan Totallife]. Used to adjust total fan life for poor air quality or vibration.	Default: Min/Max:	$\begin{aligned} & 1.00 \\ & 0.01 / 1.00 \end{aligned}$	RW	Real
		496	InFan TotalLife Internal Fan Total Life Total number of hours expected over the life of an internal fan. Calculated as a function of fan manufacturer's life data (from frame rating table), P470 [PredMaintAmbTemp] and P495 [InFan Derate]. 755 (8+) Total number of hours expected over the life of a single internal fan. Calculated as a function of fan manufacturer's life data (from frame rating table), P470 [PredMaintAmbTemp] and P495 [InFan Derate].	Units: Default: Min/Max:	Hrs 0.00 $0.00 / 21474836.47$ (31 bits)	RO	$\begin{array}{\|l\|} \hline \text { 32-bit } \\ \text { Integer } \end{array}$

츺	릉	No.	Display Name Full Name Description	Values			
		497	InFan ElpsdLife Internal Fan Elapsed Life Accumulated hours of internal stirring fan run time. Note: Frames 6 and 7 run continuously, and frames $2 . . .5$ are controlled by firmware. Use P472 [PredMaint Reset] to reset this parameter. 755 (8+) Frame 8 drives have a single inverter, and therefore a single internal stirring fans. The value of this parameter reflects the elapsed life of that internal fan. Frame 9 drives have two inverters, and therefore two internal fans. Frame 10 drives have three inverters, and therefore three internal fans. For frame 9 and 10 drives, the value of this parameter reflects the longest elapsed life of the internal fans. Individual elapsed life values are available at parameters 129 [1] InFanElpsdLif], 229 [I2 InFanElpsdLif], and 329 [13 InFanElpsdLif] in port 10.	Units: Default: Min/Max	Hrs 0.00 $0.00 / 21474836.47$ (31 bits)	R0	32-bit Integer
은 픙 웅		498	InFan RemainLife Internal Fan Remaining Life Remaining number of hours until estimated end of life for internal stirring fans, and is the difference between P496 [InFan TotalLife] and P497 [InFan ElpsdLife]. All negative values of this parameter need to be treated as excessive use (> 100%), and trigger the appropriate action chosen by P500 [InFan EventActn]. Use P472 [PredMaint Reset] to reset this parameter. 755 (8+) Frame 8 drives have a single inverter, and therefore a single internal stirring fan. The value of this parameter reflects the remaining life of that internal fan. Frame 9 drives have two inverters, and therefore two internal fans. Frame 10 drives have three inverters, and therefore three internal fans. For frame 9 and 10 drives, the value of this parameter reflects the shortest remaining life of all the internal fans.	Units: Default: Min/Max	Hrs 0.00 $-21474836.48 / 21474836.47$	R0	32-bit Integer
		499	InFan EventLevel Internal Fan Event Level Percent of total expected internal stirring fan life for which an early warning alarm or fault can be programmed.	Units: Default: Min/Max	\% 80.000 $0.000 / 100.000$	RW	Real
		500	InFan EventActn Internal Fan Event Action Configures the response to an internal stirring fan event, which occurs when P499 [InFan EventLevel] is met or exceeded. "Ignore" (0) - No action is taken. "Alarm" (1) - Type 1 alarm indicated. "Flt Minor" (2) - Minor fault indicated. If running, drive continues to run. Enable with P950 [Minor Flt Cfg]. If not enabled, acts like a major fault. "FltCoastStop" (3) - Major fault indicated. Coast to Stop. "FIt RampStop" (4) - Major fault indicated. Ramp to Stop. "Flt CL Stop" (5) - Major fault indicated. Current Limit Stop.	Default: Options:	$\begin{aligned} & 0=\text { "Ignore" } \\ & 0=\text { "Ignore" } \\ & 1=\text { "Alarm" } \\ & 2=\text { "Flt Minor" } \\ & 3=\text { "FltCoastStop" } \\ & 4=\text { "FIt RampStop" } \\ & 5=\text { "Flt CL Stop" } \end{aligned}$	RW	$\begin{aligned} & \text { 32-bit } \\ & \text { Integer } \end{aligned}$
		501	InFan ResetLog Internal Fan Reset Log Total number of resets performed on the P497 [InFan Elpsdlife] parameter. Note: This parameter is not used by PowerFlex 755 Frame 8 drives and larger.	Default: Min/Max:	$\begin{aligned} & 0 \\ & 0 / 255 \text { (unsigned } 8 \text { bits) } \end{aligned}$	RO	32-bit Integer

흔	은	No.	Display Name Full Name Description	Values			
흔	Predictive Maintenance	511	MchBrngTotalLife Machine Bearing Total Life Total number of hours expected over the life of the machine bearings.	Units: Default: Min/Max:	Hrs Current Value $0.00 / 21474836.47$	RW	32-bit Integer
		512	MchBrngElpsdLife Machine Bearing Elapsed Life Accumulated hours of machine bearing run time. Use P472 [PredMaint Reset] to reset this parameter.	Units: Default: Min/Max:	$\begin{array}{\|l\|} \hline \text { Hrs } \\ 0.00 \\ 0.00 / 21474836.47 \end{array}$	R0	32-bit Integer
		513	MchBrngRemainLif Machine Bearing Remaining Life Remaining number of hours until estimated end of life for machine bearings, and is the difference between Machine Bearing Total Life and Machine Bearing Elapsed Life. Use P472 [PredMaint Reset] to reset this parameter.	Units: Default: Min/Max:	Hrs 0.00 $-21474836.48 / 21474836.47$	R0	32-bit Integer
		514	MchBrngEventLvI Machine Bearing Event Level Percent of total expected machine bearing life for which an early warning alarm or fault can be programmed.	Units: Default: Min/Max:	$\begin{aligned} & \% \\ & 80.000 \\ & 0.000 / 100.000 \end{aligned}$	RW	Real
		515	MchBrngEventActn Machine Bearing Event Action Configures the response to a machine bearing event, which occurs when P514 [MchBrngEventLvl] is met or exceeded. "Ignore" (0) - No action is taken. "Alarm" (1) - Type 1 alarm indicated. "Flt Minor" (2) - Minor fault indicated. If running, drive continues to run. Enable with P950 [Minor Flt Cfg]. If not enabled, acts like a major fault. "FltCoastStop" (3) - Major fault indicated. Coast to Stop. "FIt RampStop" (4) - Major fault indicated. Ramp to Stop. "Flt CL Stop" (5) - Major fault indicated. Current Limit Stop.	Default: Options:	$\begin{aligned} & 0=\text { "Ignore" } \\ & 0=\text { "Ignore" } \\ & 1=\text { ="Alarm" } \\ & 2=\text { "Flt Minor" } \\ & 3=\text { "FltCoastStop" } \\ & 4=\text { "Flt RampStop" } \\ & 5=\text { "Flt CL Stop" } \end{aligned}$	RW	32-bit Integer
		516	MchBrngResetLog Machine Bearing Reset Log Total number of resets performed on the P512 [MchBrngElpsdLife] parameter.	Default: Min/Max:	$\begin{aligned} & 0 \\ & 0 / 255 \end{aligned}$	R0	32-bit Integer
		517	MchLubeElpsdHrs Machine Lubricant Elapsed Hours Accumulated machine hours since the most recent lubrication of the machine bearings. Can be reset without restriction. Use P472 [PredMaint Reset] to reset this parameter.	Units: Default: Min/Max:	$\begin{array}{\|l\|} \hline \text { Hrs } \\ 0.00 \\ 0.00 / 21474836.47 \end{array}$	RO	32-bit Integer
		518	MchLube EventLvI Machine Lubricant Event Level Number of hours between scheduled lubrications of the machine bearings. Used for an early warning alarm or fault according to P519 [MchLubeEventActn]. Event is disabled when set to 0 .	Units: Default: Min/Max:	Hrs 0.000 $0.000 / 2147483648.000$	RW	Real
		519	MchLubeEventActn Machine Lubricant Event Action Configures the response to a machine bearing lubrication event, which occurs when P518 [MchLube EventLvl] is met or exceeded. "Ignore" (0) - No action is taken. "Alarm" (1) - Type 1 alarm indicated. "Flt Minor" (2) - Minor fault indicated. If running, drive continues to run. Enable with P950 [Minor Flt Cfg]. If not enabled, acts like a major fault. "FltCoastStop" (3) - Major fault indicated. Coast to Stop. "Flt RampStop" (4) - Major fault indicated. Ramp to Stop. "Flt CL Stop" (5) - Major fault indicated. Current Limit Stop.	Default: Options:	$\begin{aligned} & 0=\text { "Ignore" } \\ & 0=\text { "Ignore" } \\ & 1=\text { ="Alarm" } \\ & 2=\text { "Flt Minor" } \\ & 3=\text { "FltCoastStop" } \\ & 4=\text { "FIt RampStop" } \\ & 5=\text { "Flt CL Stop" } \end{aligned}$	RW	32-bit Integer

Drive (Port 0) Speed Control
 File

츺	응	No.	Display Name Full Name Description	Values		(1)	(1)
훈응푼ㅂ		$\begin{aligned} & 526 \\ & 527 \\ & 528 \end{aligned}$	Skip Speed 1 Skip Speed 2 Skip Speed 3 Skip Speed n Sets a frequency at which the drive will not operate. Parameters are disabled if set to 0 .	Units: Default: Min/Max:	Hz RPM 0.00 P521 [Max Rev Speed] / P520 [Max Fwd Speed]	RW	Real
		529	Skip Speed Band Skip Speed Band Sets the bandwidth around a skip speed. [Skip Speed Band] is split, applying $1 / 2$ above and $1 / 2$ below the skip speed. The same bandwidth applies to all skip speeds. Parameter is disabled if set to 0 .	Units: Default: Min/Max:	Hz RPM 0.00 0.00 / Based on P27 [Motor NP Hertz]/P28 [Motor NP RPM] and Voltage Class	RW	Real

	No.	Name Description	Values		

츷	$\begin{array}{r} \text { O} \\ \frac{2}{3} \\ \hline \end{array}$	No.	Display Name Full Name Description	Values		\|l	
훙		$\begin{gathered} 545 \\ 550 \\ 0 \\ \hline-= \end{gathered}$	Spd Ref A Sel Spd Ref B Sel Speed Reference A, B Select Selects the source for speed references while in "Auto" (typical) mode. When the drive is in "Manual" mode, these sources are overridden (see P327). [Spd Ref A Sel] is the drive's main speed reference. [Spd RefB Sel] is an alternate speed reference. Selecting between Reference A and Reference B is controlled by a digital input function (see parameters 173... 175 [DI Speed Sel n]) or by Logic Command bits $12 . . .14$ (sent over a communication network). When the speed reference is from a communication network, set this parameter to Port 0 and select parameter $874 \ldots 877$ [Port n Reference] as appropriate. If the speed reference is from an encoder, set this parameter to Port 0 and select parameter 134 [Aux Vel Feedback]. Configure parameter 132 [Aux Vel Fdbk Sel] to the appropriate encoder. To access these parameters, set P301 [Access Level] to option 2 "Expert."	Default: Min/Max:	871 551 $0 / 159999$	RW	$\begin{array}{\|l} \text { 32-bit } \\ \text { Integer } \end{array}$
		$\begin{aligned} & 546 \\ & 551 \end{aligned}$	Spd Ref A Stpt Spd Ref B Stpt Speed Reference A, B Setpoint A constant speed value (similar to a preset speed) to be used as a possible source for P545 and P550.	Units: Default: Min/Max:	Hz RPM 0.0000 Hz $-/+\mathrm{P} 27$ [Motor NP Hertz] x 8 $-/+$ P28 [Motor NP RPM] 8 B	RW	Real
		$\begin{aligned} & 547 \\ & 552 \end{aligned}$	Spd Ref A AnlgHi Spd Ref B AnlgHi Speed Reference A, B Analog High Used only when an analog input is selected as a speed reference according to P545/550 [Spd Refn Sel]. Sets the speed that corresponds to P51/61 [Anlg Inn Hi] on an I/0 module. This establishes scaling throughout the range.	Units: Default: Min/Max:	Hz P520 [Max Fwd Speed] P521 [Max Rev Speed] / P520 [Max Fwd Speed]	RW	Real
		$\begin{array}{\|l\|} \hline 548 \\ 553 \end{array}$	Spd Ref A AnlgLo Spd Ref B AnlgLo Speed Reference A, B Analog Low Used only when an analog input is selected as a speed reference according to P545/550 [Spd Refn Sel]. Sets the speed that corresponds to P51/61 [Anlg Inn Lo] on an I/0 module. This establishes scaling throughout the range.	Units: Default: Min/Max:	Hz 0.00 P521 [Max Rev Speed] / P520 [Max Fwd Speed]	RW	Real
		$\begin{aligned} & 549 \\ & 554 \end{aligned}$	Spd Ref A Mult Spd Ref B Mult Speed Reference A, B Multiplier Applies multipliers to speed references A and B respectively.	Default: Min/Max:	$\begin{aligned} & 1.00 \\ & -/+22000.00 \end{aligned}$	RW	Real
		555	Spd Ref Scale Speed Reference Scale Applies only in Flux Vector (FV) modes according to P35 [Motor Ctrl Mode]. Applies a multiplier to P595 [Filtered Spd Ref] after it has been offset by the PID function (P1093 [PID Output Meter]). The scaled result, once limited, will become the primary component of the value of P597 [Final Speed Ref].	Default: Min/Max:	$\begin{aligned} & 1.000 \\ & 0.000 / 1000.000 \end{aligned}$	RW	Real
		$\begin{aligned} & 556 \\ & 557 \end{aligned}$	Jog Speed 1 Jog Speed 2 Jog Speed n The speed used for jogging when the $\operatorname{Jog} 1$ or $\operatorname{Jog} 2$ function (respectively) is activated by a digital input function or by Logic Command (sent over a communication network).	Units: Default: Min/Max:	Hz Based on P27 [Motor NP Hertz]/P28 [Motor NP RPM] and Voltage Class -/+P27 [Motor NP Hertz] x8 -/+P28 [Motor NP RPM] x 8	RW	Real
		558	MOP Reference Motor Operated Potentiometer Reference Value of the MOP (Motor Operated Potentiometer) Reference to be used as a possible source for P545/550 [Spd Ref n Sel]. The MOP Reference is activated (incremented or decremented) by digital input functions.	Units: Default: Min/Max:	$\%$ 0.00 $-/+800.00$	R0	Real

쁲	응	No.	Display Name Full Name Description	Values			$\begin{aligned} & \text { N} \\ & \stackrel{y y}{\lambda} \\ & \stackrel{y y}{0} \\ & 0 \end{aligned}$
		588	Spd Ref Filter Speed Reference Filter Selects the amount of filtering applied to the ramped speed reference (P594), and is only active in FV motor control modes (P35). When set to any of the custom settings (3, 4, or 5) the filter is configured using the values set in P589 [Spd Ref FItr BW] and P590 [Spd Ref FltrGain]. Settings 4 and 5 initialize the values for light and heavy respectively.	Default: Options:	$\begin{aligned} & 0=\text { "0ff" } \\ & 0=\text { "Off" } \\ & 1=\text { "Light" } \\ & 2=\text { "Heavy" } \\ & 3=\text { "Custom" } \\ & 4=\text { "SetCustLight" } \\ & 5=\text { ="SetCustHeavy" } \end{aligned}$	RW	32-bit Integer
		589	Spd Ref FItr BW Speed Reference Filter Bandwidth Sets the bandwidth of the speed reference filter when P588[Spd Ref Filter] is set to one of the "Custom" settings (3,4, or 5) A value of zero will disable (bypass) the filter.	Units: Default: Min/Max	$\begin{array}{\|l\|} \hline \text { R/S } \\ 0.00 \\ 0.00 / 500.00 \end{array}$	RW	Real
		590	Spd Ref FItrGain Speed Reference Filter Gain Sets the gain (kn) of the speed reference filter when P588 [Spd Ref Filter] is set to one of the "Custom" settings (3, 4, or 5). A gain value of zero results in a filter characteristic that behaves as a first order low pass. A gain value ranging between zero and one results in a lag type filter. A gain value greater than one results in a lead type filter. A gain value of one will disable (bypass) the filter. This is the default setting. This parameter has no units.	Default: Min/Max:	$\begin{array}{\|l\|} \hline 1.000 \\ -/+5.000 \end{array}$	RW	Real

츷	$\begin{aligned} & \text { 은 } \\ & \text { 은 } \end{aligned}$	No.	Display Name Full Name Description	Values			
$\begin{aligned} & \text { 율 } \end{aligned}$	튼	$\begin{gathered} \hline 600 \\ 604 \\ \square \\ \hline \Leftrightarrow \end{gathered}$	Trim Ref A Sel Trim Ref B Sel Trim Reference A, B Select Selects a trim source (in Hz or RPM) for Speed Reference A or Speed Reference B, respectively. For trim in \% instead of Hz or RPM, use P608/612 (TrimPct Refn Sel).	Default: Min/Max:	P601 [Trim Ref A Sel] P605 [Trim Ref B Stpt] 0/159999	RW	32-bit Integer
뷴	$\begin{aligned} & \text { ㅎ̈ } \\ & \stackrel{0}{n} \end{aligned}$	$\begin{aligned} & 601 \\ & 605 \end{aligned}$	Trim Ref A Stpt Trim Ref B Stpt Trim Reference A, B Setpoint A digital value to be used as a possible trim source for P600 or P604, respectively	Units: Default: Min/Max:	Hz RPM 0.00 $-/+$ P27 [Motor NP Hertz] $-/+$ P28 [Motor NP RPM] x 8	RW	Real

$\stackrel{\text { 을 }}{i x}$	을	No.	Display Name Full Name Description	Values			$\underset{\sim}{\underset{\sim}{I}}$
응응푼	튼흘믄	$\begin{aligned} & 602 \\ & 606 \end{aligned}$	Trim RefA AnlgHi Trim RefB AnlgHi Trim Reference A, B Analog High Used only when an analog input is selected as a trim source according to P600 or P604. Sets the amount of trim that corresponds to P51/61 [Anlg Inn Hi] on an I/0 module or on the main control (product dependent). This establishes scaling throughout the range.	Units: Default: Min/Max:	Hz RPM P520 [Max Fwd Speed] P521 [Max Rev Speed] / P520 [Max Fwd Speed]	RW	Real
		603	Trim RefA AnlgLo Trim RefB AnlgLo Trim Reference A, B Analog Low Used only when an analog input is selected as a trim source according to P600/604 [Trim Ref n Sel]. Sets the amount of trim that corresponds to P52/62 [Anlg $\ln n \mathrm{~L} 0$] on an I/0 module or on the main control (product dependent). This establishes scaling throughout the range.	Units: Default: Min/Max:	Hz RPM 0.00 P521 [Max Rev Speed] / P520 [Max Fwd Speed]	RW	Real
		$\begin{gathered} 608 \\ 612 \\ \square \\ \leftrightarrows \end{gathered}$	TrmPct RefA Sel TrmPct RefB Sel Trim Percent Reference A, B Select Selects a trim source (in \%) for Speed Reference A or Speed Reference B, respectively. For trim in Hz or RPM instead of \%, use P600/604 [Trim Ref n Sel].	Default: Min/Max:	P609 [TrmPct RefA Stpt] P613 [TrmPct RefB Stpt] 0/159999	RW	32-bit Integer
		$\begin{aligned} & 609 \\ & 613 \end{aligned}$	TrmPct RefA Stpt TrmPct RefB Stpt Trim Percent Reference A, B Setpoint A digital value to be used a possible trim source for P608 or P612, respectively.	Units: Default: Min/Max:	$\begin{array}{\|l\|} \hline \% \\ 0.000 \\ -/+800.000 \end{array}$	RW	Real
		$\begin{aligned} & 610 \\ & 614 \end{aligned}$	TrmPct RefA AnHi TrmPct RefB AnHi Trim Percent Reference A, B Analog High Used only when an analog input is selected as a percent trim source according to P608 or P612. Sets the amount of trim that corresponds to P51/61 [Anlg Inn Hi] on an I/0 module or on the main control (product dependent). This establishes scaling throughout the range.	Units: Default: Min/Max:	$\begin{array}{\|l\|} \hline \% \\ 100.00 \\ -/+800.00 \end{array}$	RW	Real
		611	TrmPct RefA AnLo TrmPct RefB AnLo Trim Percent Reference A, B Analog Low Used only when an analog input is selected as a percent trim source according to P608 or P612. Sets the amount of trim that corresponds to P52/62 [Anlg Inn Lo] on an I/0 module or on the main control (product dependent). This establishes scaling throughout the range.	Units: Default: Min/Max:	$\begin{aligned} & \% \\ & 0.00 \\ & -/+800.00 \end{aligned}$	RW	Real
		616	SpdTrimPrcRefSrc Speed Trim Percent Reference Source Displays the source of Motor Speed Reference Trim Percent, in the format SSPPPP, where SS indicates the source port number other than Port 0 and PPPP indicates the source parameter number. A value of zero indicates that a source has not been assigned.	Default: Min/Max:	$\begin{array}{\|l\|} 0 \\ 0 \\ 0 \end{array} 159999$	RO	32-bit Integer
		617	Spd Trim Source Speed Trim Source Displays the source of Motor Speed Reference Trim, in the format SSPPPP, where SS indicates the source port number other than Port 0 and PPPP indicates the source parameter number. A value of zero indicates that a source has not been assigned.	Default: Min/Max:		RO	32-bit Integer

읖	$\begin{aligned} & \text { 을 } \\ & \text { 은 } \end{aligned}$	No.	Display Name Full Name Description	Values			
은흥푸뭉		644	Spd Err Fltr BW Speed Error Filter Bandwidth Sets the bandwidth of a 2nd order Butterworth low pass filter that is located in the proportional gain section of the speed regulator (in FV motor control modes). It filters a signal that is derived from P641 [Speed Error]. The purpose of this filter is to reduce quantization noise. When P636 [Speed Reg BW] is set to a non-zero value, this filter will be automatically set. If P636 [Speed Reg BW] is set to zero, this filter setting must be manually adjusted. It is normally set to at least 3 to 5 times the value of P636 [Speed Reg BW]. A value of zero disables the filter. The rules that are used to set the error filter bandwidth in automatic mode are as follows: 1. If the primary motor velocity feedback is Open Loop, then the error filter is set to 5 times P636 [Speed Reg BW]. 2. If a primary motor velocity feedback device has been selected and P704 [InAdp LdObs Mode] = 1 "InertiaAdapt," then the error filter is set to 3 times P636 [Speed Reg BW]. 3. If a primary motor velocity feedback device has been selected and P704 [InAdp LdObs Mode] = 0 "Disabled" or 2 "LoadObserver" then the error filter is using a table look up value determined by the setting of P126 [Pri Vel FdbkFltr]. Important: When Auto Tach Switchover is enabled through P635 [Spd Options CtrI], this filter adjustment applies only to the primary feedback source. The filter setting P651 [AltSpdErr FltrBW] is used for the alternate feedback source.	Units: Default: Min/Max:	$\begin{aligned} & \hline R / S \\ & 50.00 \\ & 0.00 / 8000.00 \end{aligned}$	RW	Real
		645	Speed Reg Kp Speed Regulator Kp Sets the proportional gain of the speed regulator (in FV motor control modes). This value is automatically calculated based on the bandwidth setting in P636 [Speed Reg BW] and P76 [Total Inertia]. The proportional gain may be manually adjusted by setting P636 [Speed Reg BW] to a value of zero. Proportional gain has effective scaling of (per unit torque) / (per unit speed). The maximum allowable value of this parameter is limited by P76 [Total Inertia] and P646 [Speed Reg Max Kp].	Default: Min/Max:	$\begin{aligned} & 20.00 \\ & 0.00 \text { / P646 [Speed Reg Max Kp] } \end{aligned}$	RW	Real
		646	Speed Reg Max Kp Speed Regulator Maximum Kp Limits the maximum value of P645 [Speed Reg Kp] and P649 [Alt Speed Reg Kp]. When gains are automatically calculated, this parameter is necessary to limit the amplification of noise with increased inertia.	Default: Min/Max:	$\begin{array}{\|l\|} 3000.00 \\ 0.00 / 3000.00 \end{array}$	RW	Real
		647	Speed Reg Ki Speed Regulator Ki Sets the integral gain of the speed regulator (in FV motor control modes). This value is automatically calculated based on the bandwidth setting in P636 [Speed Reg BW], P645 [Speed Reg Kp] and P653 [Spd Loop Damping]. Integral gain may be manually adjusted by setting P636 [Speed Reg BW] to a value of zero. Integral gain has effective scaling of (per unit torque/seconds) / (per unit speed).	Units: Default: Min/Max:	$/$ Sec 50.00 $0.00 / 100000.00$	RW	Real
		648	Alt Speed Reg BW Alternate Speed Regulator Bandwidth Provides an independent setting for the same function as P636 [Speed Reg BW], but is active only when Automatic Feedback Loss Switchover occurs (indicated by Bit 5 of P936 [Drive Status 2]). A change to this parameter will cause an automatic update of P649 [Alt Speed Reg Kp], P650 [Alt Speed Reg Ki] and P651 [AltSpdErr FltrBW]. See P636 for additional information regarding speed regulator bandwidth. Also see P635 [Spd Options Ctrl] to enable the Auto Tach Switchover feature.	Units: Default: Min/Max:	$\begin{array}{\|l\|} \hline R / S \\ 10.00 \\ 0.00 \text { / Calculated } \end{array}$	RW	Real

츺		No.	Display Name Full Name Description	Values			吕
운응푼in		649	Alt Speed Reg Kp Alternate Speed Regulator Kp Provides an independent setting for the same function as P645 [Speed Reg Kp], but is active only when Automatic Feedback Loss Switchover occurs (indicated by Bit 5 of P936 [Drive Status 2]). This value is automatically calculated based on the bandwidth setting in P648 [Alts Speed Reg BW] and P76 [Total Inertia]. The proportional gain may be manually adjusted by setting P648 [Alt Speed Reg BW] to a value of zero.	Default: Min/Max	$\begin{aligned} & \hline 20.00 \\ & 0.00 / \text { Calculated } \end{aligned}$	RW	Real
		650	Alt Speed Reg Ki Alternate Speed Regulator Ki Provides an independent setting for the same function as P647 [Speed Reg Ki], but is active only when Automatic Feedback Loss Switchover occurs (indicated by Bit 5 of P936 [Drive Status 2]). This value is automatically calculated based on the bandwidth setting in P648 [Alts Speed Reg BW], P649 [Alt Speed Reg Kp] and P653 [Spd Loop Damping]. Integral gain may be manually adjusted by setting P648 [Alt Speed Reg BW] to a value of zero.	Default: Min/Max:	$\begin{aligned} & 50.00 \\ & 0.00 / 100000.00 \end{aligned}$	RW	Real
		651	AltSpdErr FltrBW Alternate Speed Error Filter Bandwidth Provides an independent setting for the same function as P644 [Spd Err Fltr BW], but is active only when Automatic Feedback Loss Switchover occurs (indicated by Bit 5 of P936 [Drive Status 2]). When P648 [Alt Speed Reg BW] is set to a non-zero value, this filter setting will be automatically selected. If P648 [Alt Speed Reg BW] is set to zero, then this filter setting must be manually adjusted. An error filter value of 0 will disable the filter. This filter is normally set to at least 3 to 5 times the value of P648 [Alt Speed Reg BW]. Units for the error filter are radians/second (R/S). The rules that are used to set the error filter bandwidth in automatic mode are as follows: 1. If the alternate motor velocity feedback is 0 pen Loop, then the error filter is set to 5 times P648 [Alt Speed Reg BW]. 2. If an alternate motor velocity feedback device has been selected and P704 [InAdp LdObs Mode] $=1$ "InertiaAdapt", then the error filter is set to 3 times P648 [Alt Speed Reg BW]. 3. If an alternate motor velocity feedback device has been selected and P704 [InAdp LdObs Mode] 0 "Disabled" or 2 "LoadObserver" then the error filter is using a table look up value determined by the setting of P129 [Alt Vel FdbkFItr].	Units: Default: Min/Max	R/S 50.00 $0.00 / 8000.00$	RW	Real
		652	SReg Trq Preset Speed Regulator Torque Preset Sets the initial value of P654 [Spd Reg Int Out]. This is the output of the vector speed regulator's integral channel, and will be present in P654 [Spd Reg Int 0ut] when the regulator is first enabled (for example, upon rise of start or jog). The normal, default setting for this parameter is zero. In some applications, it may be necessary to preset the speed regulator integrator to a non-zero setting. This will result in the regulator's output reaching its final steady state value sooner than it would if the integrator started from zero.	Units: Default: Min/Max	$\begin{array}{\|l\|} \hline \% \\ 0.00 \\ -/+800.00 \end{array}$	RW	Real
		653	Spd Loop Damping Speed Loop Damping Sets the damping factor of the vector speed loop's characteristic equation. Damping will affect the integral gain when a non-zero bandwidth has been entered. A damping factor of 1.0 is considered critical damping. Lowering the damping will produce faster load disturbance rejection, but may cause a more oscillatory response. When the speed regulator bandwidth is zero, gains are set manually and damping factor has no effect.	Default: Min/Max:	$\begin{aligned} & 1.0000 \\ & 0.5000 / 65.0000 \end{aligned}$	RW	Real

츤	$\begin{aligned} & \text { 은 } \\ & \text { Bun } \end{aligned}$	No.	Display Name Full Name Description	Values			
SPEED CONTROL	응	665	Speed Comp Sel Speed Compensation Select Configures the Speed Compensation function, which is used in Vector Control modes to create a feed forward compensation that is added into the speed reference. This helps compensate for position tracking errors during acceleration. These tracking errors are caused by the sample and hold process and delays caused by the position to velocity FIR filter. Speed Compensation will help reduce position error in position follower applications. Available settings for this parameter are: "Disabled" (0) - Function is disabled, speed compensation does not affect the speed reference. "Ramped Ref" (1) - Speed compensation function is enabled and uses an internally generated ramped speed reference signal. The rate of change (derivative) of the speed reference becomes the input to the Speed Compensation function. This is the most common setting when speed compensation is in use. "Rate Ref" (2) - Speed compensation function is enabled and uses an externally generated speed rate signal. The rate of change or derivative of the speed reference is supplied by P596 [Speed Rate Ref]. This signal is typically supplied by an external controller when the speed reference ramp is generated external to the drive.	Default: Options:	$\begin{aligned} & 0=\text { "Disabled" } \\ & 0=\text { "Disabled" } \\ & 1=\text { "Ramped Ref" } \\ & 2=\text { "Rate Ref" } \end{aligned}$	RW	32-bit Integer
		666	Speed Comp Gain Speed Compensation Gain Adjusts the magnitude of P667 [Speed Comp Out]. This gain can be either manually set or automatically determined as part of automatic gain mode for Vector speed control. Automatic mode can be activated by selecting a motor speed feedback device in P125 [Pri Vel Fdbk Sel] and setting a non-zero speed regulator bandwidth in P636 [Speed Reg BW]. In automatic mode, the gain is calculated internally using a table lookup from the interrupt times and delays of the speed feedback FIR filter. For any other case - nonvector control, open loop speed feedback, or zero bandwidth setting, the speed compensation gain must be manually adjusted.	Default: Min/Max:	$\begin{aligned} & -2.50 \\ & -/+32767.00 \end{aligned}$	RW	Real
		667	Speed Comp Out Speed Compensation Output Displays the output of the Speed Compensation function. This value will be summed with the speed reference, following the application of P555 [Spd Ref Scale].	Units: Default: Min/Max:	Hz RPM 0.00 $-/+$ P27 [Motor NP Hertz] x 8 $-/+$ P28 [Motor NP RPM] x 8	R0	Real

Drive (Port 0) Torque Control
 File

츺	응	No.	Display Name Full Name Description	Values			
		670	Pos Torque Limit Positive Torque Limit Defines the torque limit for the positive torque reference value. The reference will not be allowed to exceed this value. Only active in Flux Vector (FV) motor control modes (P35).	Units: Default: Min/Max:	$\%$ 200.00 $0.00 / 800.00$	RW	Real
		671	Neg Torque Limit Negative Torque Limit Defines the torque limit for the negative torque reference value. The reference will not be allowed to exceed this value. Only active in Flux Vector (FV) motor control modes (P35).	Units: Default: Min/Max:	$\left\lvert\, \begin{aligned} & \% \\ & -200.00 \\ & -800.00 / 0.00 \end{aligned}\right.$	RW	Real

츷	$\begin{aligned} & \text { 른 } \\ & \text { in } \end{aligned}$	No.	Display Name Full Name Description	Values			$\begin{aligned} & \stackrel{\rightharpoonup}{2} \\ & \stackrel{\rightharpoonup}{N} \\ & \stackrel{y}{0} \\ & \end{aligned}$
		$\begin{gathered} 675 \\ 680 \\ 0 \\ 5 \Leftrightarrow \end{gathered}$	Trq Ref A Sel Trq Ref B Sel Torque Reference A, B Select Selects the source for a torque reference, used when the drive is configured to command torque according to P309... 312 [SpdTrqPsn Mode n]. The values of the torque reference sources are added together to provide a single torque reference. Only active in Flux Vector (FV) motor control modes (P35).	Default: Min/Max:	676 681 0/159999	RW	32-bit Integer
		$\begin{array}{\|l\|} \hline 676 \\ 681 \end{array}$	Trq Ref A Stpt Trq Ref B Stpt Torque Reference A, B Setpoint A digital torque value to be used as a possible source for P675 and P680 respectively. Only active in Flux Vector (FV) motor control modes (P35).	Units: Default: Min/Max	$\left\lvert\, \begin{aligned} & \% \\ & 0.00 \\ & -/+800.00 \end{aligned}\right.$	RW	Real
		$\begin{aligned} & 677 \\ & 682 \end{aligned}$	Trq Ref A AnlgHi Trq Ref B AnIgHi Torque Reference A, B Analog High Used only when an analog input is selected as a torque reference according to P676 or P681. Sets the torque value that corresponds to P51/61 [Anlg Inn Hi] on an I/0 module or on the main control (product dependent). This establishes scaling throughout the range. Only active in Flux Vector (FV) motor control modes (P35).	Units: Default: Min/Max:	$\begin{array}{\|l\|} \hline \% \\ 100.00 \\ -/+800.00 \end{array}$	RW	Real
		$\begin{array}{\|l\|} \hline 678 \\ 683 \end{array}$	Trq Ref A AnlgLo Trq Ref B AnlgLo Torque Reference A, B Analog Low Used only when an analog input is selected as a torque reference according to P676 or P681. Sets the torque value that corresponds to P52/62 [Anlg Inn Lo] on an I/O module or on the main control (product dependent). This establishes scaling throughout the range. Only active in Flux Vector (FV) motor control modes (P35).	Units: Default: Min/Max	$\%$ 0.00 $-/+800.00$	RW	Real
		$\begin{aligned} & 679 \\ & 684 \end{aligned}$	Trq Ref A Mult Trq Ref B Mult Torque Reference A, B Multiplier A multiplier that is applied to the values referenced by P675 and P680 respectively. A value of 1 leaves the reference unaffected. Negative values invert the reference. Only active in Flux Vector (FV) motor control modes (P35).	Default: Min/Max:	$\begin{array}{\|l\|} \hline 1.000 \\ -/+1000.000 \end{array}$	RW	Real

쁯	$\begin{aligned} & \text { 을 } \\ & \text { 은 } \end{aligned}$	No.	Display Name Full Name Description	Values			
	Inertia Comp	695	755 Inertia CompMode Inertia Compensation Mode The inertia compensation function calculates a feed forward torque signal P699 [Inertia Comp Out]. Inertia compensation attempts to predict the motor torque required to accelerate and decelerate an inertial load. The P699 [Inertia Comp Out] signal is summed with P660 [SReg Output] and becomes an input available to the P313 [Actv SpTqPs Mode] selector. The inputs to the inertia comp function are the rate of change of motor speed reference and P76 [Total Inertia]. Only active in Flux Vector (FV) motor control modes (P35). This parameter enables the inertia comp function and selects possible sources of motor speed reference as follows: "Disabled" (0) - Inertia compensation function is disabled. P699 [Inertia Comp Out] is zero so the motor torque reference is not affected. "Int Ramp Ref" (1) - Inertia compensation is enabled. The function is configured to use the rate of change of P595 [Filtered Spd Ref]. This is the typical setting that should be used for inertia compensation on a stand-alone drive. "Ext Ramp Ref" (2) - Inertia compensation is enabled. The function is configured to use the rate of change of P700 [Ext Ramped Ref]. This setting is available for applications that supply a ramped speed reference external to the drive. "Spd Rate Ref" (3) - Inertia compensation is enabled. The function is configured to use the P596 [Speed Rate Ref]. This parameter should contain a value that represents the rate of change of the motor speed reference. This setting is available for applications that supply a ramped speed reference external to the drive.	Default: Options:	$\begin{aligned} & 0=\text { "Disabled" } \\ & 0=\text { "Disabled" } \\ & 1=\text { "Int Ramp Ref" } \\ & 2=\text { "Ext Ramp Ref" } \\ & 3=\text { "Spd Rate Ref" } \end{aligned}$	RW	32-bit Integer
를응를웅		696	755 Inertia Acc Gain Inertia Acceleration Gain Sets the acceleration gain for the inertia compensation function. A value of 1 produces 100\% compensation. Only active in Flux Vector (FV) motor control modes (P35).	Default: Min/Max:	$\begin{aligned} & 1.0000 \\ & 0.0000 / 2.0000 \end{aligned}$	RW	Real
		697	755 Inertia Dec Gain Inertia Deceleration Gain Sets the deceleration gain for the inertia compensation function. A value of 1 produces 100\% compensation. Only active in Flux Vector (FV) motor control modes (P35).	Default: Min/Max:	$\begin{aligned} & 1.0000 \\ & 0.0000 / 2.0000 \end{aligned}$	RW	Real
		698	755 Inert Comp LPFBW Inertia Compensation Low Pass Filter Bandwidth Sets the bandwidth of a low pass filter for the inertia compensation function. The output of this filter supplies P699 [Inertia Comp Out]. Only active in Flux Vector (FV) motor control modes (P35).	Units: Default: Min/Max:	$\begin{aligned} & \mathrm{R} / \mathrm{S} \\ & 35.00 \\ & 0.00 / 2000.00 \end{aligned}$	RW	Real
		699	755 Inertia Comp Out Inertia Compensation Output Displays the output of the inertia compensation function. The P699 [Inertia Comp Out] signal is summed with P660 [SReg Output] and becomes an input available to the P313 [Actv SpTqPs Mode] selector. Inertia compensation provides a torque feed forward signal during changes in motor speed reference.Only active in Flux Vector (FV) motor control modes (P35).	Units: Default: Min/Max:	$\begin{aligned} & \% \\ & 0.00 \\ & -/+800.00 \end{aligned}$	R0	Real
		700	755 Ext Ramped Ref External Ramped Reference This parameter is meant for an external motor speed ramp input signal. This signal will be used by the inertia compensation function when P695 [InertiaComp Mode] = 2 "Ext Ramp Ref." This parameter will be entered in units of Hz or RPM, depending on the value of P300 [Speed Units].Only active in Flux Vector (FV) motor control modes (P35).	Units: Default: Min/Max:	$\begin{aligned} & \mathrm{Hz} \\ & \text { RPM } \\ & 0.00 \\ & -/+ \text { P27 [Motor NP Hertz] x } 8 \\ & -/+ \text { P28 [Motor NP RPM] x } 8 \end{aligned}$	RW	Real

$\stackrel{\text { © }}{\text { ¢ }}$	$\begin{aligned} & \text { 을 } \\ & \text { 은 } \end{aligned}$	No.	Display Name Full Name Description	Values			
		704	755 InAdp LdObs Mode Inertia Adaption Load Observer Mode Used to enable operation of either Inertia Adaption or Load Observer. These System Control modes are only available in Vector Control mode when using a motor speed feedback device. The value of P76 [Total Inertia] must be valid in order for these features to work correctly. The P70 [Autotune] setting 4 "Inertia Tune" can be used to measure the System Inertia. Regardless of the Sys Control mode used, the parameter P707 [Load Estimate] is updated for monitoring purposes. Only active in Flux Vector (FV) motor control modes (P35). The possible settings for Sys Control Sel are: "Disabled" (0) - Both Inertia Adaption and Load Observer functions are disabled. P708 [InertiaTrqAdd] is zero so the motor torque reference is not affected. P707 [Load Estimate] is still valid, provided that the drive is in Vector Mode, using a motor speed feedback device, and a valid P76 [Total Inertia] is used. "InertiaAdapt" (1) - Inertia Adaption function is enabled. The Inertia Adaption function will provide enhanced stability, higher bandwidths and dynamic stiffness. Inertia Adaption is especially useful in systems with a gear-box that become, in effect, disconnected from the load. Inertia Adaption may also be used for motors with very little inertia that otherwise would lack dynamic stiffness, even at high bandwidths. The output of the Inertia Adaption function P708 [InertiaTrqAdd], will subtract from the motor torque reference. "LoadObserver" (2) - Load Observer function is enabled. The Load Observer function removes or greatly reduces the effects of load disturbances and provides quicker system response. The output of the Load Observer function is similar to P707 [Load Estimate], but has a filter setting determined by P711 [Load Observer BW]. The Load Observer's output signal will add to the motor torque reference.	Default: Options:	$\begin{aligned} & 0=\text { "Disabled" } \\ & 0=\text { "Disabled" } \\ & 1=\text { "InertiaAdapt" } \\ & 2=\text { "LoadObserver" } \end{aligned}$	RW	32-bit Integer
		705	755 Inertia Adapt BW Inertia Adapt Bandwidth Sets the bandwidth of a low pass filter located in the output of the Inertia Adaption function. This parameter should typically be set to match the bandwidth of the drive's speed regulator. This matching setting is automatically made when the Inertia Adaption function is active and the speed regulator bandwidth (P636 [Speed Reg BW]), is set to a non-zero value. If the speed regulator bandwidth is set to zero, then this filter setting must be manually adjusted. Only active in Flux Vector (FV) motor control modes (P35).	Units: Default: Min/Max:	$\begin{array}{\|l\|} \hline R / S \\ 10.00 \\ 1.00 / 1000.00 \end{array}$	RW	Real
		706	755 InertiaAdaptGain Inertia Adaption Gain Sets a multiplier of system inertia used when the Inertia Adaption function is selected P704 [InAdp LdObs Mode] = 1 "InertiaAdapt." This gain has no effect on the parameter P707 [Load Estimate]. Higher gain values may cause high frequency ringing, while smaller values may cause fundamental load instability. This gain should typically range from 0.3 to 1.0 with 0.5 nominal best. The gain setting of 0.5 is automatically made when the speed regulator bandwidth (P636 [Speed Reg BW]), is set to a non-zero value. If the speed regulator bandwidth is set to zero, then this gain setting must be manually adjusted.Only active in Flux Vector (FV) motor control modes (P35).	Default: Min/Max:	$\begin{aligned} & 0.500 \\ & 0.300 / 1.000 \end{aligned}$	RW	Real
		707	755 Load Estimate Load Estimate Displays an estimated load torque value for the drive. This value is only available in Vector Control mode when using a motor speed feedback device. The load estimate does not include any torque required to accelerate or decelerate the motor. In order to be accurate, the parameter P76 [Total Inertia] must contain a reasonably accurate value.Only active in Flux Vector (FV) motor control modes (P35).	Units: Default: Min/Max:	$\left\lvert\, \begin{aligned} & \% \\ & 0.00 \\ & -/+800.00 \end{aligned}\right.$	R0	Real

읓	릉	No.	Display Name Full Name Description	Values			
		708	755 InertiaTrqAdd Inertia Torque Adaption Displays the output of the Inertia Adaption function. This value will be subtracted from the motor torque reference, with the result displayed as P689 [Filtered Trq Ref]. The inertia adaption function will be active when operating in Vector Control mode with a motor speed feedback device and P704 [inAdp LdObs Mode] $=1$ "InertiaAdapt." A value of 100\% represents rated motor torque. Only active in Flux Vector (FV) motor control modes (P35).	Units: Default: Min/Max	$\%$ 0.00 $-/+800.00$	R0	Real
		709	755 IA LdObs Delay Inertia Adaption Load Observer Delay Adjusts a filter setting that is applied to the active motor velocity feedback source. The purpose of this filter is to reduce the level of noise present in the feedback signal. Note that this filter is the same type but separate from the filters used to provide P127 [Pri Vel Feedback] and P130 [Alt Vel Feedback]. The derivative of the Sys Control Delay filtered motor velocity signal will be a Motor Acceleration Feedback signal. The Motor Acceleration Feedback is applied to the Inertia Adaption and Load Observer/ Load Estimate functions. This is moving average type filter that has a delay setting of N , where N is an integer number ($0,1,2 \ldots$).A setting of zero provides no filtering and no delay. Larger values of N result in more filtering and more delay. The best setting for this filter will depend on the level of noise present in the feedback signal and the bandwidth setting of the velocity regulator. Only active in Flux Vector (FV) motor control modes (P35).	Default: Options:		RW	32-bit Integer
		710	755 InertAdptFItrBW Inertia Adaption Filter Bandwidth Sets the bandwidth of a low pass filter located in the output of the vector control speed regulator and used in connection with the Inertia Adaption function. The bandwidth of this filter should typically be set to five times the bandwidth of the speed regulator. This setting is automatically made when the Inertia Adaption function is active and the speed regulator bandwidth (P636 [Speed Reg BW]), is set to a non-zero value. If the speed regulator bandwidth is set to zero, then this filter setting must be manually adjusted. Only active in Flux Vector (FV) motor control modes (P35).	Units: Default: Min/Max	R/S 50.00 $0.00 / 1000.00$	RW	Real
		711	755 Load Observer BW Load Observer Bandwidth Sets the bandwidth of a low pass filter located in the output of the Load Observer function. Typical filter settings range from 10 radians/second to 150 radians/second with the higher values being more responsive to disturbances but with increased system noise. There is no nominal best setting, but 40 radians/second is a suggested starting point. This selection may not function well in sloppy geared systems. Only active in Flux Vector (FV) motor control modes (P35).	Units: Default: Min/Max	R/S 40.00 $1.00 / 1000.00$	RW	Real

읖	$\begin{aligned} & \text { O} \\ & \text { 은 } \end{aligned}$	No.	Display Name Full Name Description	Values			$\begin{aligned} & \stackrel{0}{2} \\ & \stackrel{\rightharpoonup}{Z} \\ & \stackrel{y}{0} \\ & \stackrel{y}{0} \end{aligned}$
		1560	755 FrctnComp Mode Friction Compensation Mode The friction compensation function calculates a feed forward torque signal P1567 [FrctnComp Out]. Friction compensation attempts to predict the motor torque required to counteract load friction. The [FrctnComp Out] signal is summed with P685 [Selected Trq Ref] and P686 [Torque Step]. This parameter enables the friction comp function and selects possible sources of motor speed reference as follows: "Disabled" (0) - Friction compensation function is disabled. P1567 [FrctnComp 0ut] is zero so the motor torque reference is not affected. "Int Ramp Ref" (1) - Friction compensation is enabled. The function is configured to use the P595 [Filtered Spd Ref] summed with the position reference speed feed forward. This is the typical setting that should be used for friction compensation on a stand-alone drive when operating in position or speed mode. "Ext Ramp Ref" (2) - Friction compensation is enabled. The function is configured to use P700 [Ext Ramped Ref]. This setting is available for applications that supply a ramped speed reference external to the drive. "Speed Fdbk" (3) - Friction compensation is enabled. The function is configured to use P640 [Filtered SpdFdbk]. A feedback device must be used - the speed feedback source cannot be open loop feedback. This setting should be used when operating in torque mode (min/max/torque).	Default: Options:	$\begin{aligned} & 0=\text { "Disabled" } \\ & 0=\text { "Disabled" } \\ & 1=\text { "Int Ramp Ref" } \\ & 2=\text { "Ext Ramp Ref" } \\ & 3=\text { "Speed Fdbk" } \end{aligned}$	RW	32-bit Integer
훈		$\begin{array}{r} 1561 \\ 0 \end{array}$	$755 \quad$ FrctnComp Trig Friction Compensation Trigger Sets the starting speed or trigger speed at which the friction compensation will be applied when leaving the region near zero speed. The initial value for P1567 [FrctnComp Out] at this speed will be P1564 [FrctnComp Stick]. Friction compensation will remain active until the speed reference drops below the trigger speed minus P1562 [FrctnComp Hyst] speed. At these low speeds, 1567 [FrctnComp Out] returns to zero.	Units: Default: Min/Max:	Hz RPM 0.15 $0.00 / 7.94$	RW	Real
		$\begin{gathered} 1562 \\ 0 \end{gathered}$	755 FrctnComp Hyst Friction Compensation Hysteresis This parameter together with 1561 [FrctnComp Trig] establishes a speed band around zero speed. Friction compensation will be inactive (zero output) when the speed reference is inside this band and active when outside. The points at which friction comp becomes active and inactive differ by the amount of speed set in this parameter.	Units: Default: Min/Max:	$\begin{aligned} & \mathrm{Hz} \\ & \text { RPM } \\ & 0.06 \\ & 0.00 / 7.94 \end{aligned}$	RW	Real
		$\begin{array}{r} 1563 \\ 0 \end{array}$	755 FrctnComp Time Friction Compensation Time Sets the time interval that the stiction torque will be applied. When initially leaving the zero speed region, the value in P1564 [FrctnComp Stick] will be used for the non-viscous friction term. After the time period set in this parameter, the non-viscous friction will ramp down to the value set in P1565 [FrctnComp Slip]. For the remainder of the time that [FrctnComp Out] remains non-zero, the non-viscous friction will remain constant at the value of [FrctnComp Slip].	Units: Default: Min/Max:	mSec 6 $0 / 18$	RW	$\begin{aligned} & \text { 32-bit } \\ & \text { Integer } \end{aligned}$
		$\begin{gathered} 1564 \\ 0 \end{gathered}$	755 FrctnComp Stick Friction Compensation Stiction Sets the level for the stiction or static friction torque. This is the torque level required to break away from zero speed. When initially leaving the zero speed region, this level will be used for the non-viscous friction term. After the time period set in P1563 [FrctnComp Time], the non-viscous friction will ramp down to the value set in P1565 [FrctnComp Slip].	Units: Default: Min/Max:	$\begin{aligned} & \mid \% \\ & 15.00 \\ & 0.00 / 800.00 \end{aligned}$	RW	Real

$\stackrel{\text { 늘 }}{i}$	을	No.	Display Name Full Name Description	Values			
울응를응	$\begin{aligned} & \text { 은 } \\ & \text { 응 } \\ & \text { 은 } \\ & \text { 븐 } \end{aligned}$	1565	755 FrctnComp Slip Friction Compensation Slip Sets the torque level that will be maintained at very low speed once "break away" has been achieved. This value should always be set less than the level in P1564 [FrctnComp Stick]. After the time period set in P1563 [FrctnComp Time], the non-viscous friction will ramp down to this value.	Units: Default: Min/Max:	$\begin{array}{\|l\|} \hline \% \\ 10.00 \\ 0.00 / 800.00 \end{array}$	RW	Real
		1566	755 FrctnComp Rated Friction Compensation Rated Sets the torque level that will be output at rated motor speed. The friction compensation routine assumes a linear viscous component that varies in direct proportion to speed reference. The 1567 [FrctnComp Out] value will increase with speed and will equal the level set in this parameter at rated motor speed.	Units: Default: Min/Max:	$\begin{array}{\|l\|} \hline \% \\ 20.00 \\ 0.00 / 800.00 \end{array}$	RW	Real
		1567	755 FrctnComp Out Friction Compensation Output Displays the torque reference output of the Friction Compensation function. This value is summed with P660 [SReg Output] and P699 [Inertia Comp Out] in the torque control section of the drive.	Units: Default: Min/Max:	$\begin{aligned} & \% \\ & 0.00 \\ & -/+800.00 \end{aligned}$	R0	Real

Drive (Port 0) Position
 Control File

Bit 1 "Intgrtr En" - Enables integrator operation. Resetting it resets the integrator.
Bit 2"Offset ReRef" - Permits changing the value of position offsets without changing actual position. The position offsets are the values that are selected by P820 [Psn Offset 1 Sel] and P822 [Psn 0ffset 2 Sel]. The default position offsets are P821 [Psn 0ffset 1] and P823 [Psn Offset 2].
Bit 3 "OffsetVel En" - Uses the offset velocity P824 [Psn Offset Vel] for the position offset integrator. Sets the offset integrator bit, P724 [Psn Reg Status] Bit 0 "OffsetIntgtr" when this bit is on.
Bit 4 "Zero Psn" - Puts P836 [Psn Actual] in absolute mode (no differential) with zero position offset. P836 [Psn Actual] sets the value of P847 [Psn Fdbk] - the position P725 [Zero Position]. With Bit 4 "Zero Psn" disabled, P836 [Psn Actual] accumulates the difference in P847 [Psn Fdbk] at each position control scan. P836 [Psn Actual] and P847 [Psn Fdbk] are not always the same and therefore, P836 [Psn Actual] is reset. With Bit 4 "Zero Psn" set, P836 [Psn Actual] directly loads the raw value of P847 after subtracting P725 [Zero Position].
Bit 5 "Intgrtr Hold" - Holds the position integrator in present state.
Bit 6 "PsnWtch1Arm" - Enables the position watch 1. Resetting this bit clears the position watch 1 detection P724 [Psn Reg Status] Bit 9 "PsnW1Detect."
Bit 7 "PsnWatch1Dir" - Causes the position watch 1 output to be set when P746 [PsnWatch1 DtctIn] is greater than a set-point selected by the position watch 1 selection P745 [PsnWatch1 Select]. Resetting this bit causes the position watch 1 output to be set when P746 [PsnWatch1 DtctIn] is less than a set-point selected by the position watch 1 selection P745 [PsnWatch1 Select].
Bit 8 "PsnWtch2Arm" - Enables the position watch 2. Resetting this bit clears the position watch 2 detection P724 [Psn Reg Status] Bit 10 "PsnW2Detect." Bit 9 "PsnWatch2Dir" - Causes the position watch 2 output to be set when P749 [PsnWatch2 Dtctln] is greater than a set-point selected by the position watch 2 selection P748 [PsnWatch2 DtctIn]. Resetting this bit causes the position watch 2 output to be set when P749 [PsnWatch2 Dtctln] is less than a set-point selected by the position watch 2 selection P748 [PsnWatch2 Dtctln].
Bit 10 "Add Spd Ref" - Adds the speed reference to the output of the position control, when in position control mode.

흧	을	No.	Display Name Full Name Description	Values			
	$\begin{aligned} & \approx \\ & \text { 末 } \\ & \text { 은 } \\ & \text { 은 } \\ & \text { in } \end{aligned}$	727	In Pos Psn Dwell In Positive Position Dwell Sets dwell time for the in position detector. Position error must be within the value specified by the in-position band P726 [In Pos Psn Band] for this amount of time before the in-position detector sets the in-position detect bit P724 [Psn Reg Status] Bit 11 "InPsn Detect." A momentary out-of-position indication will reset the internal timer and clear the in-position detect bit P724 [Psn Reg Status] Bit 11 "InPsn Detect."	Default: Min/Max:	$\begin{aligned} & \hline 0.0040 \\ & 0.0001 / 10.0000 \end{aligned}$	RW	Real

	No.	Display Name Full Name Description	Values			

쁯	은	No.	Display Name Full Name Description	Values			$\begin{aligned} & \stackrel{\rightharpoonup}{2} \\ & \stackrel{\rightharpoonup}{n} \\ & \stackrel{y}{0} \\ & 0 \end{aligned}$
		$\begin{gathered} 745 \\ 748 \\ \mathscr{\leftrightarrows} \end{gathered}$	755 PsnWatch1 Select 755 PsnWatch2 Select Position Watch n Select Selects a position feedback source that is compared to the position watch detect-input P746 [PsnWatch1 DtctIn], P749 [PsnWatch2 DtctIn].	Default: Min/Max:	$\begin{aligned} & \hline 847 \\ & 1 / 159999 \end{aligned}$	RW	32-bit Integer
$\begin{aligned} & \text { 후 } \\ & \text { 릉 } \\ & \text { 은 } \\ & \text { 능 } \end{aligned}$		$\begin{aligned} & 746 \\ & 749 \end{aligned}$	755 PsnWatch1 Dtctln 755 PsnWatch2 DtctIn Position Watch n Detect Input Provides position feedback source for the position watch function. The position watch function is enabled and configured by the position control configuration P721 [Position Control]. The position watch function compares this value to the position watch set point P747 [PsnWatch1 Stpt], P750 [PsnWatch2 Stpt] when this parameter P746, P749 is selected by the position watch select P745 [PsnWatch1 Select], P748 [PsnWatch2 Select]. The position detect bit P724 [Psn Reg Status] Bit 9 "PsnW1Detect", Bit 10 "PsnW2Detect" is set when the appropriate condition is satisfied.	Default: Min/Max:	$\begin{array}{\|l\|} \hline 0 \\ -2147483648 / 2147483647 \end{array}$	RW	32-bit Integer
		$\begin{aligned} & 747 \\ & 750 \end{aligned}$	755 PsnWatch1 Stpt 755 PsnWatch2 Stpt Position Watch n Setpoint Provides set point for the position watch function. The position watch function is enabled and configured by P721 [Position Control]. The position watch function compares this value to the position feedback source selected by the position watch select P745 [PsnWatch1 Select], P748 [PsnWatch2 Select]. The position detect bit P724 [Psn Reg Status] Bit 9 "PsnW1Detect", Bit 10 "PsnW2Detect" is set when the appropriate condition is satisfied.	Default: Min/Max:	$\begin{aligned} & 0 \\ & -2147483648 / 2147483647 \end{aligned}$	RW	32-bit Integer

쁲	$\begin{aligned} & \text { O} \\ & \text { 응 } \end{aligned}$	No.	Display Name Full Name Description	Values			
문		755	755 Interp Control Interpolator Control Reserved for future use.	Default: Options:	$\begin{aligned} & 0 \\ & 1 / 2147483647 \end{aligned}$	RW	32-bit Integer
		756	755 Interp Psn Input Interpolator Position Input Input value to the Command Position fine interpolator.	Default: Min/Max:	$\begin{array}{\|l\|} \hline 0 \\ -2147483648 / 2147483647 \end{array}$	RW	32-bit Integer
		757	755 Interp Vel Input Interpolator Velocity Input Input value to the Command Velocity fine interpolator.	Units: Default: Min/Max:	$\begin{aligned} & \mathrm{Hz} \\ & \text { RPM } \\ & 0.00 \\ & -/+1000000.00 \end{aligned}$	RW	Real
		758	755 Interp Trq Input Interpolator Torque Input Input value to the Command Torque fine interpolator.	Default: Min/Max:	$\begin{aligned} & 0.00 \\ & -/+1000000.00 \end{aligned}$	RW	Real
		759	755 Interp Psn Out Interpolator Position Output Output value from the Command Position fine interpolator.	Default: Min/Max:	$\begin{array}{\|l\|} \hline 0 \\ -2147483648 / 2147483647 \end{array}$	RO	32-bit Integer
		760	755 Interp Vel Out Interpolator Velocity Output Output value from the Command Velocity fine interpolator. When no Command Velocity signal is present when performing position control, this signal can be derived by scaling the Differential Position output value of the Command Position fine interpolator.	Units: Default: Min/Max:	$\begin{array}{\|l\|} \hline \mathrm{Hz} \\ \text { RPM } \\ 0.00 \\ -/+1000000.00 \end{array}$	RO	Real
		761	755 Interp Trq Out Interpolator Torque Output Command torque output from fine interpolator (if active) into torque input summing junction when configured for toque control.	Default: Min/Max:	$\begin{aligned} & 0.00 \\ & -/+1000000.00 \end{aligned}$	RO	Real

$\stackrel{\otimes}{\underline{E}}$	은	No.	Display Name Full Name Description	Values			
흔응응응		$\begin{gathered} 765 \\ \square \\ 5 \end{gathered}$	Psn Ref Select Position Reference Select Selects a position reference to the position regulator when P313 [Actv SpTqPs Mode] is set to 10 "Psn Direct."	Default: Options:	$\begin{array}{\|l\|} \hline 766 \\ 1 / 159999 \end{array}$	RW	32-bit Integer
		766	Psn Direct Stpt Position Direct Setpoint Provides a set point for the direct position reference and a position reference to the position regulator when P313 [Actv SpTqPs Mode] is set to 10 "Psn Direct" and P765 [Psn Ref Select] is set to this parameter.	Default: Min/Max:	$\begin{aligned} & 0 \\ & -2147483648 / 2147483647 \end{aligned}$	RW	32-bit Integer
		767	Psn Direct Ref Position Direct Reference Indicates the position direct reference selected by P765 [Psn Ref Select].	Default: Min/Max:	$\begin{aligned} & 0 \\ & -2147483648 / 2147483647 \end{aligned}$	R0	32-bit Integer

쁯	은	No.	Display Name Full Name Description							Values		¢	亮
		770	Bit 0 "Vel Override" - Applies the velocity override P788 [PTP Vel Override] to the forward velocity limit P785 [PTP Fwd Vel Lmt] and the reverse velocity limit P786 [PTP Rev Vel Lmt] as a gain. When the velocity override P788 [PTP Vel Override] is 1.1 and the forward velocity limit P785 [PTP Fwd Vel Lmt] is 30 Hz , the bit sets the maximum forward velocity to 33 Hz . Bit 1 "Move" - Sets scaled point-to-point position reference to the point-to-point position command P784 [PTP Command]. When the point-to-point mode selection P771 [PTP Mode] is absolute mode (Option 0), the absolute position is set to the point-to-point position command P784 when the bit rises. When the point-to-point mode selection P771 [PTP Mode] is index mode (Option 1), the index position is set to the point-to-point position command P784 when the bit rises. Bit 2 "Reverse Move" - Changes direction of the index position when the point-to-point mode selection P771 [PTP Mode] is index mode (Option 1). Set the direction with this bit, then set Bit 1 "Move" to 1 to move. Bit 3 "Preset Psn" - Sets index preset P779 [PTP Index Preset] to the point-to-point position command P784 [PTP Command] when the point-to-point mode selection P771 [PTP Mode] is index mode (Option 1). Bit 4 "Intgrtr Hold" - Holds integrator in the velocity control. Bit 5 "Ref Pause" - Pauses functioning of the point-to-point control. The point-to-point speed forward reference becomes zero, and the position selected reference P722 [Psn Selected Ref] keeps current position. Bit 6 "Ref Sync" - Sets initial value to the point-to-point feedback P777 [PTP Feedback]. When motor feedback reaches zero speed, P776 [PTP Reference] and P777 [PTP Feedback] are reset to P836 [Psn Actual].										
皆	릉를를0	771	PTP Mode Point-To-Point Mode Selects point-to-point position mode. The point-to-point position control is configured with the following selections. "Absolute" (0) - Selects absolute position mode. When P770 [PTP Control] Bit 1 "Move" is set, the reference source, selected by P775 [PTP Ref Sel], is multiplied by P778 [PTP Ref Scale] and P784 [PTP Command] is set by the result. "Index" (1) - Selects index position mode. When P770 [PTP Control] Bit 1 "Move" is set, the reference source, selected by P775 [PTP Ref Sel], is multiplied by P778 [PTP Ref Scale] and P784 [PTP Command] is incremented by the result. "Immediate" (2) - Selects absolute immediate position mode. When P770 [PTP Control] Bit 1 "Move" is set, and the reference source selected by P775 [PTP Ref Sel] changes, P784 [PTP Command] is immediately set.							Default: Options:	$\begin{aligned} & 0=\text { "Absolute" } \\ & 0=\text { "Absolute" } \\ & 1=\text { "Index" } \\ & 2=\text { "Immediate" } \end{aligned}$	RW	32-bit Integer
		772	DI Indx Step Digital Input Index Step Sets a digital input port for the index position move. The digital input assigned by this parameter is equivalent to the point-to-point move bit P770 [PTP Control] Bit 1 "Move" when the point-to-point mode P771 [PTP Mode] is set to 0 "Absolute" or 1 "Index."							Default: Min/Max:	$\begin{aligned} & 0.00 \\ & 0.00 / 159999.15 \end{aligned}$	RW	32-bit Integer
		773	DI Indx StepRev Digital Input Index Step Reverse Sets a digital input port for the index position reverse move. The digital input assigned by this parameter is equivalent to the point-to-point reverse move bit P770 [PTP Control] Bit 2 "Reverse Move" when the point-to-point mode P771 [PTP Mode] is selected to the index position mode (Option 1).							Default: Min/Max:	$\begin{aligned} & 0.00 \\ & 0.00 / 159999.15 \end{aligned}$	RW	32-bit Integer
		774	DI Indx StepPrst Digital Input Index Step Preset Sets a digital input port for the index preset position. The digital input assigned by this parameter is equivalent to the point-to-point preset position bit P770 [PTP Control] Bit 3 "Preset Psn" when the point-to-point mode P771 [PTP Mode] is selected to the index position mode (Option 1).							Default: Min/Max:	$\begin{aligned} & 0.00 \\ & 0.00 / 159999.15 \end{aligned}$	RW	32-bit Integer

츷	$\begin{aligned} & \text { O} \\ & \text { ig in } \end{aligned}$	No.	Display Name Full Name Description	Values		¢	
		$\begin{gathered} 775 \\ \mathrm{O} \\ \stackrel{y}{\circ} \mathrm{~F} \end{gathered}$	PTP Ref Sel Point-To-Point Reference Select Selects a point-to-point reference source that applies to the point-to-point position control.	Default: Min/Max:	$\begin{array}{\|l\|} \hline 780 \\ 1 / 159999 \end{array}$	RW	32-bit Integer
		776	PTP Reference Point-To-Point Reference Indicates output of the point-to-point position control as a reference of the position control. When the speed/torque/position mode P313 [Actv SpTqPs Mode] is selected to the point-to-point mode (Option 7) or the profiler mode (Option 6), this parameter value appears on the position selected reference P722 [Psn Selected Ref].	Default: Min/Max:	$\begin{array}{\|l\|} 0 \\ -2147483648 / 2147483647 \end{array}$	R0	$\begin{aligned} & \text { 32-bit } \\ & \text { Integer } \end{aligned}$
		777	PTP Feedback Point-To-Point Feedback Indicates position feedback in the point-to-point position control.	Default: Min/Max:	$\begin{array}{\|l\|} \hline 0 \\ -2147483648 / 2147483647 \end{array}$	R0	32-bit Integer
		778	PTP Ref Scale Point-To-Point Reference Scale Provides count per scale value for the point-to-point position reference. The value is a multiplier for the point-to-point reference source selected by the reference selection P775 [PTP Ref Sel].	Default: Min/Max:	$\begin{array}{\|l\|} 1.00 \\ -/+220000000.00 \end{array}$	RW	Real
		779	PTP Index Preset Point-To-Point Index Preset Provides pre-set index value. The value sets to the point-to-point position command P784 [PTP Command] when the point-to-point mode is index mode P771 [PTP Mode] and the preset position bit P770 [PTP Control] Bit 3 "Preset Psn" is on.	Default: Min/Max:	$\left\lvert\, \begin{aligned} & 0 \\ & -2147483648 / 2147483647 \end{aligned}\right.$	RW	$\begin{array}{\|l\|} \hline \text { 32-bit } \\ \text { Integer } \end{array}$
운		780	PTP Setpoint Point-To-Point Setpoint Provides set point for the point-to-point position control. The value applies to the point-to-point control when the point-to-point reference selection P775 [PTP Ref Sel] is P780.When P771 [PTP Mode] is set to 1 "Index," the value of this parameter represents the amount of index.	Default: Min/Max:	$\begin{array}{\|l\|} 0 \\ -2147483648 / 2147483647 \end{array}$	RW	$\begin{aligned} & \text { 32-bit } \\ & \text { Integer } \end{aligned}$
		781	PTP Accel Time Point-To-Point Acceleration Time Provides the ramp time for acceleration (time to go from zero to speed limit). The speed limit is set by P785 [PTP Fwd Vel Lmt] and P786 [PTP Rev Vel Lmt].	Units: Default: Min/Max:	Secs 10.00 $0.00 / 3600.00$	RW	Real
		782	PTP Decel Time Point-To-Point Deceleration Time Provides the ramp time for deceleration (time to go from speed limit to zero). The speed limit is set by P785 [PTP Fwd Vel Lmt] and P786 [PTP Rev Vel Lmt].	Units: Default: Min/Max:	Secs 10.00 $0.00 / 3600.00$	RW	Real
		783	PTP Speed FwdRef Point-To-Point Speed Forward Reference Indicates speed reference output from the point-to-point position control. Typically this parameter is used by the drive speed loop.	Units: Default: Min/Max:	Hz RPM 0.00 $-/+$ P27 [Motor NP Hertz] x 8 -/+P28 [Motor NP RPM] x 8	R0	Real
		784	PTP Command Point-To-Point Command Indicates position command for the point-to-point position control. The source of the position command is selected by the speed/torque/position mode P313 [Actv SpTqPs Mode].	Default: Min/Max:	$\begin{array}{\|l\|} 0 \\ -2147483648 / 2147483647 \end{array}$	R0	32-bit Integer
		785	PTP Fwd Vel Lmt Point-To-Point Forward Velocity Limit Provides the maximum forward speed reference limit from the PTP regulator.	Units: Default: Min/Max:	Hz RPM P27 [Motor NP Hertz] x 0.5 P28 [Motor NP RPM] x 0.5 0.00/P27 [Motor NP Hertz] 0.00/P28 [Motor NP RPM] x 8	RW	Real

츷	$\begin{aligned} & \text { 은 } \\ & \text { in } \end{aligned}$	No.	Display Name Full Name Description	Values			$\begin{aligned} & \stackrel{0}{2} \\ & \stackrel{\rightharpoonup}{2} \\ & \stackrel{N}{0} \\ & \stackrel{5}{0} \end{aligned}$
운응응		786	PTP Rev Vel Lmt Point-To-Point Reverse Velocity Limit Provides the maximum reverse speed reference limit from the PTP regulator.	Units Default: Min/Max:	Hz RPM P27 [Motor NP Hertz] x 0.5 P28 [Motor NP RPM] x 0.5 - P27 [Motor NP Hertz] P28 [Motor NP RPM] x $8 / 0.00$	RW	Real
		787	PTP S Curve Point-To-Point S Curve Provides the amount of time that is applied to the S Curve from the PTP regulator.	Units: Default: Min/Max	$\begin{array}{\|l\|} \text { Secs } \\ 0.500 \\ 0.000 / 4.000 \end{array}$	RW	Real
		788	PTP Vel Override Point-To-Point Velocity Override Provides multiplier to both forward P785 [PTP Fwd Vel Lmt] and reverse P786 [PTP Rev Vel Lmt] speed limits. This parameter applies to the speed limits when the override bit P770 [PTP Control] Bit 0 "Vel Override" is on.	Default: Min/Max	$\begin{array}{l\|} \hline 1.00 \\ 0.20 / 1.50 \end{array}$	RW	Real
		789	PTP EGR Mult Point-To-Point Electronic Gear Ratio Multiply EGR multiplier (numerator) for position index output. The output applies to the point-to-point command P784 [PTP Command].	Default: Min/Max:	$\begin{aligned} & 1 \\ & -/+2000000 \end{aligned}$	RW	$\begin{aligned} & \text { 32-bit } \\ & \text { Integer } \end{aligned}$
		790	PTP EGR Div Point-To-Point Electronic Gear Ratio Divide EGR divider (denominator) for position index output. The output applies to the point-topoint command P784 [PTP Command].	Default: Min/Max:	$\begin{aligned} & 1 \\ & 1 / 2000000 \end{aligned}$	RW	$\begin{aligned} & 32 \text {-bit } \\ & \text { Integer } \end{aligned}$

츺		No.	Display Name Full Name Description	Values			
		806	755 PLL Psn Out FItr Phase Locked Loop Position Output Filter Indicates internal low pass filter output. This parameter is normally used to properly scale an external velocity reference. See description of the external speed scale P798 [PLL Ext SpdScale].	Default: Min/Max:	$\begin{aligned} & 0.00 \\ & -/+220000000.00 \end{aligned}$	RO	Real
		807	755 PLL Speed Out Phase Locked Loop Speed Output Indicates velocity output. This parameter is used as a velocity feed forward. It is precisely in phase with the physical input device. The virtual encoder RPM P803 [PLL Virt Enc RPM] determines the RPM at 1 P.U. of this parameter.	Default: Min/Max:	$\begin{aligned} & 0.00 \\ & -/+220000000.00 \end{aligned}$	RO	Real
		808	755 PLL Speed OutAdv Phase Locked Loop Speed Output Advanced Indicates velocity advanced output. This parameter is one velocity reference sample in advance of the speed output P807 [PLL Speed Out].	Default: Min/Max:	$\begin{aligned} & 0.00 \\ & -/+220000000.00 \end{aligned}$	RO	Real
		809	755 PLL Enc Out Phase Locked Loop Encoder Output Indicates position output. This parameter is precisely in phase with the input physical device.	Default: Min/Max:	$\left\lvert\, \begin{aligned} & 0 \\ & -2147483648 / 2147483647 \end{aligned}\right.$	RO	32-bit Integer
		810	755 PLL Enc Out Adv Phase Locked Loop Encoder Output Advanced Indicates position advanced output. This parameter is one position sample in advance of the position output P809 [PLL Enc Out].	Default: Min/Max:	$\left\lvert\, \begin{aligned} & 0 \\ & -2147483648 / 2147483647 \end{aligned}\right.$	RO	32-bit Integer
		811	755 PLL EPR Output Phase Locked Loop Edges Per Revolution Output Sets edges per revolution of the physical output device.	Default: Min/Max:	$\begin{array}{\|l\|} \hline 1048576 \\ 1 / 67108864 \end{array}$	RW	32-bit Integer
		812	755 PLL Rvis Output Phase Locked Loop Revolutions Output Sets revolution of the output encoder. This parameter must be coordinated with the revolution of the input encoder P805 [PLL Rvls Input] to resolve the gear-ratio between input revolutions and output (virtual) revolutions. The ratio of input to output revolutions can always be resolved into integer values and should be reduced to their lowest common factor.	Default: Min/Max:	$\begin{aligned} & 1 \\ & 1 / 2000000 \end{aligned}$	RW	$\begin{aligned} & \text { 32-bit } \\ & \text { Integer } \end{aligned}$

읖	$\begin{aligned} & \text { O} \\ & \frac{0}{3} \\ & \hline \end{aligned}$	No.	Display Name Full Name Description	Values			$\begin{aligned} & \stackrel{\rightharpoonup}{2} \\ & \stackrel{\rightharpoonup}{\lambda} \\ & \stackrel{y}{0} \\ & \stackrel{0}{0} \end{aligned}$
$\begin{aligned} & \text { 하 } \\ & \text { 흥 } \\ & \text { ㅇ } \\ & \text { 능 } \end{aligned}$		815	Psn Ref EGR Out Position Reference Electronic Gear Ratio Output Indicates accumulated output of the position reference electronic gear ratio (EGR) function. When the position regulator is not enabled, this parameter is initialized to P836 [Psn Actual].	Default: Min/Max:	$\begin{aligned} & 0 \\ & -2147483648 / 2147483647 \end{aligned}$	R0	$\begin{array}{\|l} \text { 32-bit } \\ \text { Integer } \end{array}$
		816	Psn EGR Mult Position Electronic Gear Ratio Multiplier Sets integer value in the numerator of the EGR function that is precision multiplied by the position reference. A negative value will effect a change in polarity.	Default: Min/Max:	$\begin{aligned} & 1 \\ & -/+2000000 \end{aligned}$	RW	$\begin{aligned} & \text { 32-bit } \\ & \text { Integer } \end{aligned}$
		817	Psn EGR Div Position Electronic Gear Ratio Division Sets integer value in the denominator of the EGR function that divides into the product of the numerator and the position reference. Remainders are accumulated and not lost.	Default: Min/Max:	$\begin{aligned} & 1 \\ & 1 / 2000000 \end{aligned}$	RW	$\begin{aligned} & \text { 32-bit } \\ & \text { Integer } \end{aligned}$

츷	른	No.	Display Name Full Name Description	Values			
운		$\begin{gathered} 820 \\ \mathrm{O} \\ \leftrightarrows \end{gathered}$	Psn Offset 1 Sel Position Offset 1 Select Selects a Position Offset 1 source.	Default: Min/Max:	$\begin{aligned} & \hline 821 \\ & 1 / 159999 \end{aligned}$	RW	$\begin{aligned} & \hline \text { 32-bit } \\ & \text { Integer } \end{aligned}$
		821	Psn Offset 1 Position Offset 1 Provides position reference offset, which is summed after the EGR and used to trim the phase of the position reference. A step in the offset position will be internally rate limited and added to the reference position. The rate of correction is set by the offset velocity P824 [Psn Offset Vel]. The initial value of this parameter is latched upon position enable without causing a change in reference. Subsequent changes to this value will be relative to the latched value. See the offset re-referencing bit P721 [Position Control] Bit 2 "Offset ReRef."	Default: Min/Max:	$\begin{array}{\|l\|} 0 \\ -2147483648 / 2147483647 \end{array}$	RW	$\begin{array}{\|l} \text { 32-bit } \\ \text { Integer } \end{array}$
		$\begin{gathered} 822 \\ \stackrel{O}{\leftrightarrows} \end{gathered}$	Psn Offset 2 Sel Position Offset 2 Select Selects a Position Offset 2 source.	Default: Min/Max:	$\begin{aligned} & 823 \\ & 1 / 159999 \end{aligned}$	RW	32-bit
		823	Psn Offset 2 Position Offset 2 Select Provides another position reference offset, which is summed with P821 [Psn 0ffset 1] and used to trim the phase of the position reference. The rate of correction is set by the offset velocity P824 [Psn Offset Vel].	Default: Min/Max:	$\begin{aligned} & 0 \\ & -2147483648 / 2147483647 \end{aligned}$	RW	32-bit Integer
		824	Psn Offset Vel Position Offset Velocity Sets speed of position offset. A position offset command will not exceed this speed. The actual speed of offset is limited to a maximum value of $1 /$ (inertia x pos gain) so as not to cause a torque pulse greater than 1 per unit. The speed will change exponentially.	Units: Default: Min/Max:	Hz RPM P27 [Motor NP Hertz] x 0.005 P28 [Motor NP RPM] x 0.005 -/+P27 [Motor NP Hertz] -/+P28 [Motor NP RPM] x 8	RW	Real

츤	$\begin{aligned} & \text { 응 } \\ & \hline \end{aligned}$	No.	Display Name Full Name Description	Values			
을		825	755 LdPsn Fdbk Mult Load Position Feedback Multiplier Sets numerator of the load EGR function. It is multiplied by the position load feedback selected by the load feedback select P136 [Load Psn FdbkSel] and divided by the load feedback divider P826 [LdPsn Fdbk Div] to reflect the load pulse count to the motor (effectively removing the gear box ratio). The accumulated position values P836 [Psn Actual] and the position load actual P837 [Psn Load Actual] - will be equal if the ratio is set properly. There may be some difference due to lost motion in the gear train, but there should not be an accumulated difference. It is often necessary to count gear teeth as gear box manufacturers often approximate exact ratios with decimal numbers. Enter a negative value in the numerator to account for reversed motor rotation.	Default: Min/Max:	$\begin{aligned} & 1 \\ & 1+1000000 \end{aligned}$	RW	32-bit Integer
		826	755 LdPsn Fdbk Div Load Position Feedback Division Sets denominator of the load EGR function.	Default: Min/Max:	$\begin{aligned} & 1 \\ & 1 / 2000000 \end{aligned}$	RW	32-bit Integer

을		No.	Display Name Full Name Description	Values			$\begin{aligned} & \stackrel{\rightharpoonup}{2} \\ & \stackrel{\rightharpoonup}{n} \\ & \stackrel{y}{0} \\ & \end{aligned}$
		830	PsnNtchFItrFreq Position Notch Filter Frequency Sets the center frequency of the position notch filter.	Units: Default: Min/Max	$\begin{array}{\|l\|} \hline \mathrm{Hz} \\ 0.00 \\ 0.00 / 500.00 \end{array}$	RW	Real
		831	PsnNtchFItrDepth Position Notch Filter Depth Sets the depth for the position notch filter. Attenuation is the ratio of the output to the input at the notch frequency P830 [PsnNtchFltrFreq]. The attenuation of 30 means that the notch output is $1 / 30$ th of the input at the specified frequency. Calculation: Attenuation = Input / Output	Default: Min/Max:	$\begin{array}{\|l\|} \hline 50.00 \\ 0.00 / 500.00 \end{array}$	RW	Real
		832	Psn Out Fltr Sel Position Output Filter Select Selects a type of lead-lag filter for position regulator speed output. This parameter sets filter gain P833 [Psn Out FltrGain] and bandwidth P834 [Psn Out Fltr BW] according to the selected type. "Off" $(0)-$ P833 $=1.000$, P834 $=0.00$ "Custom" (1) - P833 = user setting, P834 = user setting	Default: Options:	$\begin{aligned} & 0=" 0 \mathrm{ff} " \\ & 0=\text { "Off" } \\ & 1=\text { "Custom" } \end{aligned}$	RW	32-bit Integer
$\begin{aligned} & \text { 우 } \\ & \text { 흥 } \\ & \text { ㅇ } \\ & \text { 응 } \end{aligned}$		833	Psn Out FltrGain Position Output Filter Gain Sets lead-lag filter gain. A default value is sets when the filter type selection P832 [Psn Out Fltr Sell is not Custom (Option 1). See the filter type selection P832.	Default: Min/Max:	$\begin{aligned} & 3.000 \\ & -/+5.000 \end{aligned}$	RW	Real
		834	Psn Out FItr BW Position Output Filter Bandwidth Sets lead-lag bandwidth. A default value is sets when the filter type selection P832 [Psn Out Fltr Sell is not Custom (Option 1). See the filter type selection P832.	Units: Default: Min/Max	R/S 50.00 $0.00 / 500.00$	RW	Real
		835	Psn Error Position Error Indicates actual position error in motor pulse counts as a 32-bit integer. When the position regulator is not enabled, the value is initialized to zero. When the position regulator is enabled, the value contains the running value of position error between the position command P723 [Psn Command] and P836 [Psn Actual].	Default: Min/Max:	$\begin{array}{\|l\|} \hline 0 \\ -2147483648 / 2147483647 \end{array}$	RO	$\begin{aligned} & \text { 32-bit } \\ & \text { Integer } \end{aligned}$
		836	Psn Actual Position Actual Indicates accumulated motor position as a 32-bit integer. It tracks the position feedback P847 [Psn Fdbk]. When P721 [Position Control] Bit 4 "Zero Psn" is set, this parameter accumulates the value of P847 [Psn Fdbk] - the P725 [Zero Position]. When P721 [Position Control] Bit 4 "Zero Psn" is off, this parameter accumulates the value of P847 [Psn Fdbk].	Default: Min/Max:	$\begin{array}{\|l\|} \hline 0 \\ -2147483648 / 2147483647 \end{array}$	R0	$\begin{aligned} & \text { 32-bit } \\ & \text { Integer } \end{aligned}$

쁲	은	No.	Display Name Full Name Description	Values			
$\begin{aligned} & \text { 흥 } \\ & \text { Nㅡㅇ } \\ & \text { 응 } \\ & \text { 능 } \end{aligned}$		846	Psn Reg Droop Position Regulation Droop Sets position droop which limits the low frequency gain of the position regulators integral channel to a value of (1/droop). This parameter provides a means to fine tune the stability for load mounted feedback devices where lost motion may cause a problem. Typically, the position droop will have a value that is less than (1/position gain), perhaps even zero for tightly coupled loads. The position droop has a gain value of (P.U. position) / (P.U. speed). Note: 1 P.U. position is the distance traveled in 1 second at base motor speed.	Units: Default: Min/Max:	Secs 0.00 $0.00 / 25.00$	RW	Real
		847	Psn Fdbk Position Feedback Indicates the accumulated pulse count of the position feedback selected by the position feedback select P135 [Psn Fdbk Sel].	Default: Min/Max:	$\left\lvert\, \begin{aligned} & 0 \\ & -2147483648 / 2147483647 \end{aligned}\right.$	R0	$\begin{array}{\|l\|l} \text { 32-bit } \\ \text { Integer } \end{array}$
		8	755 Psn Gear Ratio Position Gear Ratio Sets the load side gear ratio for position control. Adjust this parameter's value when the load side encoder is selected for the position feedback by P135 [Mtr Psn Fdk Sel], and the load is coupled to the motor through a gear. Calculation: Gear Ratio $=($ (Number of teeth on Gear or driven) $/($ Number of teeth on Pinion or driver) When a motor (driver) and a load (driven) are coupled with a 20:1 gear box (the gear ratio $=20$), the value of this parameter will be 20 . This value affects the following parameters as a speed feed forward gain. P843 [PsnReg Spd Out] P783 [PTP Speed FwdRef] P807 [PLL Speed Out] P1472 [PCAM Vel Out]	Default: Min/Max:	$\begin{aligned} & 1.0000 \\ & 0.0001 / 9999.0000 \end{aligned}$	RW	Real

Drive (Port 0)
 Communication File

을	은	No.	Display Name Full Name Description	Values			
	$\begin{aligned} & \text { 은 } \\ & \text { U0 } \\ & \text { E } \\ & \text { EU } \end{aligned}$	$\begin{aligned} & 865 \\ & 866 \\ & 867 \end{aligned}$	DPI Pt1 FIt Actn DPI Pt2 FIt Actn DPI Pt3 FIt Actn DPI Portn Fault Action Sets the response to a HIM communication loss. Note: This feature will not work if the HIM is the only Stop source. "Fault" (0) - Major fault indicated. Coast to Stop. "Stop" (1) - Type 2 alarm indicated. Stop according to P370 [Stop Mode A]. "Zero Data" (2) - Type 2 alarm indicated. If running, drive continues to run, speed reference goes to zero. "Hold Last" (3) - Type 2 alarm indicated. If running, drive continues to run at the last value entered from the HIM . "Send FIt Cfg" (4) - Type 2 alarm indicated. If running, drive continues to run at [DPI Ptn Flt Ref].	Default: Options:	$\begin{aligned} & 0=\text { "Fault" } \\ & 0=\text { "Fault" } \\ & 1=\text { "Stop" } \\ & 2=\text { "Zero Data" } \\ & 3=\text { "Hold Last" } \\ & 4=\text { "Send Flt Cfg" } \end{aligned}$	RW	$\begin{aligned} & \hline \text { 32-bit } \\ & \text { Integer } \end{aligned}$
		$\begin{aligned} & 868 \\ & 869 \\ & 870 \end{aligned}$	DPI Pt1 FIt Ref DPI Pt2 FIt Ref DPI Pt3 FIt Ref DPI Portn Fault Reference Sets a constant value for the speed reference when [DPI Ptn FIt Actn] option 4 "Send Flt Cfg" is set and a HIM communication loss is detected.	Default: Min/Max	$\begin{aligned} & 0.00 \\ & -/+220000000.00 \end{aligned}$	RO	Real

츺	言 ${ }^{\text {No. }}$	Display Name Full Name Description	Values			$$
	$\begin{aligned} & \hline 871 \\ & 872 \\ & 873 \\ & 874 \\ & 875 \\ & 876 \\ & 877 \\ & 878 \end{aligned}$	Port 1 Reference Port 2 Reference Port 3 Reference Port 4 Reference Port 5 Reference Port 6 Reference 755 Port13 Reference Port14 Reference Port n Reference Reference value from port devices.	Units: Default: Min/Max:	Hz RPM 0.00 -/+P27 [Motor NP Hertz] x 8 -/+P28 [Motor NP RPM] x 8	R0	Real
	879	Drive Logic Rslt Drive Logic Result			R0	32-bit Integer

This is the logic output of the logic parser that combines the outputs from the DPI ports and the DeviceLogix controller to determine drive control based on the masks and owners. Used for peer to peer communication with PowerFlex 750-Series communication modules.

880	DPI Ref Rslt DPI Reference Result Present speed reference scaled as a DPI reference for peer to peer communications. The value shown is the value prior to the accel/decel ramp and the corrections supplied by slip comp, PI, etc. Used for peer to peer communication with 20-COMM communication modules.	Units: Default: Min/Max:	Hz RPM 0.000 $-2147483.648 / 2147483.624$	R0	$\begin{aligned} & \text { 32-bit } \\ & \text { Integer } \end{aligned}$
881	DPI Ramp Rsit DPI Ramp Result Displays the speed reference value, after the limit function. This is the input to the error calculator and speed regulator. Used for peer-to-peer communication with 20-COMM communication modules.	Units: Default: Min/Max:	Hz RPM 0.000 $-2147483.648 / 2147483.624$	R0	32-bit Integer
882	DPI Logic Rslt DPI Logic Result			R0	32-bit Integer

A version of P 879 that is used when doing peer-to-peer control with a 20-COMM communication module. The lower 16 bit command values are copied into the upper 16 bits of this 32-bit parameter for use with this type of communication module. Not for use with a 20-750 communication module.

Options											$\begin{aligned} & \stackrel{\sim}{\omega} \\ & \underset{\sim}{3} \\ & \underset{\sim}{2} \end{aligned}$	$\begin{aligned} & \text { 믈 } \\ & \text { 웅 } \\ & \hline \end{aligned}$		항	는	$\stackrel{\text { 운 }}{ }$										들	$$	$\begin{array}{\|l\|l} \text { 뮺 } \\ \sum_{0}^{0} \\ \hline \end{array}$		-	容	$\stackrel{\text { 을 }}{ }$
Default	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6		4	3	2	1	0
																											$0=$ False, $1=$ True					

883 Drive Ref Rslt

Drive Reference Result
Present frequency reference scaled as a DPI reference for peer to peer communications.
The value shown is the value prior to the accel/decel ramp and the corrections supplied by slip comp, PI, etc. Used for peer to peer communication with 20-COMM communication modules.

884	Drive Ramp Rslt

Drive Ramp Result
Displays the speed reference value, after the limit function. This is the input to the error
calculator and speed regulator. This number is scaled so that rated motor speed will read 32768. Used for peer to peer communication with 20-COMM communication modules.

$\stackrel{\text { ² }}{\text { 2 }}$	$\begin{aligned} & \text { 응 } \\ & \text { 응 } \end{aligned}$	No．	Display Name Full Name Description	Values	（1）	
		885	Port Mask Act Port Mask Active		RO	$\begin{aligned} & \hline \text { 16-bit } \\ & \text { Integer } \end{aligned}$

Active status for port communication．Bit 15 ＂Security＂determines if network security is controlling the port mask instead of this parameter．For example，bit 15 can be active（control the port mask）when Automatic Device Configuration（ADC）is active．

886 Logic Mask Act
Logic Mask Active Integer
Active status of the logic mask for ports．Bit 15 ＂Security＂determines if network security is controlling the logic mask instead of this parameter．

Write Mask Act
Write Mask Active

Active status of write access for ports．Bit 15 ＂Security＂determines if network security is controlling the write mask instead of this parameter．

888 Write Mask Cfg

Write Mask Configuration
Enables／disables write access（parameters，links，etc．）for DPI ports．Changes to this parameter only become effective when power is cycled，the drive is reset or bit 15 of P887［Write Mask Act］，transitions from＂ 1 ＂to＂ 0 ．＂
Options

	$\begin{aligned} & \text { む̀ } \\ & \stackrel{y}{0} \end{aligned}$	$\begin{aligned} & \pm \\ & \stackrel{t}{0} \end{aligned}$	$\begin{aligned} & \mathrm{m} \\ & \stackrel{\rightharpoonup}{0} \end{aligned}$	$\begin{array}{\|c} \underset{\sim}{心} \\ \stackrel{\sim}{0} \\ \hline \end{array}$	$\begin{aligned} & \bar{I} \\ & \underset{0}{2} \end{aligned}$	$\begin{aligned} & \text { 은 } \\ & \stackrel{t}{0} \end{aligned}$	$\begin{aligned} & \text { on } \\ & \text { t } \\ & 0 \end{aligned}$	$\begin{aligned} & \infty \\ & \stackrel{\pi}{2} \\ & \vdots \end{aligned}$	$\begin{aligned} & \text { N } \\ & \stackrel{y}{0} \end{aligned}$	$\begin{aligned} & \mathbf{0} \\ & \stackrel{⿸ 厂 二 又 土}{2} \end{aligned}$	$\begin{aligned} & n \\ & \stackrel{n}{2} \\ & \vdots \end{aligned}$	$\begin{aligned} & \pm \\ & \stackrel{\rightharpoonup}{0} \end{aligned}$	$\begin{aligned} & m \\ & \stackrel{\rightharpoonup}{2} \end{aligned}$	$\begin{aligned} & \text { N } \\ & \underset{0}{2} \end{aligned}$	$\begin{aligned} & t \\ & 0 \\ & \hline \end{aligned}$		＝Read Only
Default	0	1	1	0	1	1	1	1	1	1	1	1	1	1	1		
Bit		14	3	12		10	9	8		6	5	4					

$\stackrel{\text { O}}{i z}$	을	No.	Display Name Full Name Description	Values		先	
은0000			Important: DPI Datalinks parameters are used for datalinks on legacy 20-COMM-n communication devices. For embedded EtherNet/IP or 20-750 option datalinks, refer to the parameters associated with the specific option module.				
		$\begin{aligned} & 895 \\ & 896 \end{aligned}$	Data In A1 Data In A2 Data Input An Parameter number whose value will be written from a communications device data table.	Default: Min/Max:	$\begin{aligned} & 0(0=\text { "Disabled") } \\ & 0 / 159999 \end{aligned}$	RW	32-bit Integer
		$\begin{array}{\|l\|} 897 \\ 898 \end{array}$	Data In B1 Data In B2 Data Input $B n$ Parameter number whose value will be written from a communications device data table.	See [Dat			
		$\begin{aligned} & 899 \\ & 900 \end{aligned}$	Data In C1 Data In C2 Data Input Cn Parameter number whose value will be written from a communications device data table.	See [Dat			
		$\begin{aligned} & 901 \\ & 902 \end{aligned}$	Data In D1 Data In D2 Data Input Dn Parameter number whose value will be written from a communications device data table.	See [Data			
		$\begin{aligned} & 905 \\ & 906 \end{aligned}$	Data Out A1 Data Out A2 Data Output An Parameter number whose value will be written to a communications device data table.	Default: Min/Max:	$\begin{aligned} & 0 \text { (0 = "Disabled") } \\ & 0 / 159999 \end{aligned}$	RW	32-bit Integer
		$\begin{aligned} & 907 \\ & 908 \end{aligned}$	Data Out B1 Data Out B2 Data Output Bn Parameter number whose value will be written from a communications device data table.	See [Data Out A1].			
		$\begin{aligned} & 909 \\ & 910 \end{aligned}$	Data Out C1 Data Out C2 Data Output Cn Parameter number whose value will be written from a communications device data table.	See [Data Out A1].			
		$\begin{aligned} & 911 \\ & 912 \end{aligned}$	Data Out D1 Data Out D2 Data Output Dn Parameter number whose value will be written from a communications device data table.	See [Data Out A1].			

은	을	No.	Display Name Full Name Description	Values			
		1700... 1731	UserData Int 00... 31 User Data Integer 00... 31 Available for storage of a 32-bit integer value by the user.	Default: Min/Max:	$\begin{aligned} & 0 \\ & -2147483647 / 2147483647 \end{aligned}$	RW	32-bit Integer
		1800... 1831	UserData Real 00... 31 User Data Real 00... 31 Available for storage of a real value by the user.	Default: Min/Max:	$\begin{aligned} & 0.0000 \\ & -2147483647 / 2147483647 \end{aligned}$	RW	Float
		$\begin{aligned} & 1900 \\ & 1904 \\ & 1908 \\ & 1912 \\ & 1916 \\ & 1920 \\ & 1924 \\ & 1928 \end{aligned}$	ScaleBIk Sel 00 ScaleBIk Sel 01 ScaleBIk Sel 02 ScaleBIk Sel 03 ScaleBIk Sel 04 ScaleBIk Sel 05 ScaleBIk Sel 06 ScaleBIk Sel 07 Scale Block Select n Selects the source value to be scaled.	Default: Min/Max:	Disabled $0 / 159999$	RW	32-bit Integer
$\begin{aligned} & \text { 은 } \\ & \text { 웅 } \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	n 릋 节 등	1901 1905 1909 1913 1917 1921 1925 1929	ScaleBIk Scal 00 ScaleBIk Scal 01 ScaleBIk Scal 02 ScaleBIk Scal 03 ScaleBIk Scal 04 ScaleBIk Scal 05 ScaleBIk Scal 06 ScaleBIk Scal 07 Scale Block Scalen Scales (multiplier) the selected parameter value.	Default: Min/Max:	$\begin{aligned} & 1.0000 \\ & -2147483647 / 2147483647 \end{aligned}$	RW	Float
		$\begin{aligned} & 1902 \\ & 1906 \\ & 1910 \\ & 1914 \\ & 1918 \\ & 1922 \\ & 1926 \\ & 1930 \end{aligned}$	ScaleBIk Int 00 ScaleBIk Int 01 ScaleBIk Int 02 ScaleBIk Int 03 ScaleBIk Int 04 ScaleBIk Int 05 ScaleBIk Int 06 ScaleBIk Int 07 Scale Block Integer n Displays the scaling result as a 32-bit integer value.	Default: Min/Max:	$\left\lvert\, \begin{aligned} & 0 \\ & -2147483647 / 2147483647 \end{aligned}\right.$	R0	32-bit Integer
		1903 1907 1911 1915 1919 1923 1927 1931	ScaleBIk Real 00 ScaleBIk Real 01 ScaleBIk Real 02 ScaleBIk Real 03 ScaleBIk Real 04 ScaleBIk Real 05 ScaleBIk Real 06 ScaleBIk Real 07 Scale Block Real n Displays the scaling result as a real value.	Default: Min/Max:	$\begin{aligned} & 0.0000 \\ & -2147483647 / 2147483647 \end{aligned}$	R0	Float

Drive (Port 0) Diagnostics File

$\stackrel{\text { O }}{\underline{E}}$	을	No.	Display Name Full Name Description	Values			
		930	Speed Ref Source Speed Reference Source Indicates the currently selected source for value displayed in P593 [Limited Spd Ref]. The Speed Reference Source displays the parameter number that is supplying the speed reference. For example, if Speed Reference Source contains the value 546, then P546 [Spd Ref A Stpt] is the source of the speed reference.	Default: Min/Max:	$\begin{array}{l\|} \hline 0 \\ 0 / 159999 \end{array}$	R0	32-bit Integer
	$\begin{aligned} & \text { 气 } \\ & \text { 劳 } \end{aligned}$	931	Last StartSource Last Start Source Displays the source that initiated the most recent start sequence. All bits in this parameter are refreshed each time the drive receives a start command.	Default: Options:	$\begin{aligned} & 0=\text { Read Only } \\ & 0=\text { "Pwr Removed" } \\ & 1-6=\text { "Port 1-6" } \\ & 7=\text { "Digital In" } \\ & 8=\text { "Sleep" } \\ & 9=\text { "Jog" } \\ & 10=\text { "Profiling" } \\ & 11=\text { "AutoRestart" } \\ & 12=\text { "Pwr Up Start" } \\ & 13=\text { "Fault" } \\ & 14=\text { "Enable" } \\ & 15=\text { "Autotune" } \\ & 16=\text { "Precharge" } \\ & 17=\text { "Safety" } \\ & 18=\text { "Fast Stop" } \\ & 19=\text { "Port 13" } \\ & 20=\text { "Port 14" } \end{aligned}$	R0	32-bit Integer
		932	Last Stop Source Last Stop Source Displays the source that initiated the most recent stop sequence. All bits in this parameter are refreshed each time the drive receives a stop command.	Default: Options:	$\begin{aligned} & 0=\text { Read Only } \\ & 0=\text { "Pwr Removed" } \\ & 1-6=\text { "Port 1-6" } \\ & 7=\text { "Digital In" } \\ & 8=\text { "Sleep" } \\ & 9=\text { "Jog" } \\ & 10=\text { "Profiling" } \\ & 11=\text { "AutoRestart" } \\ & 12=\text { "Pwr Up Start" } \\ & 13=\text { "Fault" } \\ & 14=\text { "Enable" } \\ & 15=\text { "Autotune" } \\ & 16=\text { "Precharge" } \\ & 17=\text { "Safety" } \\ & 18=\text { "Fast Stop" } \\ & 19=\text { "Port 13" } \\ & 20=\text { "Port 14" } \end{aligned}$	R0	32-bit Integer

읖	은	No.	Display Name Values Full Name Description	(ty	(
氝	告		Bit 16 "Running" - This bit indicates that the drive has successfully responded to a start signal. The "Active" (Bit 1) status bit will also be set at the same time as the Running status. The "Running" bit will remain set while the drive's control loops are active and during a controlled stop. The "Running" bit will be clear due to any of the following conditions: drive stopped, drive coast stop, drive jogging, drive autotuning. Bit 17 "Jogging" - This bit indicates that the drive has successfully responded to a jog signal. The "Active" (Bit 1) status bit will also be set at the same time as the Jogging status. The "Jogging" bit will remain set while the drive's control loops are active and during a controlled stop. The "Jogging" bit will remain set after the jog signal is removed until the drive is stopped. The "Jogging" bit will be clear due to any of the following conditions: drive stopped, drive coast stop, drive running, drive autotuning. Bit 18 "Stopping" - Drive is attempting to bring the motor to rest due to a Stop command. Bit 19 " $D C$ Braking" - Drive is performing DC Braking. Bit 20 "DB Active" - The Dynamic Brake is active. Bit 21 "Speed Mode" - When set, the "Speed Mode" bit indicates that motor speed is the active regulation mode. This is the default case when operating in non-vector control mode, since position and torque can only be controlled in vector control mode. The "Speed Mode" status bit will clear due to any of the following conditions: drive operating in another regulation mode such as a position regulator, torque regulator, adjustable voltage control mode. The "Speed Mode" status bit will also clear if the drive is not active (status bit 1 clear). In cases where the control can automatically switch between speed and torque, such as SLAT FVC control modes, the "Speed Mode" bit will indicate when speed control is active. In the "Sum" FVC control mode where the speed regulator's output is added to a torque reference, both the "Speed Mode" and "Torque Mode" status bits will become set while the drive is active. Bit 22 "PositionMode" - When set, the "PositionMode" bit indicates that motor position is the active regulation mode. Position control is only available when the drive is operating in a vector control mode with a speed and position feedback device. The "Position Mode" status bit will clear due to any of the following conditions: drive operating in a non-position regulation mode such as a speed regulator, torque regulator, adjustable voltage control mode. The "PositionMode" status bit will also clear if the drive is not active (status Bit 1 clear). Bit 23 "Torque Mode" - When set, the "Torque Mode" bit indicates that motor torque is the active regulation mode. Torque control is only available when the drive is operating in a vector control mode. The "Torque Mode" status bit will clear due to any of the following conditions: drive operating in another regulation mode such as a speed regulator, position regulator, adjustable voltage control mode. The "Torque Mode" status bit will also clear if the drive is not active (status Bit 1 clear). In cases where the control can automatically switch between speed and torque, such as SLAT FVC control modes, the "Torque Mode" bit will indicate when torque control is active. In the "Sum" FVC control mode where the speed regulator's output is added to a torque reference, both the "Speed Mode" and "Torque Mode" status bits will become set while the drive is active. Bit 24 "AtZero Speed" - When set, the "AtZero Speed" status bit indicates that the value of P131 [Active Vel Fdbk] is near zero. This status bit is set when the feedback speed magnitude (sign independent) becomes less than the level set in P525 [Zero Speed Limit]. This bit will clear when the speed exceeds twice the zero speed level. Bit 25 "At Home" - This bit is set when the difference between P847 [Psn Fdbk] and P737 [Actual Home Psn] is within P726 [In Pos Psn Band]. Bit 26 "At Limit" - This bit is set when a bit in P945 [At Limit Status] is set. See P945 [At Limit Status] for more details. Bit 27 "Cur Limit" - This bit is set when the drive is running with limited speed or torque avoid an overcurrent condition. Bit 28 "Bus Frq Reg" - This bit is set when the speed has been regulate to avoid an overcurrent condition. Bit 29 "Enable 0 n " - This bit is set when the drive is enabled. Bit 30 "Motor OL" - This bit is set when an excessive motor load exists. Bit 31 "Regen" - This bit is set when the motor torque direction is opposite of the speed direction.		

쁲	른	No.	Display Name Full Name Description	Values		\|l	
	$\begin{aligned} & \text { 兴 } \\ & \stackrel{\rightharpoonup}{*} \end{aligned}$	940	Drive OL Count Drive Overload Count Indicates power unit overload (IT) in percentage. When the value reaches 100%, the power unit overload fault occurs.	Units: Default: Min/Max:	$\%$ 0.00 $0.00 / 200.00$	R0	Real
		941	IGBT Temp Pct Insulated-Gate Bipolar Transistor Temperature Percent Indicates IGBT junction temperature in percentage of the maximum junction temperature. The value of this parameter is calculated.	Units: Default: Min/Max:	$\%$ 0.00 $-/+200.00$	R0	Real
		942	IGBT Temp C Insulated-Gate Bipolar Transistor Temperature Celsius Indicates IGBT junction temperature in centigrade. The value of this parameter is calculated.	Units: Default: Min/Max:	DegC 0.00 $-/+200.00$	R0	Real
		943	Drive Temp Pct Drive Temperature Percent Indicates operating temperature of the drive power section (heat-sink) in percentage of the maximum heat-sink temperature. The value of this parameter is measured.	Units: Default: Min/Max:	$\%$ 0.00 $-/+200.00$	R0	Real
		944	Drive Temp C Drive Temperature Celsius Present operating temperature of the drive power section. The value of this parameter is measured.	Units: Default: Min/Max:	$\begin{aligned} & \text { DegC } \\ & 0.00 \\ & -/+200.00 \end{aligned}$	R0	Real

흧	은	No．	Display Name Full Name Description	Values	¢	
		945	At Limit Status At Limit Status		R0	32－bit Integer

Status of dynamic conditions within the drive that are either active or a limit is being applied．

Options																					兰 $\frac{\square}{2}$ \sum_{2}^{2} \sum_{2}		은 気 気 즌									苞
Default	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
																											$\begin{aligned} & 0=C \\ & 1=C \end{aligned}$	ondi				

Bit 0 ＂Current Lmt＂－Scalar current limit is adjusting the output frequency
Bit 1 ＂Bus VItg Lmt＂－Scalar bus voltage limit is adjusting the output frequency
Bit 2 ＂MaxSpeed Lmt＂－Motor speed reference is limited to maximum forward speed or maximum reverse speed．See P520［Max Fwd Speed］，P521［Max Rev Speed］．
Bit 3 ＂OverSpd Lmt＂－Motor speed reference positive（＋）trim is at maximum speed limit plus or minus（＋／－）the overspeed limit
Bit 4 ＂Spd Reg Lmt＂－The output of the drive＇s speed regulator has reached limit．See P655［Spd Reg Pos Lmt］，P656［Spd Reg Neg Lmt］．
Bit 5 ＂Freq Hi Lmt＂－Scalar control inner ramp high limit is active
Bit 6 ＂Freq Lo Lmt＂－Scalar control inner ramp low limit is active
Bit 7 ＂FreqOSPosLmt＂－Scalar control inner ramp positive（＋）overspeed limit is active
Bit 8 ＂FreqOSNegLmt＂－Scalar control inner ramp negative（－）overspeed limit is active
Bit 9 ＂Flux Braking＂－Flux braking is active
Bit 10 ＂Economize＂－Economize is active
Bit 11 ＂PWM FreqLmt＂－PWM frequency is reduced by the thermal regulator
Bit 12 ＂DB Res Limit＂－Dynamic brake thermal protection is active．Verify P385［DB ExtPulseWatts］．
Bit 13 ＂PsnReg LoLmt＂－The position integrator low limit is active
Bit 14 ＂PsnReg Hilmt＂－The position integrator high limit is active
Bit 15 ＂PsnReg LoSpd＂－The position regulator output（speed）is at low limit
Bit 16 ＂PsnReg HiSpd＂－The position regulator output（speed）is at high limit
Bit 17 ＂TrqCurPosLmt＂－The torque current positive limit is active
Bit 18 ＂TrqCurNegLmt＂－The torque current negative limit is active
Bit 19 ＂FlxCurPosLmt＂－The flux current positive limit is active
Bit 20 ＂FlxCurNegLmt＂－The flux current negative limit is active
Bit 21 ＂Trq Pos Lmt＂－The positive torque limit is active．See P670［Pos Torque Limit］．
Bit 22 ＂Trq Neg Lmt＂－The negative torque limit is active．See P671［Neg Torque Limit］．
Bit 23 ＂Mtrng PwrLmt＂－The motoring power limit is active．See P427［Motor Power Lmt］．
Bit 24 ＂Regen PwrLmt＂－The regeneration power limit is active．See P426［Regen Power Lmt］．
Bit 25 ＂Cur Lmt FV＂－The current limit parameter or analog Input current limit is active
Bit 26 ＂Therm RegLmt＂－The thermal regulator torque limit is active
Bit 27 ＂BusVItgFVLmt＂－The bus voltage regulator torque limit is active
Bit 28 ＂Mtr VItg Lkg＂－The Vds motor voltage limit is active
Bit 29 ＂TrqPrvPosLmt＂－The torque proving positive torque limit is active
Bit 30 ＂TrqPrvNegLmt＂－The torque proving negative torque limit is active
Bit 31 ＂Cur Rate Lmt＂－The lqs rate limit is active
Indicates the port location of a valid feedback option for use with the Safe Speed Monitoring Option．

Options								$\begin{aligned} & \infty \\ & \stackrel{\rightharpoonup}{0} \\ & 0 \\ & \hline \end{aligned}$	$\begin{aligned} & \grave{y} \\ & \stackrel{y}{0} \\ & \hline \end{aligned}$	$\begin{aligned} & 0 \\ & \text { 2 } \\ & 0 \\ & \hline \end{aligned}$	$\begin{aligned} & 2 \\ & \stackrel{n}{0} \\ & \vdots \end{aligned}$	$\begin{aligned} & \pm \\ & \vdots \\ & 0 \\ & \hline \end{aligned}$	$\left\lvert\, \begin{gathered} 0 \\ \stackrel{\rightharpoonup}{u} \\ \stackrel{0}{0} \\ \text { an } \end{gathered}\right.$	$\left\lvert\, \begin{aligned} & 0 \\ & \stackrel{\rightharpoonup}{u} \\ & \stackrel{0}{0} \\ & \text { an } \end{aligned}\right.$	$\left\lvert\, \begin{aligned} & 0 \\ & \stackrel{\rightharpoonup}{u} \\ & \stackrel{0}{0} \\ & \text { an } \end{aligned}\right.$	O	$\begin{aligned} & 0=\text { Condition False } \\ & 1=\text { Condition True } \end{aligned}$
Default	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
Bit	15	14	13	12	11	10	9	8		6	5	4	3	2	1	0	

		964	$753 \quad$ CRC FIt Cfg CRC Fault Configuration Allows the user to configure exception 917 [FPGA CRC Failure] and change the default state. Ignore (0) - No action is taken. Alarm (1) - Type 1 alarm indicated. Flt Minor (2) - Minor fault indicated. If running, drive continues to run. Enable with P950 [Minor Flt Cfg]. If not enabled, acts like a major fault. FItCoastStop (3) - Major fault indicated. Coast to Stop. Flt RampStop (4) - Major fault indicated. Ramp to Stop. Flt CL Stop (5) - Major fault indicated. Current Limit Stop. FItNonReset (6) - Major fault indicated. Cycle power to clear this fault.	Default: Options:	6-FItNonReset 0 - Ignore 1 - Alarm 2 - Fit Minor 3 - FltCoastStop 4 - Flt RampStop 5 - Flt CL Stop 6 - FItNonReset	RW	32-bit Integer

읖	言	No.	Display Name Full Name Description	Values			$\begin{aligned} & \stackrel{0}{2} \\ & \stackrel{\rightharpoonup}{\lambda} \\ & \stackrel{y}{0} \\ & \underset{0}{0} \end{aligned}$
気		$\begin{aligned} & 970 \\ & 974 \\ & 978 \\ & 982 \end{aligned}$	Testpoint Sel 1 Testpoint Sel 2 Testpoint Sel 3 Testpoint Sel 4 Testpoint Select n Selects a source for the testpoint values ("Fval" and "Lval"). Used by the factory, typically for diagnostic purposes.	Default: Min/Max:	$\begin{aligned} & 0 \\ & -2147483648 / 2147483647 \end{aligned}$	RW	32-bit Integer
		$\begin{array}{\|l\|} 971 \\ 975 \\ 979 \\ 983 \end{array}$	Testpoint Fval 1 Testpoint Fval 2 Testpoint Fval 3 Testpoint Fval 4 Testpoint Float Value n Displays data selected by [Testpoint Sel n], if the data type is floating point.	Default: Min/Max:	$\begin{aligned} & 0.000000 \\ & -/+220000000.000000 \end{aligned}$	RW	Real
		$\begin{aligned} & 972 \\ & 976 \\ & 980 \\ & 984 \end{aligned}$	Testpoint Lval 1 Testpoint Lval 2 Testpoint Lval 3 Testpoint Lval 4 Testpoint Long Valuen Displays data selected by [Testpoint Sel n], if the data type is long integer.	Default: Min/Max:	$\begin{aligned} & 0 \\ & -2147483648 / 2147483647 \end{aligned}$	RW	$\begin{aligned} & \text { 32-bit } \\ & \text { Integer } \end{aligned}$

$\stackrel{\text { \% }}{\text { \% }}$	$\begin{aligned} & \text { 을 } \\ & \text { 은 } \end{aligned}$	No.	Display Name Full Name Description	Values			
		1035	755 PkDtct Stpt Real Peak Detection Setpoint Real A setpoint value, in the form of a real number. Intended to be used as a potential data source for P1038 [PkDtct1PresetSel] and P1043 [PkDtct2PresetSel].	Default: Min/Max:	$\begin{aligned} & 0.000000 \\ & -1+220000000.000000 \end{aligned}$	RW	Real
		1036	755 PkDtct Stpt DInt Peak Detection Setpoint D Integer A setpoint value, in the form of an integer number. Intended to be used as a potential data source for P1038 [PkDtct1PresetSel] and P1043 [PkDtct2PresetSel].	Default: Min/Max:	$\begin{array}{\|l} 0 \\ -2147483648 / 2147483647 \end{array}$	RW	32-bit Integer
		1037 $\stackrel{H}{\leftrightarrows}$	755 PkDtct1 In Sel Peak Detection 1 Input Select Selects the input data source for the peak detect functions. The functions can be configured to sample and hold either the largest (maximum) or smallest (minimum) value of the input signal selected by this parameter. Important: Either real or integer data sources can be selected, but integer sources will be internally converted to real and displayed in the peak detect output as real numbers.	Default: Min/Max:	$\begin{array}{\|l\|} \hline 1035 \\ 0 / 15999931 \end{array}$	RW	32-bit Integer
		1038	755 PkDtct1PresetSel Peak Detection 1 Preset Select Selects the preset data source for the peak detect functions. The output of the each peak detect function can be forced to equal the value of the input signal selected by this parameter by using the"Peak1 Set" bit in P1039 [Peak1 Cfg]. The same integer to real number conversion applies to both the input and the preset signal.	Default: Min/Max:	$\begin{aligned} & 0 \\ & 0 / 15999931 \end{aligned}$	RW	32-bit Integer

Drive (Port 0) Applications

File

릋	응	No.	Display Name Full Name Description	Values		¢	
		$\begin{array}{r} 1072 \\ \hline \end{array}$	PID Fdbk Sel PID Feedback Select Selects the source for the PID Feedback.	Default: Min/Max:	$\begin{aligned} & \hline 1077 \\ & 1 / 159999 \end{aligned}$	RW	$\begin{aligned} & \hline \text { 32-bit } \\ & \text { Integer } \end{aligned}$
		1073	PID Fdbk AnlgHi PID Feedback Analog High When an analog input is selected for PID Feedback this sets high value of scaling. A value of 100% is equal to motor base speed.	Units: Default: Min/Max:	$\begin{aligned} & \hline \% \\ & 100.00 \\ & -/+100.00 \end{aligned}$	RW	Real
		1074	PID Fdbk AnlgLo PID Feedback Analog Low When an analog input is selected for PID Feedback this sets low value of scaling. A value of 100% is equal to motor base speed.	Units: Default: Min/Max:	$\begin{aligned} & \% \\ & 0.00 \\ & -/+100.00 \end{aligned}$	RW	Real
		$\begin{gathered} 1075 \\ \square \\ 5 \end{gathered}$	PID FBLoss SpSel PID Feedback Loss Speed Select When an analog input is selected for PID Feedback, P1079 [PID Output Sel] is set to Speed Excl/Speed Trim, and an analog signal loss is detected, sets speed to this source. Analog signal loss occurs when the signal falls below 2 V ($0 \ldots 10 \mathrm{~V}$ signal) or below 4 mA ($4 . . .20 \mathrm{~mA}$ signal).	Default: Min/Max:		RW	$\begin{aligned} & \text { 32-bit } \\ & \text { Integer } \end{aligned}$
		$\begin{gathered} 1076 \\ \square \\ 5 \end{gathered}$	PID FBLoss TqSel PID Feedback Loss Torque Select When an analog input is selected for PID Feedback, P1079 [PID Output Sel] is set to option 1 "Speed Excl," 2 "Speed Trim," 3 "Torque Excl," or 4"Torque Trim" and an analog signal loss is detected, sets torque to this source.	Default: Min/Max:	$\begin{array}{\|l\|} \hline 676 \\ 0 / 159999 \end{array}$	RW	$\begin{array}{\|l} \text { 32-bit } \\ \text { Integer } \end{array}$
		1077	PID Fdbk PID Feedback Provides an internal fixed value for PID Feedback when P1072 [PID Fdbk Sel] is set to this parameter. A value of 100% is equal to motor base speed.	Units: Default: Min/Max:	$\%$ 0.00 $-/+100.00$	RW	Real
$\begin{aligned} & \text { 들 } \\ & \mathbf{2} \end{aligned}$		1078	PID Fdbk Mult PID Feedback Multiplier Sets the multiplying factor which is applied to the Feedback source before the Feedback is used.	Units: Default: Min/Max:	$\begin{aligned} & \% \\ & 100.00 \\ & -/+100.00 \end{aligned}$	RW	Real
		$\begin{array}{r} 1079 \\ 0 \end{array}$	PID Output Sel PID Output Select Selects the target for the PID Output. "Not Used" (0) - PID output is not applied to any speed reference. "Speed Excl" (1) - PID output is only reference applied to speed reference. "Speed Trim" (2) - PID output is applied to speed reference as a trim value. "Torque Excl" (3) - PID output is only reference applied to torque reference. "Torque Trim" (4) - PID output is applied to torque reference as a trim value. "Volt Excl" (5) - PID output is only reference applied to voltage reference. "Volt Trim" (6) - PID output is applied to voltage reference as a trim value.	Default: Options:	$\begin{aligned} & 2=\text { "Speed Trim" } \\ & 0=\text { "Not Used" } \\ & 1=\text { "Speed Excl" } \\ & 2=\text { "Speed Trim" } \\ & 3=\text { "Torque Excl" } \\ & 4=\text { "Torque Trim" } \\ & 5=\text { "Volt Excl" } \\ & 6=\text { "Volt Trim" } \end{aligned}$	RW	$\begin{aligned} & \text { 32-bit } \\ & \text { Integer } \end{aligned}$
		1080	PID Output Mult PID Output Multiplier Sets the multiplying factor which is applied to the PID Output before the PID Output is used. A value of 100% is equal to motor base speed.	Units: Default: Min/Max:	$\begin{aligned} & \% \\ & 100.00000 \\ & -/+100.00000 \end{aligned}$	RW	Real
		1081	PID Upper Limit PID Upper Limit Sets the upper limit for the P1093 [PID Output Meter]. A value of 100% is equal to motor base speed.	Units: Default: Min/Max:	$\begin{aligned} & \% \\ & 100.00 \\ & -/+800.00 \end{aligned}$	RW	Real
		1082	PID Lower Limit PID Lower Limit Sets the lower limit for the P1093 [PID Output Meter]. A value of 100% is equal to motor base speed.	Units: Default: Min/Max:	$\%$ -100.00 $-/+800.00$	RW	Real

\％	$\begin{aligned} & \text { 응 } \\ & \text { 응 } \end{aligned}$	No．	Display Name Full Name Description	Values			$\begin{aligned} & \stackrel{\rightharpoonup}{2} \\ & \stackrel{\rightharpoonup}{\lambda} \\ & \stackrel{y}{0} \\ & \stackrel{\rightharpoonup}{0} \end{aligned}$
n 은 늘 룰		1093	PID Output Meter PID Output Meter Present value of the Pl output．A value of 100% is equal to motor base speed．	Units： Default： Min／Max：	$\%$ 0.00 $-/+800.00$	R0	Real

읖	言	No．	Display Name Full Name Description	Values	\％	$\begin{aligned} & \stackrel{\rightharpoonup}{2} \\ & \stackrel{\rightharpoonup}{\lambda} \\ & \stackrel{y}{0} \\ & 0 \end{aligned}$
		1100	755 Trq Prove Cfg Torque Prove Configure		RW	16－bit Integer

Enables／disables torque／brake proving function．When＂Enabled＂，brake control comes from a digital output relay that is set to select Port 0，P1103［Trq Prove Status］Bit 4 ＂Brake Set．＂See PowerFlex 755 Lifting／Torque Proving on page 440 and，PowerFlex 750 －Series AC Drives Reference Manual，publication 750 －RM002， for examples on how to use Torque Prove with PowerFlex 755 drives．

Options								$\begin{aligned} & \text { 前 } \\ & \text { oे } \\ & \dot{\sim} \\ & \text { 岂 } \end{aligned}$						$\begin{aligned} & \text { 든 } \\ & \stackrel{y}{0} \\ & \dot{y} \end{aligned}$		$\frac{\stackrel{4}{0}}{\approx}$	
Default	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1		

Bit 0＂TP Enable＂－Enables TorqProve functions．
Bit 1 ＂Encoderless＂－Enables encoderless operation－Bit 0 must also be enabled．Read the Attention statement under Lifting／Torque Proving on page 356.
Bit 2 ＂Micro Psn＂－Enables the Micro Position digital input to change the speed command by the value set in P1112［MicroPsnScalePct］while the drive is running． Bit 3 ＂Preload＂－＂ 0 ＂uses the last torque for preload．＂ 1 ＂uses P676［Trq Ref A Stpt］if commanded direction is forward and P681［Trq Ref B Stpt］for reverse．
Bit 4 ＂FW LoadLimit＂－Enables drive to perform load calculation at base speed．Drive will then limit operation above base speed depending on load．
＂FWLoadLimit＂＝＂Field Weakening Load Limit＂
Bit 5 ＂BrkSlipEncls＂－A＂1＂Disables the partial Brake Slip routine from the drive when encoderless is selected．
APPLICATIONS
Bit 6 ＂BrkSlipStart＂－Starts drive if Brake slippage is detected．Drive does not start if P933［Start Inhibits］exists．
Bit 7 ＂Test Brake＂－Tests the brake at Start．Torque is applied against the brake while movement is monitored．
Bit 8 ＂Fast Stop Bk＂－Brake is set immediately upon receiving a Fast Stop input vs．setting the brake after the ramp．
Bit 9 ＂BkSIp SpdLmt＂－When a brake slip condition is detected，the load is lowered at a fixed speed（Preset Speed 1）．

1101	755	Trq Pro
	Torque Prove Setup	

Allows control of specific torque proving functions through a communication device．

Bit 0＂Fast Stop＂－Forces a current limit stop．
Bit 1 ＂Float Micro＂－Activates the micro position function when selected and running．Activates float when stopping．
Bit 2＂Decel Fwd＂－Forces decel forward travel limit．
Bit 3 ＂End Stop Fwd＂－Forces end forward travel limit．
Bit 4＂Decel Rev＂－Forces decel reverse travel limit．
Bit 5 ＂End Stop Rev＂－Forces end reverse travel limit．
Bit 6 ＂PHdwrOvrTrv＂＂－Positive Hardware Over Travel limit：Setting this bit creates a Coast to Stop fault．
Bit 7＂NHdwrOvrTrv＂－Negative Hardware Over Travel limit：Setting this bit creates a Coast to Stop fault．

쁲	릉	No．	Display Name Full Name Description	Values		毞	亳
$\begin{aligned} & \text { n } \\ & \text { 은 } \\ & \text { 㤩 } \\ & \text { à } \end{aligned}$		1110	755 Brk Slip Count Brake Slip Count Sets the number of encoder counts to define a brake slippage condition and is based on the feedback device attached to P135［Position Feedback］．Not used when P1100［Trq Prove Cfg］Bit 1 ＂Encoderless＂$=1$（enabled）．	Default： Min／Max：	$\begin{aligned} & \hline 250.00 \\ & 0.00 / 65535.00 \end{aligned}$	RW	Real
		1111	755 Float Tolerance Float Tolerance Sets the frequency or speed level where the float timer starts．Also sets the frequency or speed level where the brake will be closed when P1100［Trq Prove Cfg］Bit 1 ＂Encoderless＂＝ 1 （enabled）．	Units： Default： Min／Max：	Hz RPM P27［Motor NP Hertz］x 0.0334 P28［Motor NP RPM］x 0.0334 P27［Motor NP Hertz］／P27 x 0.25 P28［Motor NP RPM］x0．001／P28 x 0.25	RW	Real
		$\begin{gathered} 1112 \\ 0 \end{gathered}$	755 MicroPsnScalePct Micro Position Scale Percent Sets the percent of speed reference to be used when micropositioning has been selected in P1100［Trq Prove Cfg］．Bit 2 of P1100［Trq Prove Cfg］，determines if the motor needs to come to a stop before this setting will take effect．	Units： Default： Min／Max：	$\%$ 10.000 $0.100 / 100.000$	RW	Real
		1113	$\quad 755$ ZeroSpdFloatTime Zero Speed Float Time Sets the amount of time the drive is below P1111［Float Tolerance］before the brake is set．Not used when P1100［Trq Prove Cfg］Bit 1 ＂Encoderless＂$=1$（enabled）．	Units： Default： Min／Max：	Secs 5.000 $0.100 / 500.000$	RW	Real
		1114	755 Brake Test Torq Brake Test Torque Sets the percent of torque applied to the motor before the brake is released when P1100 ［Trq Prove Cfg］bit 7 ＂Test Brake＂is enabled．	Units： Default： Min／Max：	$\begin{aligned} & \% \\ & 50.0 \\ & 0.0 / 150.0 \end{aligned}$	RW	Real

츷	응	No.	Display Name Full Name Description	Values			
n은而a		1126	P Jump Position Jump Sets the amplitude of the square wave speed modulation for the Fiber Traverse function. This speed is alternately added to and subtracted from the speed reference together with the P1125 [Max Traverse] triangle speed modulation.	Units: Default: Min/Max:	$\begin{array}{\|l\|} \hline \mathrm{Hz} \\ \text { RPM } \\ 0.00 \\ 0.00 \text { / P520 [Max Fwd Speed] } \end{array}$	RW	Real
		$\begin{gathered} 1129 \\ 0 \\ 5 /= \end{gathered}$	DI Fiber SyncEna Digital Input Fiber Synchronize Enable Selects a digital input source for the Fiber Application Function's synchronous speed change routine. Used in combination with the P1120 [Fiber Control] Sync Enable bit.	Default: Min/Max:	$\begin{array}{\|l\|} \hline 0.00 \\ 0.00 / 159999.15 \end{array}$	RW	32-bit Integer
		$\begin{array}{r} 1130 \\ 0 \\ 5 \end{array}$	DI Fiber TravDis Digital Input Fiber Traverse Disable Selects a digital input source for the Fiber Application Traverse Routine. This is an inverted input, so the Traverse Routine is disabled when the input is active (set). Used in combination with P1120 [Fiber Control] Bit 1 "Traverse Ena."	Default: Min/Max:	$\begin{aligned} & 0.00 \\ & 0.00 / 159999.15 \end{aligned}$	RW	32-bit Integer

을	은 ${ }^{\text {№. }}$	Display Name Full Name Description	Values			$\begin{aligned} & \stackrel{\rightharpoonup}{2} \\ & \stackrel{\rightharpoonup}{\lambda} \\ & \stackrel{y}{0} \\ & \stackrel{0}{0} \end{aligned}$
	1165	Rod Speed Rod Speed Displays the speed in RPM of the pump rod after the gearbox and sheaves. Rod Speed $=$ Motor Speed x P1174 [Total Gear Ratio]	Units: Default: Min/Max	RPM 0.00 $0.00 / 10000.00$	R0	Real
	1166	Rod Torque Rod Torque Displays the load side torque. P1174 [Total Gear Ratio] must be greater than zero to activate this display.	Units: Default: Min/Max	$\begin{array}{\|l\|} \mid \text { FtLb } \\ 0.00 \\ 0.00 / 10000.00 \end{array}$	RO	Real
	1167	Rod Speed Cmd Rod Speed Command Displays the commanded speed in RPM of the pump rod after the gearbox and sheaves.	Units: Default: Min/Max	RPM 0.00 $0.00 / 10000.00$	R0	Real
	$\begin{gathered} 1168 \\ 0 \end{gathered}$	TorqAlarm Action Torque Alarm Action Sets the drive action when the Torque Alarm is exceeded. Note: only active with PC pump applications. See P1179 [0ilWell Pump Cfg].	Default: Options:	$\begin{aligned} & 0=\text { "Ignore" } \\ & 0=\text { "Ignore" } \\ & 1=\text { "Preset Spd1" } \end{aligned}$	RW	32-bit Integer
	$\begin{gathered} 1169 \\ 0 \end{gathered}$	TorqAlarm Config			RW	16-bit Integer

Enables the Torque Alarm function.

0
Sets the time that the torque must exceed P1171 [TorgAlarm Level] before P1168 [TorgAlarm Action] takes place.
Active when P1169 [TorqAlarm Config] Bit 0 "Torque Level" $=1$ (enabled).

1171 \square	TorqAlarm Level Torque Alarm Level Sets the level at which the Torque Alarm becomes active. Active when P1169 [TorqAlarm Config] Bit 0 "Torque Level" = 1 (enabled)	Units: Default: Min/Max:	$\begin{array}{\|l\|} \hline \text { FtLb } \\ 0.0 \\ 0.0 / 5000.0 \end{array}$	RW	Real
$\begin{array}{r} 1172 \\ \mathrm{O} \end{array}$	TorqAlm Timeout Torque Alarm Time Out Sets the amount of time a Torque Alarm can be active until timeout action begins. Active when P1169 [TorqAlarm Config] Bit 0 "Torque Level" = 1 (enabled)	Units: Default: Min/Max:	Secs 0.0 $0.0 / 600.0$	RW	Real
1173	TorqAlarm TOActn Torque Alarm Time Out Action Sets the drive action when P1172 [TorqAlrm Timeout] is exceeded. Active when P1169 [TorqAlarm Config] Bit 0 "Torque Level" = 1 (enabled) "Ignore" (0) - No action is taken. "Alarm" (1) - Type 1 alarm indicated. "Flt Minor" (2) - Minor fault indicated. If running, drive continues to run. Enable with P950 [Minor Flt Cfg]. If not enabled, acts like a major fault. "FItCoastStop" (3) - Major fault indicated. Coast to Stop. "FIt RampStop" (4) - Major fault indicated. Ramp to Stop. "Flt CL Stop" (5) - Major fault indicated. Current Limit Stop.	Default: Options:	$\begin{aligned} & 0=\text { "Ignore" } \\ & 0=\text { "Ignore" } \\ & 1=\text { "Alarm" } \\ & 2=\text { "Flt Minor" } \\ & 3=\text { "FltCoastStop" } \\ & 4=\text { "Flt RampStop" } \\ & 5=\text { "Flt CL Stop" } \\ & 6=\text { "Resume" } \end{aligned}$	RW	32-bit Integer

츺	릉	No.	Display Name Full Name Description	Values			
		$\begin{gathered} 1220 \\ 0 \\ \mathscr{O} \end{gathered}$	755 DI Abort Profile Digital Input Abort Profile Sets a digital input port for the abort profile in profile/indexer control logic. Polarity of active state is defined by P1217 [Prof DI Invert] Bit 2 "AbortProfile."	Default: Min/Max:	$\begin{aligned} & \hline 0.00 \\ & 0.00 / 159999.15 \end{aligned}$	RW	$\begin{array}{\|l\|} \hline \text { 32-bit } \\ \text { Integer } \end{array}$
		$\begin{array}{r} 1221 \\ 0 \\ 5 \end{array}$	755 DI Vel Override Digital Input Velocity Profile Sets a digital input port for the velocity override in profile/indexer control logic. The digital input assigned by this parameter is equivalent to P1213 [Profile Command] Bit 9 "Vel Override." Polarity of active state is defined by P1217 [Prof DI Invert] Bit 3 "Vel Override."	Default: Min/Max:	$\begin{aligned} & 0.00 \\ & 0.00 / 159999.15 \end{aligned}$	RW	32-bit Integer
		1222 1223 1224 1225 1226 O 5	755 DI StrtStep Sel0 755 DI StrtStep Sel1 755 DI StrtStep Sel2 755 DI StrtStep Sel3 755 DI StrtStep Sel4 Digital Input Start Step Select n Set digital input ports for the start step in profile/indexer control logic. The digital inputs assigned by these parameters are equivalent to P1213 [Profile Command] Bit 4 "StrstepSel4." Polarities of active state are defined by P1217 [Prof DI Invert] Bit 4 "StrStepSel0" to Bit 8 "StrStepSel4."	Default: Min/Max:	$\begin{aligned} & 0.00 \\ & 0.00 / 159999.15 \end{aligned}$	RW	32-bit Integer
$\begin{aligned} & \text { n } \\ & \text { 은 } \\ & \text { S } \\ & \frac{a}{2} \end{aligned}$	은	1230 1240 1250 1260 1270 1280 1290 1300 1310 1320 1330 1340 1350 1360 1370 1380 O	755 Step 1 Type 755 Step 2 Type 755 Step 3 Type 755 Step 4 Type 755 Step 5 Type 755 Step 6 Type 755 Step 7 Type 755 Step 8 Type 755 Step 9 Type 755 Step 10 Type 755 Step 11 Type 755 Step 12 Type 755 Step 13 Type 755 Step 14 Type 755 Step 15 Type 755 Step 16 Type Step n Type Set type of move for a particular step. The possible step types are: "Speed" $(0)=$ Speed Profile moves in speed mode. "Position Abs" (1) = Position Absolute moves in absolute position mode. "PositionIncr" (2) = Position Incremental moves in position increment mode. The drive must have the direction mode set to the bipolar for the position regulator to function properly. The current, torque, and regen power limits must be set so as not to limit the programmed deceleration time. If the limits occur, the position regulator may overshoot the position set point.	Default: Options:	$\begin{aligned} & 0=\text { "Speed" } \\ & 0=\text { "Speed" } \\ & 1=\text { "Position Abs" } \\ & 2=\text { "PositionIncr" } \end{aligned}$	RW	32-bit Integer

릋	을	No.	Display Name Full Name Description	Values			
$\begin{aligned} & n \\ & \text { 은 } \\ & \frac{1}{3} \\ & \frac{2}{2} \\ & \frac{2}{4} \end{aligned}$	은은	1231 1241 1251 1261 1271 1281 1291 1301 1311 1321 1331 1341 1351 1361 1371 1381	755 Step 1 Velocity 755 Step 2 Velocity 755 Step 3 Velocity 755 Step 4 Velocity 755 Step 5 Velocity 755 Step 6 Velocity 755 Step 7 Velocity 755 Step 8 Velocity 755 Step 9 Velocity 755 Step 10 Velocity 755 Step 11 Velocity 755 Step 12 Velocity 755 Step 13 Velocity 755 Step 14 Velocity 755 Step 15 Velocity 755 Step 16 Velocity Step n Velocity Set speed at which a move will take place. The step velocity applies to all three types of moves - position absolute, position incremental, and speed profile. The motor may not achieve the step velocity in all cases. Short distance moves may begin to decelerate before the step velocity is reached. If the move is sufficiently long, then the motor speed will be limited to the step velocity. Sign on the step velocity is used to determine direction of motor rotation. Cannot be used with most blended moves in Position Absolute type and Position Incremental type.	Units: Default: Min/Max:	$\begin{aligned} & \hline \mathrm{Hz} / \mathrm{RPM} \\ & 0.00 \\ & -/+ \text { P27 [Motor NP Hertz] x } 8 \\ & -/+ \text { P28 [Motor NP RPM] x } 8 \end{aligned}$	RW	Real
		1232 1242 1252 1262 1272 1282 1292 1302 1312 1322 1332 1342 1352 1362 1372 1382	755 Step 1 Accel 755 Step 2 Accel 755 Step 3 Accel 755 Step 4 Accel 755 Step 5 Accel 755 Step 6 Accel 755 Step 7 Accel 755 Step 8 Accel 755 Step 9 Accel 755 Step 10 Accel 755 Step 11 Accel 755 Step 12 Accel 755 Step 13 Accel 755 Step 14 Accel 755 Step 15 Accel 755 Step 16 Accel Step n Acceleration Set acceleration time between zero and rated motor speed in seconds. The motor will accelerate towards the step speed using the step velocity parameter. The minimum acceleration rate is determined by the system inertia. Cannot be used with most blended moves in Position Absolute type and Position Incremental type.	Units: Default: Min/Max:	$\begin{array}{\|l\|} \hline \text { Secs } \\ 10.00 \\ 0.00 / 3600.00 \end{array}$	RW	Real

$\stackrel{\text { di }}{i!}$	$\begin{aligned} & \text { 을 } \\ & \text { 은 } \end{aligned}$	No.	Display Name Full Name Description	Values			
$\begin{aligned} & \text { n } \\ & \text { 은 } \\ & \frac{1}{3} \\ & \frac{2}{2} \\ & \frac{2}{4} \end{aligned}$				Default: Min/Max:	$\begin{aligned} & 0 \\ & -2147483648 / 2147483647 \end{aligned}$		32-bit Integer
				RW			
			[Action] = Posit Blend, Wait Dig-in, or Step to Next				
			[Value] is the Absolute Target Position				
			[Type] = Position Incremental				
			[Action] = Posit Blend, Wait Dig-in, or Step to Next				
			[Value] is the Incremental Target Position				
			[Type] = Speed Profile				
			[Action] = Posit Blend				
			[Value] is the Incremental Target Position				
			[Type] = Speed Profile				
			[Action] = Time Blend, Wait Dig-in, or Step to Next				
			[Value] is the Total Time to complete the move. Time is specified in $1 / 100$ ths of a second ($1000=10.00$ seconds). Negative values result in time $=0$ seconds (no move)				
			[Type] = Speed Profile				
			[Action] $=$ Parameter Blend				
			[Value] is the parameter number to compare against the parameter set-point specified in the dwell parameter. Positive numbers will use a greater than check, negative numbers will use a less than check.				

쁲	릉	No.	Display Name Full Name Description	Values			$\begin{aligned} & \stackrel{0}{2} \\ & \stackrel{\rightharpoonup}{\lambda} \\ & \underset{N}{0} \\ & \stackrel{N}{0} \end{aligned}$
		1235 1245 1255 1265 1275 1285 1295 1305 1315 1325 1335 1345 1355 1365 1375 1385	755 Step 1 Dwell 755 Step 2 Dwell 755 Step 3 Dwell 755 Step 4 Dwell 755 Step 5 Dwell 755 Step 6 Dwell 755 Step 7 Dwell 755 Step 8 Dwell 755 Step 9 Dwell 755 Step 10 Dwell 755 Step 11 Dwell 755 Step 12 Dwell 755 Step 13 Dwell 755 Step 14 Dwell 755 Step 15 Dwell 755 Step 16 Dwell Step n Dwell Set time delay between moves. P1210 [Profile Status] Bit 11 "Dwell" will be set to indicate that the step dwell period is active and timing. Zero value will disable dwell, negative value will wait forever. Not all steps can use dwell (example, most blended moves cannot use dwell). When the speed type with the parameter blend action move is used, the step dwell parameter will contain the parameter number of the set-point value to compare with the parameter selected in the value parameter.	Units: Default: Min/Max:	Secs 0.00 $-1.00 / 3600.00$	RW	Real
$\begin{aligned} & \frac{4}{5} \\ & \frac{2}{2} \end{aligned}$	$\begin{aligned} & \text { 亮 } \\ & \text { 은 } \end{aligned}$	1236 1246 1256 1266 1276 1286 1296 1306 1316 1326 1336 1346 1356 1366 1376 1386	755 Step 1 Batch 755 Step 2 Batch 755 Step 3 Batch 755 Step 4 Batch 755 Step 5 Batch 755 Step 6 Batch 755 Step 7 Batch 755 Step 8 Batch 755 Step 9 Batch 755 Step 10 Batch 755 Step 11 Batch 755 Step 12 Batch 755 Step 13 Batch 755 Step 14 Batch 755 Step 15 Batch 755 Step 16 Batch Step n Batch Set number of times to repeat a step. For example, a batch count of two will cause that step to repeat two times before starting the next step. These parameters cannot be used with position absolute moves, since this would imply moving to the same position repeatedly. These parameters cannot be used with most blended moves (exception dig- in blend), because most blended moves need to transition to the next step, instead of repeating. The dig-in blend moves use this parameter to specify the number of digital input transitions required. A zero step batch setting will cause that step to repeat forever.	Default: Min/Max:	$\begin{aligned} & 1 \\ & 0 / 65535 \end{aligned}$	RW	$\begin{aligned} & \text { 32-bit } \\ & \text { Integer } \end{aligned}$

츺	응	No.	Display Name Full Name Description	Values			
		1237 1247 1257 1267 1277 1287 1297 1307 1317 1327 1337 1347 1357 1367 1377 1387	755 Step 1 Next 755 Step 2 Next 755 Step 3 Next 755 Step 4 Next 755 Step 5 Next 755 Step 6 Next 755 Step 7 N ext 755 Step 8 Next 755 Step 9 Next 755 Step 10 Next 755 Step 11 Next 755 Step 12 Next 755 Step 13 Next 755 Step 14 Next 755 Step 15 Next 755 Step 16 Next Step n Next Set step number that will be executed after the current step is complete. The current step will be complete after any batch repeat cycles have finished. Typically, steps are executed in ascending order, although this is not a requirement. These parameters do not apply to a step having an End action, since this step is normally used to terminate a sequence of step moves.	Default: Min/Max:	$\begin{array}{\|l\|} \hline 2 \\ 1 / 16 \end{array}$	RW	$\begin{array}{\|l\|} \hline \text { 32-bit } \\ \text { Integer } \end{array}$
$\begin{aligned} & \text { n } \\ & \text { 은 } \\ & \text { 気 } \\ & \text { à } \end{aligned}$		1238 1248 1258 1268 1278 1288 1298 1308 1318 1328 1338 1348 1358 1368 1378 1388	755 Step 1 Action 755 Step 2 Action 755 Step 3 Action 755 Step 4 Action 755 Step 5 Action 755 Step 6 Action 755 Step 7 Action 755 Step 8 Action 755 Step 9 Action 755 Step 10 Action 755 Step 11 Action 755 Step 12 Action 755 Step 13 Action 755 Step 14 Action 755 Step 15 Action 755 Step 16 Action Step n Action Set what is to be done at the end of a step after the move is complete. End $(0)=$ End stops the move sequence. Step to Next (1) = Step to Next moves to the next step after the speed ramp up/down is completed in the specific total time. The dwell time and the batch can be applied. Psn Blend (2) = Posit Blend moves to the next step after the actual position becomes greater than the position specified in the value parameter. Time Blend (3) = Time Blend moves to the next step after the total running time becomes greater than the time specified in the value parameter. Param Blend (4) = Param Blend moves to the next step after comparison of two parameters is satisfied. The parameters for comparison are specified in the value and dwell parameter. Digln Blend (5) = Digln Blend moves to the next step after the specified number of digital input rising (or falling) edges are applied. The batch parameter specifies the number of digital input edges. Wait Digln (6) = Wait Digln moves to the next step after the digital input rising (or falling) edges are applied.	Default: Options:	$\begin{aligned} & 1=\text { "Step to Next" } \\ & 0=\text { "End" } \\ & 1=\text { "Step to Next" } \\ & 2=\text { "Psn Blend" } \\ & 3=\text { "Time Blend" } \\ & 4=\text { "Param Blend" } \\ & 5=\text { "Digln Blend" } \\ & 6=\text { "Wait Digln" } \end{aligned}$	RW	32-bit Integer

丰	膏	No．	Display Name Full Name Description	Values		毞	旁
	$\begin{aligned} & \text { 흔 } \\ & \text { 를 } \\ & \overline{\bar{o}} \end{aligned}$	1500	755 Roll Psn Config Roll Position Indicator Configuration Configuration for the Roll Position Indicator function． Bit 0 ＂Enable＂－Enables the Roll Position Indicator function． Bit 1 ＂Preset＂－At rising edge of this bit，P1504［Roll Psn Preset］is loaded in P1505［Roll Psn Offset］． Bit 2 ＂Rereference＂－Permit changing the offset value of P1511［RP Psn Output］without affecting actual position． Bit 3 ＂EGR Select＂－ $0=$ EGR with gear ratio input as numerator and gear ratio output as denominator． $1=$ EGR with gear ratio output as numerator and gear ratio input as denominator．			RW	$\begin{aligned} & \text { 16-bit } \\ & \text { Inteaer } \end{aligned}$
		1501	755 Roll Psn Status Roll Position Indicator Status Status of the Roll Position Indicator function． Bit 0＂Enable＂－Acknowledges that Roll Position Indicator function is enabled． Bit 1 ＂Rereference＂－Acknowledges that rereferencing of P1511［RP Psn Output］is active	Disabled Enabled		RO	$\begin{aligned} & \text { 16-bit } \\ & \text { Integer } \end{aligned}$
		1502	755 RP Psn Fdbk Stpt Roll Position Position Indicator Feedback Setpoint Provides a set point for the position feedback value in the form of accumulated encoder counts．	Default： Min／Max：	$\begin{array}{\|l\|} \hline 0 \\ -2147483648 / 2147483647 \end{array}$	RW	$\begin{aligned} & \text { 32-bit } \\ & \text { Integer } \end{aligned}$
		$\begin{gathered} 1503 \\ 0 \\ \mathscr{y} \text { O } \end{gathered}$	755 RP Psn Fdbk Sel Roll Position Position Indicator Feedback Select Selects source data for the position feedback．The function generates P1511［RP Psn Output］based on the selected position feedback source．	Default： Min／Max：	$\begin{array}{\|l\|} \hline 1502 \\ 0 / 159999 \end{array}$	RW	$\begin{aligned} & \text { 32-bit } \\ & \text { Integer } \end{aligned}$
		1504	755 Roll Psn Preset Roll Position Indicator Preset Provides a pre－set position value．At rising edge of Bit 1 ＂Preset＂in P1500［Roll Psn Config］，this parameter value is loaded in P1511［RP Psn Output］．Note：P1511［RP Psn Output］is limited by P1509［RP Unwind］．	Default： Min／Max：	$\begin{array}{\|l\|} \hline 0 \\ -2147483648 / 2147483647 \end{array}$	RW	$\begin{aligned} & \text { 32-bit } \\ & \text { Integer } \end{aligned}$
		1505	755 Roll Psn Offset Roll Position Indicator Offset Provides position offset，which is summed after the EPR and used to trim the phase of the position feedback．	Default： Min／Max	$\left\lvert\, \begin{aligned} & 0 \\ & -2147483648 / 2147483647 \end{aligned}\right.$	RW	$\begin{aligned} & \text { 32-bit } \\ & \text { Integer } \end{aligned}$
		1506	755 RP EPR Input Roll Position Indicator Edges Per Revolution Input Sets edges per revolution of the physical input device such as the motor encoder．	Default： Min／Max：	$\begin{array}{\|l\|} \hline 4096 \\ 1 / 67108864 \end{array}$	RW	$\begin{aligned} & \text { 32-bit } \\ & \text { Integer } \end{aligned}$

$\stackrel{\text { ® }}{\text { ¢ }}$	릉	No.	Display Name Full Name Description	Values			$\begin{aligned} & \stackrel{\rightharpoonup}{2} \\ & \stackrel{\rightharpoonup}{\lambda} \\ & \stackrel{y}{0} \\ & \stackrel{N}{0} \end{aligned}$
n은를a		1507	755 RP Rvis Input Roll Position Indicator Revolutions Input Sets revolution of the input encoder. This parameter must be coordinated with the revolution of the output encoder P1508 [RP Rvvs Output] to resolve the gear ratio between input revolutions and output (virtual) revolutions. The ratio of input to output revolutions can always be resolved into integer values and should be reduce to their lowest common factor.	Default: Min/Max:	$\begin{aligned} & 1 \\ & 1+1000000 \end{aligned}$	RW	32-bit Integer
		1508	755 RP Rvls Output Roll Position Indicator Revolutions Output Sets revolution of the output encoder. This parameter must be coordinated with the revolution of the input encoder P1507 [RP Rvis Input] to resolve the gear ratio between input revolutions and output (virtual) revolutions. The ratio of input to output revolutions can always be resolved into integer values and should be reduce to their lowest common factor.	Default: Min/Max:	$\begin{aligned} & 1 \\ & 1 / 4294967295 \end{aligned}$	RW	$\begin{aligned} & \text { 32-bit } \\ & \text { Integer } \end{aligned}$
		1509	755 RP Unwind Roll Position Indicator Unwind Count Sets the number of counts per roll revolution. P1511 [RP Psn Output] rolls over at this count minus 1 .	Default: Min/Max:	$\begin{array}{\|l\|} \hline 4194304 \\ 1024 / 536870912 \end{array}$	RW	32-bit Integer
		1510	755 RP Unit Scale Roll Position Indicator Unit Scale Provides the multiplier to P1512 [RP Unit Out], which is a floating point output of P1511 [RP Psn Output].	Default: Min/Max:	$\begin{array}{\|l\|} 1.00000 \\ -/+220000000.00000 \end{array}$	RW	Real
		1511	755 RP Psn Output Roll Position Indicator Position Output Output of roll position, which has a span limited by P1509 [RP Unwind].	Default: Min/Max:	$\begin{aligned} & 0 \\ & 0 / 4294967295 \end{aligned}$	RO	32-bit Integer
		1512	755 RP Unit Out Roll Position Indicator Unit Output Floating point output that results from multiplying P1511 [RP Psn Output] by P1510 [RP Unit Scale].	Default: Min/Max:	$\begin{array}{\|l} 0.00 \\ -/+220000000.00 \end{array}$	RO	Real

읖	응	No.	Display Name Full Name Description	Values		¢	
n은늘aa		1516	755 PsnTrqBst Sts Position Oriented Torque Boost Status Status of the Position Oriented Torque Boost function. Options	$\begin{aligned} & 0=\text { Disabled } \\ & 1=\text { Enabled } \end{aligned}$ e (such as between X 1 and X 5).		R0	16-bit Integer
		$\begin{gathered} 1517 \\ \square \\ \leftrightarrows \end{gathered}$	755 PsnTrqBst RefSel Position Oriented Torque Boost Reference Select Selects a source data for the position reference.	Default: Min/Max:	$\begin{array}{\|l\|} \hline 1511 \\ 0 / 159999 \end{array}$	RW	$\begin{aligned} & \text { 32-bit } \\ & \text { Integer } \end{aligned}$
		1518	755 PsnTrqBstPsnOfst Position Oriented Torque Boost Position Offset Provides position offset, which is summed to the position reference and used to trim the phase of it.	Default: Min/Max:	$\begin{aligned} & 0 \\ & -2147483648 / 2147483647 \end{aligned}$	RW	$\begin{aligned} & \text { 32-bit } \\ & \text { Integer } \end{aligned}$
		1519	755 PsnTrqBst UNWCnt Position Oriented Torque Boost Unwind Count Sets the number of counts per roll revolution. The selected position reference internally rolls over at this count minus 1 .	Default: Min/Max:	$\begin{array}{\|l\|} \hline 4194304 \\ 1024 / 2147483647 \end{array}$	RW	$\begin{aligned} & \text { 32-bit } \\ & \text { Inteaer } \end{aligned}$
		$\begin{aligned} & 1520 \\ & 1521 \\ & 1522 \\ & 1523 \\ & 1524 \end{aligned}$	755 PsnTrqBst Ps X1 755 PsnTrqBst Ps X2 755 PsnTrqBst Ps X3 755 PsnTrqBst Ps X4 755 PsnTrqBst Ps X5 Position Oriented Torque Boost Position Xn The torque/position profile is built by specifying endpoint position counts for $\mathrm{X} 1, \mathrm{X} 2, \mathrm{X} 3$, $X 4$, and $X 5$, and corresponding per unit torque values for $Y 2, Y 3$, and $Y 4$. The torque values corresponding to the points X 1 and X 5 are zero.	Default: Min/Max:	$\begin{aligned} & 0 \\ & 0 / 2147483647 \end{aligned}$	RW	$\begin{aligned} & \text { 32-bit } \\ & \text { Integer } \end{aligned}$
		$\begin{aligned} & 1525 \\ & 1526 \\ & 1527 \end{aligned}$	755 PsnTrqBst Trq Y2 755 PsnTrqBst Trq Y3 755 PsnTrqBst Trq Y4 Position Oriented Torque Boost Torque Yn The position profile from X1 to X5 must be ascending order. The torque profile from Y2 and Y 4 is free form with no restriction.	Default: Min/Max:	$\begin{aligned} & 0.00 \\ & -/+2.00 \end{aligned}$	RW	Real
		1528	755 PsnTrqBst Trq0ut Position Oriented Torque Boost Torque Output Output of the Position Oriented Torque Boost, which is the torque taken from the profile at the position target.	Default: Min/Max:	$\begin{aligned} & 0.00 \\ & -/+2.00 \end{aligned}$	R0	Real

읖	릉	No.	Display Name Full Name Description	Values			$\begin{aligned} & \stackrel{\rightharpoonup}{2} \\ & \stackrel{\rightharpoonup}{\lambda} \\ & \stackrel{y}{0} \\ & \stackrel{y}{0} \end{aligned}$
$\begin{aligned} & \text { n } \\ & \text { 은 } \\ & \text { 3 } \\ & \text { à } \end{aligned}$		1548	VB Current Rate Variable Boost Current Rate Output current rate of change.	Default: Min/Max:	$\begin{aligned} & 0.0 \\ & -/+1000.0 \end{aligned}$	R0	Real
		1549	VB Current Hyst Variable Boost Current Hysteresis Sets the hysteresis level around P1550 [VB Cur Thresh] for the variable boost voltage function.	Default: Min/Max:	$\begin{array}{\|l\|} \hline 0.0 \\ -/+100.0 \end{array}$	RW	Real
		1550	VB Cur Thresh Variable Boost Current Threshold Sets the P1548 [VB Current Rate] trigger level for the variable boost voltage function. The trigger is not active until P1538 [VB Time] time has expired following a drive start. P1535 [VB Config] Bit 2 "Rising Edge" $=0$: The value of [VB Current Rate] must first pass through [VB Cur Thresh] + P1549 [VB Current Hyst] then [VB Cur Thresh] in order to cause a boost voltage trigger event. P1535 [VB Config] Bit 2 "Rising Edge" = 1: The value of P1548 [VB Current Rate] must first pass through [VB Cur Thresh] - P1549 [VB Current Hyst] then [VB Cur Thresh] in order to cause a boost voltage trigger event.	Default: Min/Max:	$\begin{array}{\|l\|} \hline-25.0 \\ -/+1000.0 \end{array}$	RW	Real
		1551	VB Rate Lag Freq Variable Boost Rate Lag Frequency Sets the lag (cutoff) frequency of the current magnitude low pass filter. The output of this filter is displayed in P1548 [VB Current Rate].	Units: Default: Min/Max:	$\begin{array}{\|l\|} \hline R / S \\ 2.60 \\ 0.01 / 100.00 \end{array}$	RW	Real

1560 See page 128 for parameters numbers $1560 \ldots 1567$.

읖	응	No.	Display Name Full Name Description	Values			
n은를a		1592	755 SO Decel Time Spindle Orientation Deceleration Time Sets the deceleration rate used during positioning.	Units: Default: Min/Max	Secs 10.00 $0.00 / 3600.00$	RW	Real
		$\begin{array}{r} 1593 \\ 0 \end{array}$	$755 \quad$ SO Fwd Vel Lmt Spindle Orientation Forward Velocity Limit Sets the forward speed used during positioning.	Units: Default: Min/Max	Hz / RPM 30.00 $0.00 / 40000.00$	RW	Real
		$\begin{array}{r} 1594 \\ 0 \end{array}$	755 SO Rev Vel Lmt Spindle Orientation Reverse Velocity Limit Sets the reverse speed used during positioning.	Units: Default: Min/Max	$\begin{aligned} & \mathrm{Hz} / \text { RPM } \\ & -30.00 \\ & -40000.00 / 0.00 \end{aligned}$	RW	Real

$\stackrel{\text { ¢ }}{\text { ¢ }}$	은	No.	Display Name Full Name Description	Values			$\begin{aligned} & \text { D } \\ & \stackrel{\rightharpoonup}{\lambda} \\ & \stackrel{y}{0} \\ & \stackrel{N}{0} \end{aligned}$
		1600	755 Id Comp Enbl Id Compensation Enable Enables or disables the Id compensation calculation. This selection is active only in motor control mode flux vector induction (P35 [Motor Ctrl Mode] = 3 "Induction FV").	Default: Options:	$\begin{aligned} & 0=" \text { "Disable" } \\ & 0=\text { "Disable" } \\ & 1=\text { "Enable" } \end{aligned}$	RW	$\begin{aligned} & \text { 32-bit } \\ & \text { Integer } \end{aligned}$
		1601	755 Id Comp Mtrng 1 Id Compensation Motoring 1 Sets Id compensation value (in p.u.) at Iq = P1602 [IdCompMtrng 1 Iq] (in p.u.) for motoring operation. Id compensation $=$ [ld Comp Mtrng 1] xIqCmd (in p.u.) for IqCmd $=$ between 0 and P1602 [ldCompMtrng 1 lq]. 1.0 p.u. is scaled to the motor rated current. This parameter is active only in motor control mode flux vector induction (P35 [Motor (trl Mode] = 3 "Induction FV").	Default: Min/Max:	$\begin{array}{l\|l\|} \hline 0.0000 \\ -/+1.0000 \end{array}$	RW	Real
		1602	755 IdCompMtrng 1 lq Id Compensation Motoring 1 lq Sets Iq value (in p.u.) at which P1601 [Id Comp Mtrng 1] (in p.u.) is specified. This parameter is active only in motor control mode flux vector induction (P35 [Motor Ctrl Mode] $=3$ "Induction FV").	Default: Min/Max:	$\begin{array}{l\|} \hline 0.2500 \\ 0.0000 / 5.0000 \end{array}$	RW	Real
		1603	755 Id Comp Mtrng 2 Id Compensation Motoring 2 Sets Id compensation value (in p.u.) at Iq = P1604 [IdCompMtrng 2 Iq$]$ (in p.u.) for motoring operation. Id compensation = P1601 [Id Comp Mtrng 1] + (Id Comp Mtrng 2Id Comp Mtrng 1) $\times(\operatorname{lq}($ md $-\mathrm{IdCompMtrng} 1 \mathrm{Iq}) \times 1 /(\mathrm{IdCompMtrng} 2 \mathrm{lq}$ - IdCompMtrng $1 \mathrm{lq})$ for $\mathrm{Iq} \mathrm{Cm} \mathrm{d}=$ between IdCompMtrng 1 lq and IdCompMtrng 2 lq .1 .0 p.u. is scaled to the motor rated current. This parameter is active only in motor control mode flux vector induction (P35 [Motor Ctrl Mode] = 3 "Induction FV").	Default: Min/Max:	$\begin{aligned} & 0.0000 \\ & -/+1.0000 \end{aligned}$	RW	Real
		1604	755 IdCompMtrng 2 Iq Id Compensation Motoring 2 Iq Sets Iq value (in p.u.) at which P1603 [Id Comp Mtrng 2] (in p.u.) is specified. This parameter is active only in motor control mode flux vector induction (P35 [Motor Ctrl Mode] = 3 "Induction FV").	Default: Min/Max:	$\begin{aligned} & 0.5000 \\ & 0.0000 / 5.0000 \end{aligned}$	RW	Real
		1605	755 Id Comp Mtrng 3 Id Compensation Motoring 3 Sets Id compensation value (in p.u.) at Iq = P1606 [IdCompMtrng 3 Iq] (in p.u.) for motoring operation. Id compensation $=$ Id Comp Mtrng $2+$ (Id Comp Mtrng 3-Id Comp Mtrng 2) x (lqCmd - IdCompMtrng 2 Iq) $\times 1 /($ IdCompMtrng 3 Iq-IdCompMtrng 2 Iq) for Iq Cmd $=$ between IdCompMtrng 2 Iq and IdCompMtrng 3 Iq . 1.0 p.u. is scaled to the motor rated current. This parameter is active only in motor control mode flux vector induction (P35 [Motor (trl Mode] = 3 "Induction FV").	Default: Min/Max:	$\begin{aligned} & \hline 0.0000 \\ & -/+1.0000 \end{aligned}$	RW	Real

쁜	은	No.	Display Name Full Name Description	Values			
		1623	755 Id Comp Regen 6 Id Compensation Regen 6 Sets Id compensation value (in p.u.) at $\mathrm{Iq}=\mathrm{P} 1624$ [IdCompRegen 6 Iq] (in p.u.) for regenerative operation. Id compensation $=\operatorname{Id}$ Comp Regen $5+$ (Id Comp Regen 6 - Id Comp Regen 5) x (lqC(md - IdCompRegen 5 Iq$) \times 1 /($ IdCompRegen 6 Iq - IdCompRegen 5 Iq) for $\mathrm{Iq}(\mathrm{md}=$ between IdCompRegen 5 lq and IdCompRegen 6 Iq . This parameter is active only in motor control mode flux vector induction (P35 [Motor (trl Mode] = 3 "Induction FV").	Default: Min/Max:	$\begin{array}{\|l\|} \hline 0.0000 \\ -/+1.0000 \end{array}$	RW	Real
		1624	755 IdCompRegen 6 Iq Id Compensation Regen 6 Iq Sets Iq value (in p.u.) at which P1623 [Id Comp Regen 6] (in p.u.) is specified. This parameter is active only in motor control mode flux vector induction (P35 [Motor Ctrl Mode] = 3 "Induction FV").	Default: Min/Max:	$\begin{array}{l\|} \hline 1.5000 \\ 0.0000 / 5.0000 \end{array}$	RW	Real

1629	See page 63 for parameter numbers 1629 and $1637 \ldots 1645$.
$\mathbf{1 6 3 0}$	See page 60 for parameter numbers $1630 \ldots 1636,1646$, and 1647.
$\mathbf{1 6 4 8}$	See page 54 for parameter numbers $1648 \ldots 1661$

$\mathbf{1 7 0 0}$	See page 151 for parameter numbers $1700 \ldots 1731$.
$\mathbf{1 8 0 0}$	See page 151 for parameter numbers $1800 \ldots 1831$.
$\mathbf{1 9 0 0}$	See page 151 for parameter numbers 1900, 1904, 1908, 1912, 1916, 1920, 1924, and 1928.
$\mathbf{1 9 0 1}$	See page 151 for parameter numbers 1901, 1905, 1909, 1913, 1917, 1921, 1925, and 1929.
$\mathbf{1 9 0 2}$	See page 151 for parameter numbers 1902, 1906, 1910, 1914, 1918, 1922, 1926, and 1930.
$\mathbf{1 9 0 3}$	See page 151 for parameter numbers 1903, 1907, 1911, 1915, 1919, 1923, 1927, and 1931.

Port 10 and Port 11 Parameters

This chapter lists and describes the PowerFlex 750-Series Port 10 and 11 drive parameters. The parameters can be programmed (viewed/edited) using a Human Interface Module (HIM). Refer to Enhanced PowerFlex 7-Class Human Interface Module (HIM) User Manual, publication 20HIM-UM001, for information on using the HIM to view and edit parameters. As an alternative, programming can also be performed using DriveTools" software and a personal computer.

Topic	Page
Inverter (Port 10) Common Parameters	212
Inverter n (Port 10) Parameters	214
Converter (Port 11) Common Parameters	217
Converter n (Port 11) Parameters	220
Precharge (Port 11) Common Parameters	223
Precharge n (Port 11) Parameters	225

Inverter (Port 10) Common Parameters

Inverter Common parameters apply only to PowerFlex 755 Frame 8 and larger drives.

$\stackrel{\otimes}{i \underline{E}}$	은	No.	Display Name Full Name Description	Values		¢	$\underset{\sim}{\underset{\sim}{0}}$
$\begin{aligned} & 2 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & \text { 쓸 } \\ & \text { 플 } \\ & \text { 2 } \end{aligned}$		1	755 (8+) Sys Rated Amps System Rated Amps Displays the continuous current rating of the drive. This parameter is the same value as displayed in P21 [Rated Amps] for the drive at Port 0 .	Units: Default: Min/Max:	Amps 0.00 0.00 / Dependent on Frame Rating	R0	Real
		2	755 (8+) Sys Rated Volts System Rated Volts Input voltage class ($400,480,600,690$, etc) of the drive. This parameter is the same value as displayed in P20 [Rated Volts] for the drive at Port 0 .	Units: Default: Min/Max:	$\begin{array}{\|l} \text { V AC } \\ 0.00 \\ 0.00 / 690.00 \end{array}$	R0	Real
		$\begin{aligned} & 3 \\ & 4 \\ & 5 \end{aligned}$	$755(8+)$ I1 Rated Amps $755(8+)$ I2 Rated Amps $755(8+)$ I3 Rated Amps Inverter n Rated Amps Continuous current rating of inverter n. The continuous current rating varies based on the value of P305 [Voltage Class] and P306 [Duty Rating] for the drive at Port 0 .	Units: Default: Min/Max:	$\begin{aligned} & \text { Amps } \\ & 0.00 \\ & 0.00 / 1000.00 \end{aligned}$	R0	Real
		21	755 (8+) Effctv I Rating Effective Inverter Rating Sets the effective inverter current rating. During N -1 operation, the effective inverter current rating is reduced from P21 [Rated Amps].	Units: Default: Min/Max:	```Amps 0.0 0.0 / Dependent on Frame Rating```	R0	Real

$\stackrel{\text { ® }}{\text { ¢ }}$	은	No．	Display Name Full Name Description	Values			
	$\begin{aligned} & \text { 을 } \\ & \text { 苞 } \\ & \text { D } \end{aligned}$	18	755 （8＋）Ground Current Ground Current Ground current of AC output to a motor．This value is calculated based on the total output currents（ U, V, and W phases of the drive）．When the three phases are balanced， the ground current is ideally close to zero．	Units： Default： Min／Max：	Amps 0.0 $0.0 / 5000.0$	R0	Real

쁯		No．	Display Name Full Name Description	Values			
			755 （8＋）Recfg Acknowledg Reconfiguration Acknowledgement Acknowledge drive re－configuration for N －1 operation or drive rating change．Set to 1 ＂Acknowledge＂（1）－Clears fault F361＂N－1 See Manual＂and fault F362＂Rerate See Manual．＂	Default： Options：	$\begin{aligned} & 0=\text { "Ready" } \\ & 0=\text { "Ready" } \\ & 1=\text { "Acknowledge" } \end{aligned}$	RW	32－bit Integer

	21	See page 212．

쁲	$\begin{aligned} & \text { 은 } \\ & \hline \end{aligned}$	No．	Display Name Full Name Description	Values			$\begin{aligned} & \text { 品 } \\ & \substack{\text { N} \\ \stackrel{y}{0} \\ \hline} \end{aligned}$
$\begin{aligned} & \text { 릉 } \\ & \text { 元 } \end{aligned}$		$\begin{aligned} & 30 \\ & 32 \end{aligned}$	$755(8+)$ Testpoint Sel 1 $755(8+)$ Testpoint Sel 2 Testpoint Selection 1,2 Selects a source for［Testpoint Val n ］．Used by the factory，typically for diagnostic purposes．	Default： Min／Max：	$\begin{aligned} & 0 \\ & 0 / 65535 \end{aligned}$	RW	32－bit Integer
密		$\begin{aligned} & 31 \\ & 33 \end{aligned}$	$755(8+)$ Testpoint Val 1 $755(8+)$ Testpoint Val 2 Testpoint Value 1，2 Displays data selected by［Testpoint Sel n ］．	Default： Min／Max：	$\begin{aligned} & 0.000000 \\ & -/+220000000.000000 \end{aligned}$	R0	Real

Inverter \boldsymbol{n} (Port 10) Parameters

$\stackrel{\otimes}{i}$	은	No.	Display Name Full Name Description	Values		$\stackrel{\text { D }}{\stackrel{y}{2}}$
		$\begin{aligned} & 105 \\ & 205 \\ & 305 \end{aligned}$	$755(8+)$ I1 Fault Status $755(8+)$ I2 Fault Status $755(8+)$ I3 Fault Status Inverter n Fault Status Indicates which fault condition	(Port 10)	RO	32-bit Integer on these

Indicates which fault conditions currently exist for inverter n. Refer to Chapter 6-Inverter (Port 10) Faults and Alarms (Frame 8 and Larger) for information on these fault codes.

Inverter n parameters apply only to PowerFlex 755 Frame 8 and larger drives.

107	755 (8+) I1 Alarm Status	RO	32-bit Integer
207	755 (8+) I2 Alarm Status		
307	755 (8+) I3 Alarm Status		
	Inverter n Alarm Status		

Indicates which alarm conditions currently exist for inverter n. Refer to Chapter 6-Inverter (Port 10) Faults and Alarms (Frame 8 and Larger) for information on these alarm codes.

을	$\begin{aligned} & \text { 응 } \\ & \text { in } \end{aligned}$	No．	Display Name Full Name Description	Values			
$\begin{aligned} & \text { z } \\ & \text { 曾 } \\ & \text { \#̈ } \\ & \text { E } \end{aligned}$		$\begin{gathered} 127 \\ 227 \\ 327 \\ \hline 0 \end{gathered}$	$755(8+)$ I1 PredMainReset $755(8+)$ I2 PredMainReset $755(8+)$ I3 PredMainReset Inverter n Predictive Maintenance Reset Allows a reset of the elapsed run time to zero for either the heatsink fan or internal stirring fans for inverter n ．After the time has been reset，the value of this parameter returns to 0 ＂Ready．＂ ＂Hs Fan Life＂（1）－Resets the elapsed run time（displayed in［In HSFanElpsdLif］）for the heatsink fan on inverter n to zero． ＂In Fan Life＂（2）－Resets the elapsed run time（displayed in［In InFanElpsdLif］）for the internal stirring fans on inverter n to zero．	Default： Options：	$\begin{aligned} & 0=\text { "Ready" } \\ & 0=\text { "Ready" } \\ & 1=\text { "HS Fan Life" } \\ & 2=\text { "In Fan Life" } \end{aligned}$	RW	$\begin{aligned} & \text { 32-bit } \\ & \text { Integer } \end{aligned}$
		$\begin{aligned} & 128 \\ & 228 \\ & 328 \end{aligned}$	$755(8+)$ I1 HSFanElpsdLif $755(8+)$ I2 HSFanElpsdLif $755(8+)$ I3 HSFanElpsdLif Inverter n Heatsink Fan Elapsed Life The anounn of of time the eheat sink fan on inverter n has been running．This value can be reset using［In PredMainReset］．	Units： Default： Min／Max	Hrs 0.00 $0.00 / 220000000.00$	R0	Real
		$\begin{aligned} & 129 \\ & 229 \\ & 329 \end{aligned}$	$755(8+)$ I $\mathbf{I n F a n E l p s d L}$ Lif $755(8+)$ I2 InFanElpsdLif $755(8+)$ I3 InFanElpsdLif Inverter n Internal Fan Elapsed Life The amount of time the inverter stiring fans on inverter n have been running．This value can be reset using［ln PredMainReset］．	Units： Default： Min／Max	Hrs 0.00 $0.00 / 220000000.00$	R0	Real

츤	言	No．	Display Name Full Name Description	Values			
$\begin{aligned} & \text { z } \\ & \text { 总 } \\ & \text { 总 } \\ & \frac{3}{2} \end{aligned}$		$\begin{aligned} & \hline 140 \\ & 142 \\ & 240 \\ & 242 \\ & 340 \\ & 342 \end{aligned}$	$755(8+)$ I1 Testpt Sel 1 $755(8+)$ I1 Testpt Sel 2 $755(8+)$ I2 Testpt Sel 1 $755(8+)$ I2 Testpt Sel 2 $755(8+)$ I3 Testpt Sel 1 $755(8+)$ I3 Testpt Sel 2 Inverter n Testpoint Selection 1， 2 Selects a source for $[$ In Testpt Val $n]$ ．Used by the factory，typically for diagnostic purposes．	Default： Min／Max：	$\begin{aligned} & \hline 0 \\ & 0 / 65535 \end{aligned}$	RW	32－bit
		$\begin{aligned} & 141 \\ & 143 \\ & 241 \\ & 243 \\ & 341 \\ & 343 \end{aligned}$	$755(8+)$ I1 Testpt Val 1 $755(8+)$ II Testpt Val 2 $755(8+)$ I2 Testpt Val 1 $755(8+)$ I2 Testpt Val 2 $755(8+)$ I3 Testpt Val 1 $755(8+)$ I3 Testpt Val 2 Inverter n Testpoint Value 1， 2 Displays the data selected by［ln Testpt Sel $n]$.	Default： Min／Max：	$\begin{aligned} & 0.000000 \\ & -/+220000000.000000 \end{aligned}$	R0	Real

Converter (Port 11) Common Parameters

Converter Common parameters apply only to PowerFlex 755 AC Input Frame 8 and larger drives.

쁲	은	No.	Display Name Full Name Description	Values			
		1	755 (8+) Sys Rated Amps System Rated Amps Displays the continuous current rating of the converter system.	Units: Default: Min/Max:	Amps 0.00 0.00 / Dependent on Frame Rating	R0	Real
		2	```755 (8+) Sys Rated Volts System Volts Input voltage class (400, 480,600, 690, etc) of the converter system.```	Units: Default: Min/Max:	$\begin{aligned} & \text { V AC } \\ & 0.00 \\ & 0.00 / 690.00 \end{aligned}$	R0	Real
		$\left\lvert\, \begin{aligned} & 3 \\ & 4 \\ & 5 \end{aligned}\right.$	$755(8+)$ C1 Rated Amps $755(8+)$ C2 Rated Amps $755(8+)$ C3 Rated Amps Converter n Rated Amps Continuous current rating of converter n. Used with AC Input drives.	Units: Default: Min/Max:	Amps 0.00 $0.00 / 3000.00$	R0	Real

쁲	은	No．	Display Name Full Name Description	Values			$\begin{aligned} & \text { 品 } \\ & \substack{\text { In } \\ \stackrel{y}{0}} \end{aligned}$
$\sum_{\sum}^{\text {Z }}$	흒言高	16	755 （8＋）Gnd Cur FIt LvI Ground Current Fault Level The converter system peak ground current fault threshold．The converter will fault if the peak input ground current exceeds this threshold for five line cycles on any converter．	Units： Default： Min／Max：	Amps 600.0 $0.0 / 3000.0$	RW	Real
		17	755 （8＋）Converter Actn Converter Action The action the inverter takes when a converter fault occurs．	Default： Options：	$\begin{aligned} & 3 \\ & 0=\text { "Ignore" } \\ & 1=\text { "Reserved" } \\ & 2=\text { "Minor Stop" } \\ & 3=\text { "Coast Stop" } \\ & 4=\text { "Ramp Stop" } \\ & 5=\text { "Cur Lmt Stop" } \end{aligned}$	RW	Integer

흪	응	No．	Display Name Full Name Description	Values			
		20	755 （8＋）L1 Phase Curr Line 1 Phase Current The converter system AC line 1 （R）RMS input current．This is the sum of all line $1(R)$ phase currents from all online converters．	Units： Default： Min／Max：	Amps 0.0 $0.0 / 15000.0$	R0	Real
		21	755 （8＋）L2 Phase Curr Line 2 Phase Current The converter system AC line 2 （S）RMS input current．This is the sum of all line 2 （S） phase currents from all online converters．	Units： Default： Min／Max：	Amps 0.0 $0.0 / 15000.0$	R0	Real
		22	755 （8＋）L3 Phase Curr Line 3 Phase Current The converter system AC line 3 （T）RMS input current．This is the sum of all line 3 （T） phase currents from all online converters．	Units： Default： Min／Max：	Amps 0.0 $0.0 / 15000.0$	R0	Real
		23	755 （8＋）Heatsink Temp Heatsink Temperature The converter system heatsink temperature．This is the maximum heatsink temperature from all online converters．	Units： Default： Min／Max：	$\begin{array}{\|l\|} \hline \text { DegC } \\ 0.0 \\ -/+200.0 \end{array}$	R0	Real
		24	755 （8＋）SCR Temp SCR Temperature The converter system SCR temperature．This is the maximum SCR temperature from all online converters．	Units： Default： Min／Max：	DegC 0.0 －／＋200．0	R0	Real
		25	755 （8＋）Gate Board Temp Gate Board Temperature The converter system gate board temperature．This is the maximum gate board temperature from all online converters	Units： Default： Min／Max：	DegC 0.0 －／＋200．0	R0	Real

$\stackrel{\text { 흘 }}{ }$	을	No.	Display Name Full Name Description	Values			
	듬	$\begin{aligned} & 30 \\ & 32 \end{aligned}$	$755(8+)$ Testpoint Sel 1 $755(8+)$ Testpoint Sel 2 Testpoint Selection 1, 2 Selects a source for [Testpoint Val n]. Used by the factory, typically for diagnostic purposes.	Default: Min/Max:	$\begin{aligned} & \hline 0 \\ & 0 / 65535 \end{aligned}$	RW	32-bit Integer
		$\begin{aligned} & 31 \\ & 33 \end{aligned}$	$755(8+)$ Testpoint Val 1 $755(8+)$ Testpoint Val 2 Testpoint Value 1, 2 Displays data selected by [Testpoint Sel n].	Default: Min/Max:	$\begin{aligned} & 0.000000 \\ & -1+220000000.000000 \end{aligned}$	R0	Real

Converter n (Port 11) Parameters

Converter n parameters apply only to PowerFlex 755 AC Input Frame 8 and larger drives.

은	$\begin{aligned} & \text { 을 } \\ & \text { 은 } \end{aligned}$	No.	Display Name Full Name Description	Values			
		$\begin{aligned} & 115 \\ & 215 \\ & 315 \end{aligned}$	$755(8+)$ C1 L1 Phase Curr $755(8+)$ C2 L1 Phase Curr $755(8+)$ C3 L1 Phase Curr Converter n Line 1 Phase Current Input current present at terminal L1 (R phase) of converter n.	Units: Default: Min/Max:	Amps 0.0 $-/+9000.0$	R0	Real
		$\begin{aligned} & 116 \\ & 216 \\ & 316 \end{aligned}$	$755(8+)$ C1 L2 Phase Curr $755(8+)$ C2 L2 Phase Curr $755(8+)$ C3 L2 Phase Curr Converter n Line 2 Phase Current Input current present at terminal L2 (S phase) of converter n.	Units: Default: Min/Max:	Amps 0.0 $-/+9000.0$	R0	Real
		$\begin{array}{\|l\|} 117 \\ 217 \\ 317 \end{array}$	$755(8+)$ C1 L3 Phase Curr $755(8+)$ C2 L3 Phase Curr $755(8+)$ C3 L3 Phase Curr Converter n Line 3 Phase Current Input current present at terminal L3 (T phase) of converter n.	Units: Default: Min/Max:	$\begin{aligned} & \text { Amps } \\ & 0.0 \\ & -/+9000.0 \end{aligned}$	RO	Real
$\begin{aligned} & z \\ & \text { z } \\ & \text { 总 } \\ & \text { 豆 } \\ & \frac{0}{0} \end{aligned}$		$\begin{aligned} & 118 \\ & 218 \\ & 318 \end{aligned}$	$755(8+) \quad$ C1 Gnd Current $755(8+) \quad$ C2 Gnd Current $755(8+) \quad$ C3 Gnd Current Converter n Ground Current The RMS ground current of AC input to converter n. The value displayed is based on the sum of converter n drive input currents $(L 1, L 2$, and $L 3)$. When the three phases are balanced, the ground current is ideally close to zero.	Units: Default: Min/Max:	$\begin{aligned} & \text { Amps } \\ & 0.0 \\ & -/+9000.0 \end{aligned}$	RO	Real
		$\begin{aligned} & 119 \\ & 219 \\ & 319 \end{aligned}$	$755(8+)$ C1 DC Bus Volt $755(8+)$ C2 DC Bus Volt $755(8+)$ C3 DC Bus Volt Converter n DC Bus Voltage DC bus voltage measured by converter n.	Units: Default: Min/Max:	$\begin{aligned} & \text { V DC } \\ & 0.0 \\ & 0.0 / 1200.0 \end{aligned}$	RO	Real
		$\begin{aligned} & 120 \\ & 220 \\ & 320 \end{aligned}$	$755(8+)$ C1 Heatsink Temp $755(8+)$ C2 Heatsink Temp $755(8+)$ C3 Heatsink Temp Converter n Heatsink Temperature Temperature of the converter n heatsink.	Units: Default: Min/Max:	$\begin{aligned} & \text { DegC } \\ & 0.0 \\ & -/+200.0 \end{aligned}$	RO	Real
		$\begin{aligned} & 121 \\ & 221 \\ & 321 \end{aligned}$	$755(8+)$ C1 SCR Temp $755(8+)$ C2 SCR Temp $755(8+)$ C3 SCR Temp Converter n SCR Frequency Maximum temperature of all SCRs for converter n.	Units: Default: Min/Max:	$\begin{aligned} & \text { DegC } \\ & 0.0 \\ & -/+200.0 \end{aligned}$	R0	Real
		$\begin{array}{\|l\|} 122 \\ 222 \\ 322 \end{array}$	$755(8+)$ C1 GateBoardTemp $755(8+)$ C2 GateBoardTemp $755(8+)$ C3 GateBoardTemp Converter n Gate Board Temperature Gate board temperature for converter n.	Units: Default: Min/Max:	$\begin{aligned} & \text { DegC } \\ & 0.0 \\ & -/+200.0 \end{aligned}$	RO	Real
		$\begin{aligned} & 123 \\ & 223 \\ & 323 \end{aligned}$	$755(8+)$ C1 AC Line Freq $755(8+)$ C2 AC Line Freq $755(8+)$ C3 AC Line Freq Converter n AC Line Frequency AC line frequency of converter n.	Units: Default: Min/Max:	$\begin{aligned} & \mathrm{Hz} \\ & 0.0 \\ & 0.0 / 100.0 \end{aligned}$	R0	Real

츤	$\begin{aligned} & \text { O} \\ & \stackrel{\rightharpoonup}{ } \\ & \hline \end{aligned}$	No．	Display Name Full Name Description	Values			$\begin{aligned} & \stackrel{\rightharpoonup}{2} \\ & \stackrel{\rightharpoonup}{\lambda} \\ & \stackrel{y}{0} \\ & \stackrel{y}{0} \end{aligned}$
	은	$\begin{aligned} & 125 \\ & 225 \\ & 325 \end{aligned}$	$755(8+)$ C1 L12 Line Volt $755(8+)$ C2 L12 Line Volt $755(8+)$ C3 L12 Line Volt Converter n Line 1 to Line 2 Line Voltage The phase－to－phase RMS line voltage between L1 and L2 for converter n.	Units： Default： Min／Max：	V AC 0.0 $0.0 / 850.0$	R0	Real
$\begin{aligned} & z \\ & \text { 曾 } \\ & \text { 䍏 } \\ & \text { 릉 } \end{aligned}$		$\begin{aligned} & 126 \\ & 226 \\ & 326 \end{aligned}$	$755(8+)$ C1 L23 Line Volt $755(8+)$ C2 L23 Line Volt $755(8+)$ C3 L23 Line Volt Converter n Line 2 to Line 3 Line Voltage The phase－to－phase RMS line voltage between L 2 and L 3 for converter n ．	Units： Default： Min／Max：	VAC 0.0 $0.0 / 850.0$	RO	Real
		$\begin{aligned} & 127 \\ & 227 \\ & 327 \end{aligned}$	$755(8+)$ C1 L31 Line Volt $755(8+)$ C2 L31 Line Volt $755(8+)$ C3 L31 Line Volt Converter n Line 3 to Line 1 Line Voltage The phase－to－phase RMS line voltage between L3 and L1 for converter n.	Units： Default： Min／Max：	\mid VAC 0.0 $0.0 / 850.0$	R0	Real

흔	$\begin{aligned} & \text { 은 } \\ & \hline \end{aligned}$	No．	Display Name Full Name Description	Values			$\begin{aligned} & \stackrel{\rightharpoonup}{2} \\ & \stackrel{\rightharpoonup}{\lambda} \\ & \stackrel{y}{0} \\ & \stackrel{y}{0} \end{aligned}$
$\begin{aligned} & z \\ & \text { ㅆ̈ㅂ } \end{aligned}$		$\begin{gathered} 137 \\ 237 \\ 337 \\ 0 \end{gathered}$	$755(8+)$ C1 PredMainReset $755(8+)$ C2 PredMainReset $755(8+)$ C3 PredMainReset Converter n Predictive Maintenance Reset Allows a reset of the elapsed run time to zero for the cabinet fan for converter n ．After the time has been reset，the value of this parameter returns to 0 ＂Ready．＂	Default： Options：	$\begin{aligned} & 0=\text { "Ready" } \\ & 0=\text { "Ready" } \\ & 1=\text { "Cb Fan Life" } \end{aligned}$	RW	Real
苍		$\begin{aligned} & 138 \\ & 238 \\ & 338 \end{aligned}$	$755(8+)$ C1 CbFanElpsdLif $755(8+)$ C2 CbFanElpsdLif $755(8+)$ C3 CbFanElpsdLif Converter n Cabinet Fan Elapsed Life The amount of titie the eabinet fan for converter n has been running．This value can be reset using［C PredMainReset］．	Units： Default： Min／Max：	Hrs 0.000 $0.000 / 2200000.000$	R0	Real

츺	른	No．	Display Name Full Name Description	Values			$\begin{aligned} & \text { 䯨 } \\ & \stackrel{y}{n} \\ & \stackrel{N}{0} \end{aligned}$
$\begin{aligned} & z \\ & \text { 씄 } \\ & \text { 空 } \end{aligned}$	는	$\begin{aligned} & 140 \\ & 142 \\ & 240 \\ & 242 \\ & 340 \\ & 342 \end{aligned}$	$755(8+)$ C1 Testpt Sel 1 $755(8+)$ C1 Testpt Sel 2 $755(8+)$ C2 Testpt Sel 1 $755(8+)$ C2 Testpt Sel 2 $755(8+)$ C3 Testpt Sel 1 $755(8+)$ C3 Testpt Sel 2	Default： Min／Max：	$\begin{aligned} & \hline 0 \\ & 0 / 65535 \end{aligned}$	RW	$\begin{aligned} & \text { 32-bit } \\ & \text { Integer } \end{aligned}$
	苞	$\begin{aligned} & 141 \\ & 143 \\ & 241 \\ & 243 \\ & 341 \\ & 343 \end{aligned}$	$755(8+)$ C1 Testpt Val 1 $755(8+)$ C1 Testpt Val 2 $755(8+)$ C2 Testpt Val 1 $755(8+)$ C2 Testpt Val 2 $755(8+)$ C3 Testpt Val 1 $755(8+)$ C3 Testpt Val 2 Converter n Testpoint Value 1， 2 Displays the data selected by［ $[n$ Testpt Sel $n]$.	Default： Min／Max：	$\begin{aligned} & 0.000000 \\ & -/+220.000000 \end{aligned}$	R0	Real

Precharge (Port 11) Common
 Precharge Common parameters apply only to PowerFlex 755 Common DC

 Input Frame 8 and larger drives.Parameters

$\stackrel{\otimes}{i}$	은	No.	Display Name Full Name Description	Values			$\begin{gathered} \stackrel{y}{\beth} \\ \underset{\sim}{\leftrightarrows} \\ \underset{\sim}{0} \end{gathered}$
	System Ratings	1	755 (8+) Sys Rated Amps System Rated Amps Displays the continuous current rating of the precharge system.	Units: Default: Min/Max:	$\begin{aligned} & \hline \text { Amps } \\ & 0.00 \\ & 0.00 / 5000.00 \end{aligned}$	R0	Real
		2	755 (8+) Sys Rated Volts System Volts Input voltage class (400, 480, 600, 690 , etc) of the precharge system.	Units: Default: Min/Max:	$\begin{aligned} & \text { V AC } \\ & 0.00 \\ & 0.00 / 690.00 \end{aligned}$	R0	Real
		$\begin{array}{\|l\|} \hline 3 \\ 4 \\ 5 \end{array}$	$755(8+)$ P1 Rated Amps $755(8+)$ P2 Rated Amps $755(8+)$ P3 Rated Amps Precharge n Rated Amps Continuous current rating of precharge unit n. Used with Common DC Input drives.	Units: Default: Min/Max:	$\begin{array}{\|l\|} \text { Amps } \\ 0.00 \\ 0.00 / 3000.00 \end{array}$	R0	Real

$\stackrel{\text { ², }}{\text { ¢ }}$	$\begin{aligned} & \text { 을 } \\ & \text { 운 } \end{aligned}$	No.	Display Name Full Name Description	Values			$\begin{aligned} & \stackrel{y}{2} \\ & \stackrel{\rightharpoonup}{\lambda} \\ & \stackrel{N}{0} \\ & 0 \end{aligned}$
		18	755 (8+) Main DC Bus Volt Main DC Bus Voltage Sets the main DC bus voltage.	Units: Default: Min/Max	$\begin{array}{\|l\|} \hline \text { VDC } \\ 0.00 \\ 0.00 / 1200.00 \end{array}$	RW	Real
		25	755 (8+) Gate Board Temp Gate Board Temperature The precharge system gate board temperature. This is the maximum gate board temperature from all online precharge units.	Units: Default: Min/Max	DegC 0.0 $-/+200.0$	R0	Real

츺	$\begin{aligned} & \text { 은 } \\ & \end{aligned}$	No.	Display Name Full Name Description	Values			
	$\begin{aligned} & \text { 彦 } \\ & \text { 흔 } \\ & \text { anc } \end{aligned}$	$\begin{aligned} & 30 \\ & 32 \end{aligned}$	$755(8+)$ Testpoint Sel 1 $755(8+)$ Testpoint Sel 2 Testpoint Selection 1, 2 Selects a source for [Testpoint Val n]. Used by the factory, typically for diagnostic purposes.	Default: Min/Max:	$\begin{aligned} & 0 \\ & 0 / 65535 \end{aligned}$	RW	32-bit Integer
		$\begin{aligned} & 31 \\ & 33 \end{aligned}$	$755(8+)$ Testpoint Val 1 755 (8+) Testpoint Val 2 Testpoint Value 1, 2 Displays data selected by [Testpoint Sel n].	Default: Min/Max:	$\begin{aligned} & 0.000000 \\ & -/+220000000.000000 \end{aligned}$	R0	Real

Precharge \boldsymbol{n} (Port 11) Parameters

Bit 0 "Ready" - CB controller is ready to begin the precharge sequence. Stop input is not active, 240 V AC is present, molded case switch (MCS) auxiliary contact is open, disconnect is closed and there are no faults.
Bit 1 "MCS Closing" - The precharge sequence is in progress but is not complete.
Bit 2 "Prechrg Done" - Precharge has been completed and the MCS is closed.
Bit 3 "MCS Opening" - The MCS is in the process of opening.
Bit 4 "Faulted" - A fault has occurred and is enumerated in the fault word.
Bit 5 "Alarm" - An alarm has occurred and is enumerated in the alarm word.
Bit 7 "240V ACPresnt" - 240V AC supply is present. Threshold is 85% or 204 V AC.
Bit 8 " $D C$ Bus $0 K$ " $-0=D C$ bus voltage out of tolerance. $1=D C$ bus voltage is within tolerance.
Bit 9 "Discnnct $\ln ^{\prime \prime}-0=$ Auxiliary switch is off. $1=$ Auxiliary switch is on.
Bit 10 "Discnnct 0ut" $-0=$ Relay is off. $1=$ Relay is on.
Bit 11 "BusPosFuseln" $-0=$ Fuse is blown. $1=$ Fuse is intact.
Bit 12 "BusNegFuseln" $-0=$ Fuse is blown. $1=$ Fuse is intact.
Bit 13 "DoorLock n" $^{\prime}-0=$ Door is open. $1=$ Door is closed.
Bit 14 "DoorLock Out" - $0=$ Door solenoid relay is off. $1=$ Door solenoid relay is on.
Bit 15 "Fan Out" $-0=$ Fan is on. $1=$ Fan is off.
Bit 16 "Ext 0pn/Cls" - $0=$ Inactive (tied to common or open). $1=$ Active (24V DC applied).
Bit 17 "Ext Inhibit" $-0=$ Stopped (tied to common or open). $1=$ Not Stopped (24V DC applied). Level sensitive. Ignored when fiber-optic communications is online.
Bit 18 "Ext FaultRst" - $0=$ Inactive (tied to common or open). $1=$ Active (24V DC applied).
Bit 19 "MCSCIsCil0ut" $-0=$ Relay is off. $1=$ Relay is on.
Bit 20 "MCSShntRel0t" $-0=$ Relay is off. $1=$ Relay is on.
Bit 21 "MCSSprgChg0t" $-0=$ Relay is off. $1=$ Relay is on.
Bit 22 "MCS UVDlyOut" $-0=$ Relay is off. $1=$ Relay is on.
Bit 23 "MCS AuxInput" - $0=$ MCS auxiliary contact is open. $1=$ MCS auxiliary contact is closed.
Bit 24 "Flash Failed" - An error occurred during the flash update process.
Bit 30 "Flash Update" - The precharge controller is in flash update mode.
Bit 31 "ReadyToReset" - The flash update process has ended and the precharge controller is waiting for a reset command.

$\stackrel{\text { ² }}{1}$	응	No.	Display Name Full Name Description	Values			
	$\begin{aligned} & \text { 은 } \\ & \text { 芯 } \\ & \text { N } \end{aligned}$	$\begin{aligned} & 110 \\ & 210 \\ & 310 \end{aligned}$	$755(8+)$ P1 DC Bus Volts $755(8+)$ P2 DC Bus Volts $755(8+)$ P3 DC Bus Volts Precharge n DC Bus Voltage Indicates the DC voltage on the inverter capacitor bank. This voltage is measured at a point after the precharge resistors and contactor.	Units: Default: Min/Max:	VDC 0.0 $0.0 / 1200.0$	R0	Real
		$\begin{aligned} & 111 \\ & 211 \\ & 311 \end{aligned}$	$755(8+)$ P1 Main DC Volts $755(8+)$ P2 Main DC Volts $755(8+)$ P3 Main DC Volts Precharge e Main DC Voltage Indicates the input DC voltage to the drive. This voltage is measured at the input to the drive before the precharge resistors and contactor.	Units: Default: Min/Max:	VDC 0.0 $0.0 / 1200.0$	R0	Real
		$\begin{aligned} & 112 \\ & 212 \\ & 312 \end{aligned}$	755 (8+) P1 240VSplyVolts 755 (8+) P2 240VSplyVolts 755 (8+) P3 240VSplyVolts Precharge n 240 V Supply Voltage Indicates the RMS output voltage of the 240V AC control transformer.	Units: Default: Min/Max:	VAC 0.0 $0.0 / 500.0$	R0	Real
		$\begin{aligned} & 122 \\ & 222 \\ & 322 \end{aligned}$	$755(8+)$ P1 GateBoardTemp $755(8+)$ P2 GateBoardTemp $755(8+)$ P3 GateBoardTemp Precharge n Gate Board Temperature Gate board temperature for precharge n.	Units: Default: Min/Max:	DegC 0.0 -/+200.0	R0	Real

츺	릉	No.	Display Name Full Name Description	Values		¢	
랄		$\begin{gathered} \hline 137 \\ 237 \\ 337 \\ \hline 0 \end{gathered}$	$755(8+)$ P1 PredMainReset $755(8+)$ P2 PredMainReset $755(8+)$ P3 PredMainReset	Default: Options:	$\begin{aligned} & 0=\text { "Ready" } \\ & 0=\text { "Ready" } \\ & 1=\text { "Cb Fan Life" } \end{aligned}$	RW	Real
훌		$\begin{aligned} & 138 \\ & 238 \\ & 338 \end{aligned}$	755 (8+) P1 CbFanElpsdLif 755 (8+) P2 CbFanElpsdLif 755 (8+) P3 CbFanElpsdLif Precharge n Cabinet Fan Elapsed Life The amount of time the cabinet fan for precharge n has been running. This value can be reset using [Pn PredMainReset].	Units: Default: Min/Max:	Hrs 0.000 $0.000 / 2200000.000$	R0	Real

$\stackrel{\otimes}{\underline{Z}}$	을	No.	Display Name Full Name Description	Values			
른른푼	兼	140 142 240 242 340 342	$755(8+)$ P1 Testpt Sel 1 $755(8+)$ P1 Testpt Sel 2 $755(8+)$ P2 Testpt Sel 1 $755(8+)$ P2 Testpt Sel 2 $755(8+)$ P3 Testpt Sel 1 $755(8+)$ P3 Testpt Sel 2 Precharge n Testpoint Selection 1, 2 Selects a source for [Pn Testpt Val n]. Used by the factory, typically for diagnostic purposes.	Default: Min/Max:	$\begin{aligned} & 0 \\ & 0 / 65535 \end{aligned}$	RW	32-bit Integer
		$\begin{aligned} & 141 \\ & 143 \\ & 241 \\ & 243 \\ & 341 \\ & 343 \end{aligned}$	$755(8+)$ P1 Testpt Val 1 $755(8+)$ P1 Testpt Val 2 $755(8+)$ P2 Testpt Val 1 $755(8+)$ P2 Testpt Val 2 $755(8+)$ P3 Testpt Val 1 $755(8+)$ P3 Testpt Val 2 Precharge n Testpoint Value 1, 2 Displays the data selected by or [Pn Testpt Sel $n]$.	Default: Min/Max:	$\begin{aligned} & 0.000000 \\ & -1+220.000000 \end{aligned}$	RO	Real

Embedded Feature and Option Module Parameters

This chapter lists and describes the PowerFlex 750-Series drive embedded feature and option module parameters. The parameters can be programmed (viewed/ edited) using a Human Interface Module (HIM). Refer to Enhanced PowerFlex 7-Class Human Interface Module (HIM) User Manual, publication 20HIMUM001, for information on using the HIM to view and edit parameters. As an alternative, programming can also be performed using DriveTools ${ }^{m " \prime}$ software and a personal computer.

Topic	Page
Embedded EtherNet/IP (Port 13) Parameters	230
Communication Configurations	236
Embedded DeviceLogix (Port 14) Parameters	239
11-Series I/0 Module Parameters	242
22-Series I/O Module Parameters	252
Single Incremental Encoder Module Parameters	263
Dual Incremental Encoder Module Parameters	266
Universal Feedback Module Parameters	271
Safe Speed Monitor Module Parameters	289

Embedded EtherNet/IP (Port 13) Parameters

For complete information on the Embedded EtherNet/IP feature, refer to the PowerFlex 755 Drive Embedded EtherNet/IP Adapter user manual, publication 750COM-UM001.

\%	을	Display Name Full Name Description	Values		隹	
		755 DL From Net 01 755 DL From Net 16 Datalinks From Network 01. . . 16 Sets the port number and parameter number to which the selected Datalink connects. Each selected port/parameter is written with data received from the network (outputs from the controller). Parameters $1 . . .14$ can only link to floating point parameters. Parameters 15 and 16 can only link to DINT parameters. If setting the value manually, the parameter value $=(10000 \times$ port number $)+$ (destination parameter number). For example, to use P1 [DL From Net 01] to write to Parameter 1 of an optional encoder modul plugged into drive Port 5 . The value for P1 [DL From Net 01] must be 50001 [(10000 x5) + 1].	Default: Min/Max:	$\begin{array}{\|l\|} \hline 0 \\ 0 / 159999 \end{array}$	RW	32-bit Integer
	1 Thru 16	755 DL To Net 01 755 DL To Net 16 Datalinks To Network 01... 16 Sets the port number and parameter number to which the selected Datalink connects. Each selected port/parameter is read and their values are transmitted over the network to the controller (inputs to the controller). Parameters $17 \ldots 30$ can only link to floating point parameters. Parameters 31 and 32 can only link to DINT parameters. If setting the value manually, the parameter value $=(10000 \times$ port number $)+$ (origination parameter number). For example, to use P17 [DL To Net 01] to read Parameter 01 of an optional I/O module plugged into drive Port 4 . The value for P17 [DL To Net 01] must be $40001[(10000 \times 4)+1]$.	Default: Min/Max:	$\begin{array}{\|l\|l\|l\|l\|l\|l\|l\|} \hline 0 \\ 0 / 159999 \end{array}$	RW	32-bit Integer
	33	755 Port Number Port number Displays the drive port to which the embedded EtherNet/IP adapter is dedicated. This is always Port 13.	Default: Value:	$\begin{aligned} & 13 \\ & 13 / 15 \end{aligned}$	RO	32-bit Integer
	34	755 DLs From Net Act Datalinks From Network Actual Displays the number of actual controller-to- drive Datalinks that the drive is using based on the I/O connection opened by the controller.	Default: Min/Max:	$\begin{aligned} & 0 \\ & 0 / 16 \end{aligned}$	RO	32-bit Integer
	35	755 DLs To Net Act Datalinks To Network Actual Displays the number of actual drive-to- controller Datalinks that the controller is using based on the I/O connection opened by the controller.	Default: Min/Max:	$\begin{aligned} & 0 \\ & 0 / 16 \end{aligned}$	RO	32-bit Integer
	36	755 BOOTP Bootstrap Protocol Configures the adapter to use BOOTP so that you can set its IP address, subnet mask, and gateway address with a BOOTP server. When this parameter is disabled, you must use the adapter parameters to set these addressing functions. This parameter is only functional when the IP address switches are set to $001 \ldots 254$ or 888 . Power cycle or reset is required for change to take affect.	Default: Options:	$\begin{aligned} & 1=\text { "Enabled" } \\ & 0=\text { "Disabled" } \\ & 1=\text { "Enabled" } \end{aligned}$	RW	32-bit Integer
	37	755 Net Addr Src Network Address Source Displays the source from which the adapter node address, subnet mask, and gateway are taken. This will be switches, Parameters 38... 41 [IP Addr Cfg n], or B00TP. It is determined by the settings of the octet switches on the adapter. See Establishing A Connection With EtherNet/IP on page 17 for details.	Default: Options:	$\begin{aligned} & 0=\text { "Switches" } \\ & 0=\text { "Switches" } \\ & 1=\text { "Parameters" } \\ & 2=\text { "B00TP" } \end{aligned}$	RO	32-bit Integer

릎	${ }^{2}{ }^{\mathrm{N}}$	No.	Display Name Full Name Description	Values			$\begin{aligned} & \stackrel{\rightharpoonup}{2} \\ & \stackrel{\rightharpoonup}{\lambda} \\ & \stackrel{y}{0} \\ & \stackrel{N}{0} \end{aligned}$
		$\begin{aligned} & 38 \\ & 39 \\ & 40 \\ & 41 \end{aligned}$	755 IP Addr Cfg 1 755 IP Addr Cfg 2 755 IP Addr Cfg 3 755 IP Addr Cfg 4 IP Address Configure $1 \ldots . .4$ Sets the bytes in the IP address. 255.255 .255 .255	Default: Min/Max:	$\begin{aligned} & \hline 0 \\ & 0 / 255 \end{aligned}$	RW	32-bit Integer
		$\begin{aligned} & 42 \\ & 43 \\ & 44 \\ & 45 \end{aligned}$	Important: To set the subnet mask using these parameters, P36 [BOOTP] must be set to " 0 " (Disabled) and switches set to a value other than 001. . . 254 or 888.	Default: Min/Max:	$\begin{aligned} & 0 \\ & 0 / 255 \end{aligned}$	RW	32-bit Integer
		$\begin{aligned} & 46 \\ & 47 \\ & 48 \\ & 49 \end{aligned}$	Important: To set the gateway address using these parameters, P36 [B00TP] must be set to "0" (Disabled) and switches set to a value other than 001. . . 254 or 888.	Default: Min/Max:	$\begin{aligned} & 0 \\ & 0 / 255 \end{aligned}$	RW	32-bit Integer
		50	755 Net Rate Cfg Network Rate Configure Sets the network data rate at which the adapter communicates. (Updates P51 [Net Rate Act] after a reset.)	Default: Options:	$\begin{aligned} & 0=\text { "Autodetect" } \\ & 0=\text { "Autodetect" } \\ & 1=\text { "10Mbps Full" } \\ & 2=\text { "10Mbps Half" } \\ & 3=\text { "100Mbps Full" } \\ & 4=\text { ""00Mbps Half" } \end{aligned}$	RW	32-bit Integer

ATTENTION: Risk of injury or equipment damage exists. P54 [Comm Flt Action] lets you determine the action of the adapter and connected drive if $/ / 0$ communications are disrupted. By default, this parameter faults the drive. You can set this parameter so that the drive continues to run. Precautions should be taken to ensure that the setting of this parameter does not create a risk of injury or equipment damage. When commissioning the drive, verify that your system responds correctly to various situations (for example, a disconnected cable).

55	755 Idle Flt Action Idle Fault Action Sets the action that the adapter and drive will take if the adapter detects that the controller is in program mode or faulted. This setting is effective only if $/ 0$ that controls the drive is transmitted through the adapter.	Default: Options:	$\begin{aligned} & 0=\text { "Fault" } \\ & 0=\text { "Fault" } \\ & 1=\text { "Stop" } \\ & 2=\text { "Zero Data" } \\ & 3=\text { "Hold Last" } \\ & 4=\text { "Send Flt Cfg" } \end{aligned}$	RW	$\begin{array}{\|l} \text { 32-bit } \\ \text { Integer } \end{array}$

ATTENTION: Risk of injury or equipment damage exists. P55 [ldle Flt Action] lets you determine the action of the adapter and connected drive when the controller is idle. By default, this parameter faults the drive. You can set this parameter so that the drive continues to run. Precautions should be taken to ensure that the setting of this parameter does not create a risk of injury or equipment damage. When commissioning the drive, verify that your system responds correctly to various situations (for example, a controller in idle state).

읓	을	No.	Display Name Full Name Description	Values			
		$\begin{aligned} & \hline 81 \\ & 82 \\ & 83 \\ & 84 \\ & \hline \end{aligned}$	755 Fr Peer Addr 1 755 Fr Peer Addr 2 755 Fr Peer Addr 3 755 Fr Peer Addr 4 From Peer Address 1... 4 Sets the bytes in the IP address that specifies the device from which the adapter receives (consumes) Peer I/O data. Important: The Peer Inp Addr must be on the same subnet as the embedded EtherNet/ IP adapter. Changes to these parameters are ignored when P85 [Fr Peer Enable] is " 1 " (0 n). For detailed information on peer communications, refer to the PowerFlex 755 Drive Embedded EtherNet/IP Adapter User Manual, publication 750COM-UM001.	Default: Min/Max:	$\begin{aligned} & 0 \\ & 0 / 255 \end{aligned}$	RW	
		85	755 Fr Peer Enable From Peer Enable Controls whether Peer I/O input is operating. A value of 0 "Off" turns off Peer I/O input. A value of 1 "Cmd/Ref" overrides the settings in Parameters P76 [DLs Fr Peer Cfg], P78 [Logic Src Cfg], and P79 [Ref Src Cfg] and automatically uses peer Datalink 01 as the drive's present Logic Command and peer Datalink 02 as the drive's Reference. A value of 2 "Custom" enables peer I/0 input using the Datalink count and settings provided by the user. For detailed information on peer communications, refer to the PowerFlex 755 Drive Embedded EtherNet/IP Adapter User Manual, publication 750COM-UM001.	Default: Options:	$\begin{aligned} & 0=" 0 \mathrm{ff}^{\prime} \\ & 0=\text { "0ff" } \\ & 1=\text { "Cmd/Ref" } \\ & 2=\text { "Custom" } \end{aligned}$	RW	$\begin{aligned} & \text { 32-bit } \\ & \text { Integer } \end{aligned}$
		86	755 Fr Peer Status From Peer Status Displays the status of the consumed Peer I/0 input connection. For detailed information on peer communications, refer to the PowerFlex 755 Drive Embedded EtherNet/IP Adapter User Manual, publication 750COM-UM001.	Default: Options:	$\begin{aligned} & 0=" 0 f f " \\ & 0=\text { "Off" } \\ & 1=\text { "Waiting" } \\ & 2=\text { "Running" } \\ & 3=\text { "Faulted" } \end{aligned}$	R0	$\begin{aligned} & \text { 32-bit } \\ & \text { Integer } \end{aligned}$
		87	755 DLs To Peer Cfg Datalinks To Peer Configure Sets the number of drive-to-network Datalinks (parameters) that are used for Peer I/0. The Datalinks being used are allocated from the end of the list. For example, if this parameter's value is set to 3 , Datalinks $14 \ldots 16$ are allocated for the three selected Datalinks. The Datalinks allocated for this cannot overlap with other assigned DL To Net 01... 16 parameters. For detailed information on peer communications, refer to the PowerFlex 755 Drive Embedded EtherNet/IP Adapter User Manual, publication 750COM-UM001.	Default: Min/Max:	$\begin{aligned} & 0 \\ & 0 / 16 \end{aligned}$	RW	$\begin{aligned} & \text { 32-bit } \\ & \text { Integer } \end{aligned}$
		88	755 DLs To Peer Act Datalinks To Peer Action Displays the value of P87 [DLs To Peer Cfg] at the time the drive was reset. This is the number of actual drive-to-peer Datalinks that the drive is expecting.	Default: Min/Max:	$\begin{aligned} & 0 \\ & 0 / 16 \end{aligned}$	R0	$\begin{aligned} & \text { 32-bit } \\ & \text { Integer } \end{aligned}$

Communication Configurations

20-COMM-* Network Adapter Compatibility

Some 20-COMM adapters can be used with PowerFlex 750-Series drives. See "20-COMM Carrier" in the Installation Instructions, publication 750-IN001, for more information.

IMPORTANT When a 20-COMM Carrier (20-750-20COMM) is used to install a 20-COMM adapter on a 750 -Series drive, the upper word (Bits 16...31) of the Logic Command Word and Logic Status Word are not accessible. The upper word is only used and accessible on 750 -Series communication modules (20-750-*) and the embedded EtherNet/IP on PowerFlex 755 drives.

Typical Programmable Controller Configurations

IMPORTANT If block transfers are programmed to continuously write information to the drive, care must be taken to properly format the block transfer. If attribute 10 is selected for the block transfer, values will be written only to RAM and will not be saved by the drive. This is the preferred attribute for continuous transfers. If attribute 9 is selected, each program scan will complete a write to the drives non-volatile memory (EEprom). Since the EEprom has a fixed number of allowed writes, continuous block transfers will quickly damage the EEprom. Do Not assign attribute 9 to continuous block transfers. Refer to the individual communications adapter User Manual for additional details.

Logic Command/Status Words

Table 4-Logic Command Word

Logic Bits																													Command	Description
3 1	3	2	2 8	2	2 6	$\left\lvert\, \begin{aligned} & 2 \\ & 5 \end{aligned}\right.$	$\left\lvert\, \begin{aligned} & 2 \\ & 4 \end{aligned}\right.$	2	2	2	2 0	$\begin{array}{\|l} 1 \\ 9 \end{array}$	$\left\lvert\, \begin{aligned} & 1 \\ & 8 \end{aligned}\right.$	$\left\|\begin{array}{l} 1 \\ 7 \end{array}\right\|$	$\left.\begin{aligned} & 1 \\ & 6 \end{aligned} \right\rvert\,$	$\left\lvert\, \begin{aligned} & 1 \\ & 5 \end{aligned}\right.$	$\left\lvert\, \begin{aligned} & 1 \\ & 4 \end{aligned}\right.$	$\left\lvert\, \begin{aligned} & 1 \\ & 3 \end{aligned}\right.$	$\left\|\begin{array}{l} 1 \\ \mathbf{2} \end{array}\right\|$	$\left\|\begin{array}{l} 1 \\ 1 \end{array}\right\|$	$\left\|\begin{array}{l} 1 \\ 0 \end{array}\right\|$	918	7	6	54	3		10		
																												X	Normal Stop	$\begin{aligned} & 0=\text { Not Normal Stop } \\ & 1=\text { Normal Stop } \end{aligned}$
																													Start ${ }^{\text {(1) }}$	$\begin{aligned} & 0=\text { Not Start } \\ & 1=\text { Start } \end{aligned}$
																											x		$\operatorname{Jog} 1{ }^{(2)}$	$\begin{aligned} & 0=\text { Not } \log 1 \text { (Par. } 556) \\ & 1=\log 1 \end{aligned}$
																										x			Clear Fault ${ }^{(3)}$	$\begin{aligned} & 0=\text { Not Clear Fault } \\ & 1=\text { Clear Fault } \end{aligned}$
																									$x \mid x$				Unipolar Direction	$\begin{aligned} & 00=\text { No Command } \\ & 01=\text { Forward Command } \\ & 10=\text { Reverse Command } \\ & 11=\text { Hold Direction Control } \end{aligned}$
																								x					Manual	$\begin{aligned} & 0=\text { Not Manual } \\ & 1=\text { Manual } \end{aligned}$
																							x						Reserved	
																						x x							Accel Time	$\begin{aligned} & \hline 00=\text { No Command } \\ & 01=\text { Use Accel Time } 1 \text { (Par. } 535 \text {) } \\ & 10=\text { Use Accel Time } 2 \text { (Par. } 536 \text {) } \\ & 11=\text { Use Present Time } \end{aligned}$
																				X	X								Decel Time	$\begin{aligned} & \hline 00=\text { No Command } \\ & 01=\text { Use Decel Time } 1 \text { (Par. } 537) \\ & 10=\text { Use Decel Time } 2 \text { (Par. } 538) \\ & 11=\text { Use Present Time } \end{aligned}$
																			x										Ref Select 1	000 = No Command
																		x											Ref Select 2	$010=\text { Ref B Select (Par. 550) }$
																	X												Ref Select 3	$\begin{aligned} & 011=\text { Preset } 3(\text { Par. } 573) \\ & 100=\text { Preset } 4(\text { Par. } 574) \\ & 101=\text { Preset } 5(\text { Par. 575) } \\ & 110=\text { Preset } 6(\text { Par. 576) } \\ & 111=\text { Preset } 7(\text { Par. } 577) \end{aligned}$
																X													Reserved	
															X														Coast Stop	$\begin{aligned} & 0=\text { Not Coast to Stop } \\ & 1=\text { Coast to Stop } \end{aligned}$
														x															Current Limit Stop	$\begin{aligned} & \hline 0=\text { Not Current Limit Stop } \\ & 1=\text { Current Limit Stop } \end{aligned}$
													X																Run ${ }^{(4)}$	$\begin{aligned} & 0=\text { Not Run } \\ & 1=\text { Run } \end{aligned}$
												X																	$\operatorname{Jog} 2^{(2)}$	$\begin{aligned} & 0=\text { Not } \log 2(\text { Par. } 557) \\ & 1=\log 2 \end{aligned}$
											X																		Reserved	
										X																			Reserved	
									X																				Reserved	
								X																					Reserved	
							X																						Reserved	
						X																							Reserved	
					x																								Reserved	
				X																									Reserved	
			X																										Reserved	
		X																											Reserved	
	X																												Reserved	
X																													Reserved	

(1) A Not Stop condition (logic bit $0=0$) must first be present before a $1=$ Start condition will start the drive.
(2) A Not Stop condition (logic bit $0=0$) must first be present before a $1=\log 1 / \operatorname{Jog} 2$ condition will jog the drive. A transition to a " 0 " will stop the drive.
(3) To perform this command, the value must switch from " 0 " to " 1 ."
(4) A Not Stop condition (logic bit $0=0$) must first be present before a $1=$ Run condition will run the drive. A transition to a " 0 " will stop the drive.

Table 5 - Logic Status Word

Logic Bits																													Command	Description
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	98	8	6	54	43	2	10		
																												x	Run Ready	$\begin{aligned} & 0=\text { Not Ready to Run } \\ & 1=\text { Ready to Run } \end{aligned}$
																												x	Active	$\begin{aligned} & 0=\text { Not Active } \\ & 1=\text { Active } \end{aligned}$
																											x		Command Direction	$\begin{aligned} & 0=\text { Reverse } \\ & 1=\text { Forward } \end{aligned}$
																										x			Actual Direction	$\begin{aligned} & 0=\text { Reverse } \\ & 1=\text { Forward } \end{aligned}$
																										x			Accelerating	$\begin{aligned} & 0=\text { Not Accelerating } \\ & 1=\text { Accelerating } \end{aligned}$
																									x				Decelerating	$\begin{aligned} & 0=\text { Not Decelerating } \\ & 1=\text { Decelerating } \end{aligned}$
																								x					Alarm	$\begin{aligned} & \begin{array}{l} 0=\text { No Alarm (Par. } 959 \text { \& 960) } \\ 1=\text { Alarm } \end{array} \end{aligned}$
																							x						Fault	$\begin{aligned} & 0=\text { No Fault (Par. } 952 \& 953) \\ & 1=\text { Fault } \end{aligned}$
																							x						At Setpt Spd	$\begin{aligned} & 0=\text { Not at Setpoint Speed } \\ & 1=\text { At Setpoint Speed } \end{aligned}$
																						x							Manual	$\begin{aligned} & 0=\text { Manual Mode Not Active } \\ & 1=\text { Manual Mode Active } \end{aligned}$
																					x								Spd RefID 0	$00000=$ Reserved
																				x									Spd Refld 1	00001 = Auto Ref A (par. 545
																			X										Spd RefID 2	$=$ Auto Ref Brest Speed 3 (Par. 573)
																		x											Spd Refld 3	$00100=$ Auto Preset Speed 4 (Par. 574)
																	x												Spd RefID 4	
																x													Reserved	
															x														Running	$\begin{aligned} & 0=\text { Not Running } \\ & 1=\text { Running } \end{aligned}$
														x															Jogging	$\begin{aligned} & 0=\text { Not Jogging (Par. } 556 \text { \& 557) } \\ & 1=\text { Jogging } \end{aligned}$
													x																Stopping	$\begin{aligned} & 0=\text { Not Stopping } \\ & 1=\text { Stopping } \end{aligned}$
												x																	DC Brake	$\begin{aligned} & 0=\text { Not DC Brake } \\ & 1=\text { DC Brake } \end{aligned}$
											x																		DB Active	$\begin{aligned} & 0=\text { Not Dynamic Brake Active } \\ & 1=\text { Dynamic Brake Active } \end{aligned}$
										x																			Speed Mode	$\begin{aligned} & 0=\text { Not Speed Mode (Par. 309) } \\ & 1=\text { Speed Mode } \end{aligned}$
									x																				Position Mode	$\begin{aligned} & 0=\text { Not Position Mode (Par. 309) } \\ & 1=\text { Position Mode } \end{aligned}$
								x																					Torque Mode	$\begin{aligned} & 0=\text { Not Torque Mode (Par. 309) } \\ & 1=\text { Torque Mode } \end{aligned}$
							x																						At Zero Speed	$\begin{aligned} & 0=\text { Not at Zero Speed } \\ & 1=\text { At Zero Speed } \end{aligned}$
						x																							At Home	$\begin{aligned} & \begin{array}{l} 0=\text { Not at Home } \\ 1=\text { At Home } \end{array} \\ & \hline \end{aligned}$
					x																								At Limit	$\begin{aligned} & 0=\text { Not at Limit } \\ & 1=\text { At Limit } \end{aligned}$
				x																									Current Limit	$\begin{aligned} & \begin{array}{l} 0=\text { Not at Current Limit } \\ 1=\text { At Current Limit } \end{array} \\ & \hline \end{aligned}$
			x																										Bus Freq Reg	$\begin{aligned} & 0=\text { Not Bus Freq Reg } \\ & 1=\text { Bus Freq Reg } \end{aligned}$
		x																											Enable On	$\begin{aligned} & 0=\text { Not Enable On } \\ & 1=\text { Enable On } \end{aligned}$
	x																												Motor Overload	$\begin{aligned} & 0=\text { Not Motor Overload } \\ & 1=\text { Motor Overload } \end{aligned}$
x																													Regen	$\begin{aligned} & 0=\text { Not Regen } \\ & 1=\text { Regen } \end{aligned}$

Embedded DeviceLogix (Port
 14) Parameters

50 DLX DigOut Sts

Options	¢	-		$\begin{aligned} & \text { ס} \\ & \stackrel{\rightharpoonup}{0} \\ & \stackrel{y}{0} \\ & \text { on } \end{aligned}$			$\begin{aligned} & \stackrel{\rightharpoonup}{د} \\ & \stackrel{y}{0} \\ & \stackrel{0}{0} \\ & \hline \end{aligned}$			$\begin{aligned} & \text { ס} \\ & \stackrel{\rightharpoonup}{u} \\ & \stackrel{y y}{0} \\ & 0 \end{aligned}$			$\begin{aligned} & \stackrel{\rightharpoonup}{د} \\ & \stackrel{y}{u} \\ & \stackrel{0}{c} \\ & \hline \end{aligned}$							$\left\lvert\, \begin{aligned} & \stackrel{m}{\tilde{n}} \\ & \stackrel{\rightharpoonup}{0} \\ & \underline{E} \\ & \underset{0}{0} \end{aligned}\right.$					㛈		$\begin{aligned} & \text { O} \\ & \stackrel{\rightharpoonup}{0} \\ & \stackrel{y}{E} \\ & \underset{0}{0} \end{aligned}$	$\begin{aligned} & \text { 资 } \\ & \stackrel{\rightharpoonup}{E} \\ & \stackrel{y}{E} \\ & \underset{0}{2} \end{aligned}$				W
Default	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0			0	0	0	0	0	0	0
Bit	$3130 \quad 29 \quad 28$			28	$27 \quad 26$		25	24	$\begin{array}{lllll}23 & 22 & 21 & 20\end{array}$				191	181716			151		41312		$11 \quad 10$			98	6		5	4	3	2	1	0
																													$\begin{aligned} & \text { Cond } \\ & \text { Cono } \end{aligned}$	dition		

11-Series I/O Module

Parameters

흪	은	No.	Display Name Full Name Description	Values		位	茳
		1	Dig In Sts Digital Input Status Status of the digital inputs. Options 	$\begin{aligned} & 0=\text { Input Not Activated } \\ & 1=\text { Input Activated } \end{aligned}$		R0	16-bit Integer
$\begin{aligned} & \frac{9}{\bar{u}} \\ & \stackrel{\rightharpoonup}{3} \\ & \stackrel{\sim}{\sim} \end{aligned}$		2	Dig In Filt Mask Digital Input Filter Mask Filters the selected digital input. Important: Only used by 11-Series I/0 Module models 20-750-1133C-1R2T and 20-750-1	$50-1132 C-2 R$ $\begin{aligned} & 0=\text { Input No } \\ & 1=\text { Input Fill } \end{aligned}$	Modules with 24V DC inputs.) iltered ed	RW	16-bit Integer
		3	Dig In Filt Digital Input Filter Sets the amount of filtering on the digital inputs. Important: Only used by 11-Series I/0 Module models 20-750-1133C-1R2T and 20- 750-1132C-2R. (Modules with 24V DC inputs.)	Units: Default: Min/Max	$\begin{aligned} & \mathrm{mS} \\ & 4 \\ & 2 / 10 \end{aligned}$	RW	32-bit Integer

	No.	Display Name Full Name Description	Values			

TOO Level CmpSts

Transistor Output 0 Level Compare Status - 11-Series I/O Module model 20-750-1133C-1R2T is installed.
Status of the level compare, and a possible source for a relay or transistor output. Relay Output n Select or Transistor Output n Select must have this selected to energize the output. Can be used without a physical output as status information only.

Bit 0 "Less Than" - Level source is less than the level value.
Bit 1 "Grt Than Equ" - Level source is greater than or equal to the level value.
Bit 2 "Abs Less Than" - Absolute value of the level source is less than the absolute value of the level value.
Bit 3 "AbsGrtThanEq" - Absolute value of the level source is greater than or equal to the absolute value of the level value.

| 24 | R01 On Time |
| :--- | :--- | :--- |

Relay Output 1 On Time - 11-Series I/O Module model 20-750-1132C-2R or 20-750-
1132D-2R is installed.

TOO On Time

Transistor Output 0 On Time - 11-Series I/O Module model 20-750-1133C-1R2T is installed.
Sets the "ON Delay" time for the digital outputs. This is the time between the occurrence of a condition and activation of the relay or transistor.

Units:	Secs	RW	Real
Default:	0.0		
Min/Max:	$0.0 / 600.0$		

츺	$\begin{aligned} & \text { O2 } \\ & \text { 응 } \end{aligned}$	No.	Display Name Full Name Description	Values		毞	$$
		50	Anlg In0 Value Analog Input 0 Value Value of the Analog input after filter, square root, and loss action.	Units: Default: Min/Max:	Volt mA 0.000 Volts 0.000 mA -/+10.000 Volts $0.000 / 20.000 \mathrm{~mA}$	R0	Real
		51	Anlg $\ln 0 \mathrm{Hi}$ Analog Input 0 High Sets the highest input value to the analog input scaling block.	Units: Default: Min/Max:	Volt mA 10.000 Volts 20.000 mA $-/+10.000$ Volts $0.000 / 20.000 \mathrm{~mA}$	RW	Real
		52	Anlg InO Lo Analog Input 0 Low Sets the lowest input value to the analog input scaling block.	Units: Default: Min/Max:	Volt mA 0.000 Volts 0.000 mA $-/+10.000$ Volts $0.000 / 20.000 \mathrm{~mA}$	RW	Real
		53	Anlg In0 LssActn Analog Input 0 Loss Action Selects drive action when an analog signal loss is detected. Signal loss is defined as an analog signal less than 1 V or 2 mA . The signal loss event ends and normal operation resumes when the input signal level is greater than or equal to 1.5 V or 3 mA . "Ignore" (0) - No action is taken. "Alarm" (1) - Type 1 alarm indicated. "Flt Minor" (2) - Minor fault indicated. If running, drive continues to run. Enable with P950 [Minor Flt Cfg]. If not enabled, acts like a major fault. "FItCoastStop" (3) - Major fault indicated. Coast to Stop. "FIt RampStop" (4) - Major fault indicated. Ramp to Stop. "Flt CL Stop" (5) - Major fault indicated. Current Limit Stop. "Hold Input" (6) - Holds input at last value. "Set Input Lo" (7) - Sets input to P52 [Anlg InO Lo]. "Set Input Hi" (8) - Sets input to P51 [Anlg In0 Hi].	Default: Options:	$\begin{aligned} & 0=\text { "Ignore" } \\ & 0=\text { "Ignore" } \\ & 1=\text { "Alarm" } \\ & 2=\text { "Flt Minor" } \\ & 3=\text { "FltCoastStop" } \\ & 4=\text { "Flt RampStop" } \\ & 5=\text { "Flt CL Stop" } \\ & 6=\text { "Hold Input" } \\ & 7=\text { "Set Input Lo" } \\ & 8=\text { "Set Input Hi" } \end{aligned}$	RW	$\begin{aligned} & \text { 32-bit } \\ & \text { Integer } \end{aligned}$
		54	Anlg In0 Raw Val Analog Input 0 Raw Value Raw Value of the analog input.	Units: Default: Min/Max:	Volt mA 0.000 Volts 0.000 mA -/+10.000 Volts $0.000 / 20.000 \mathrm{~mA}$	RO	Real
		55	Anlg In0 Filt Gn Analog Input 0 Filter Gain Sets the analog input filter gain. Recommended settings:	Default: Min/Max:	$\begin{aligned} & 1.00 \\ & -/+5.00 \end{aligned}$	RW	Real
		56	Anlg In0 Filt BW Analog Input 0 Filter Bandwidth Sets the analog input filter bandwidth. Recommended settings:	Default: Min/Max:	$\begin{array}{\|l\|} \hline 0.0 \\ 0.0 / 500.0 \end{array}$	RW	Real

읖	은	No.	Display Name Full Name Description							Values		\|l	
		70	Anlg Out Type Analog Output Type Select the analog output mode for each analog output. Options 							$\begin{aligned} & 0=\text { Voltage Mode } \\ & 1=\text { Current Mode } \end{aligned}$		RW	16-bit Integer
		71	Anlg Out Abs Analog Output Absolute Selects whether the signed value or absolute value of a parameter is used before being scaled to drive the analog output.									RW	16-bit Integer
		75	Anlg Out0 Sel Analog Output 0 Select Selects the source for the analog output.							Default: Min/Max:	$\begin{aligned} & 3 \\ & 0 / 159999 \end{aligned}$	RW	32-bit Integer
		76	Anlg Out0 Stpt Analog Output 0 Setpoint A possible source for an analog output. Can be used to control an analog output from a communication device using a DataLink. Not affected by analog output scaling.							Units: Default: Min/Max:	Volt mA 10.000 Volts 20.000 mA $-/+10.000$ Volts $0.000 / 20.000 \mathrm{~mA}$	RW	Real
		77	Anlg Out0 Data Analog Output 0 Data Displays the value of the source selected by P75 [Anlg Out0 Sel].							Default: Min/Max:	$\begin{aligned} & 0 \\ & -/+100000 \end{aligned}$	R0	Real
		78	Anlg Out0 DataHi Analog Output 0 Data High Sets the high value for the data range of analog out scale.							Units: Default: Min/Max:	$\begin{array}{\|l\|} \hline \text { pu } \\ 1 \\ -/+21474800 \end{array}$	RW	Real
		79	Anlg Out0 DataLo Analog Output 0 Data Low Sets the low value for the data range of analog out scale.							Default: Min/Max:	$\begin{aligned} & 1 \\ & -/+21474800 \end{aligned}$	RW	Real
		80	Anlg Out0 Hi Analog Output 0 High Sets the high value for the analog output value when the data value is at its maximum.							Units: Default: Min/Max:	Volt mA 10.000 Volts 20.000 mA $-/+10.000$ Volts $0.000 / 20.000 \mathrm{~mA}$	RW	Real
		81	Anlg Out0 Lo Analog Output 0 Low Sets the low value for the analog output value when the data value is at its minimum.							Units: Default: Min/Max:	Volt mA 10.000 Volts 20.000 mA $-/+10.000$ Volts $0.000 / 20.000 \mathrm{~mA}$	RW	Real

츺	$\begin{aligned} & \text { 릉 } \\ & \text { 훈 } \end{aligned}$	No.	Display Name Full Name Description	Values		(1)	
		82	Anlg Out0 Val Analog Output 0 Value Displays the analog output value.	Units: Default: Min/Max:	Volt mA 10.000 Volts 20.000 mA $-/+10.000$ Volts $0.000 / 20.000 \mathrm{~mA}$	R0	Real

릋	$\begin{aligned} & \text { 은 } \\ & \hline \end{aligned}$	No.	Display Name Full Name Description	Values	¢	N
		99	PredMaint Sts Predictive Maintenance Status		R0	16-bit Integer

Status of relay's predictive maintenance.

(1) Bit $1=$ "Relay Out 0 " for 11 -Series $1 / 0$ Module models $20-750-1132 \mathrm{C}-2 \mathrm{R}$ and $20-750-1132 \mathrm{D}-2 \mathrm{R}$

$\begin{aligned} & \frac{9}{y} \\ & \stackrel{\rightharpoonup}{\omega} \\ & \stackrel{y}{\dot{c}} \end{aligned}$		100	ROO Load Type Relay Output 0 Load Type Sets the type of load that will be applied to the relay. Must be properly set for the Predictive Maintenance function to predict the relay life.	Default: Options:	$\begin{aligned} & 1=\text { "DC Inductive" } \\ & 0=" D C \text { Resistive" } \\ & 1=\text { "DC Inductive" } \\ & 2=" A C \text { Resistive" } \\ & 3=" A C \text { Inductive" } \end{aligned}$	RW	$\begin{aligned} & \text { 32-bit } \\ & \text { Integer } \end{aligned}$
		101	ROO Load Amps Relay Output 0 Load Amps Load current that will be applied to the relay contacts. Must be properly set for the Predictive Maintenance function to approximate the relay life.	Units: Default: Min/Max:	Amps 2.000 $0.000 / 2.000$	RW	Real
		102	ROO Totallife Relay Output 0 Total Life Total life cycles of the relay based on programmed load type and amps.	Units: Default: Min/Max:	Cycl 0 $0 / 2147483647$	RO	32-bit Integer
		103	ROO ElapsedLife Relay Output 0 Elapsed Life Non-resettable, total accumulated cycles of the relay.	Units: Default: Min/Max:	Cycl 0 $0 / 2147483647$	RO	$\begin{array}{\|l} \text { 32-bit } \\ \text { Integer } \end{array}$
		104	ROO RemainLife Relay Output 0 Remaining Life The difference between the Total Life and the Elapsed Life.	Units: Default: Min/Max:	Cycl 0 $0 / 2147483647$	RO	32-bit Integer
		105	R00 LifeEvntLvl Relay Output 0 Life Event Level Sets the percentage of relay life cycles before action is taken.	Units: Default: Min/Max:	$\mid \%$ 80.000 $0.000 / 100.000$	RW	Real

$\stackrel{\otimes}{i}$	을	No.	Display Name Full Name Description	Values			
		106	R00 LifeEvntActn Relay Output 0 Life Event Action Sets the action that will be taken when the percentage of relay life cycles has been reached. "Ignore" (0) - No action is taken. "Alarm" (1) - Type 1 alarm indicated. "Flt Minor" (2) - Minor fault indicated. If running, drive continues to run. Enable with P950 [Minor Flt Cfg]. If not enabled, acts like a major fault. "FItCoastStop" (3) - Major fault indicated. Coast to Stop. "Flt RampStop" (4) - Major fault indicated. Ramp to Stop. "Flt CL Stop" (5) - Major fault indicated. Current Limit Stop.	Default: Options:	$\begin{aligned} & 1=\text { ="Alarm" } \\ & 0=\text { "Ignore" } \\ & 1=\text { "Alarm" } \\ & 2=\text { "Flt Minor" } \\ & 3=\text { "FltCoastStop" } \\ & 4=\text { "Flt RampStop" } \\ & 5=\text { "Flt CL Stop" } \end{aligned}$	RW	$\begin{aligned} & \hline \text { 32-bit } \\ & \text { Integer } \end{aligned}$
		110	R01 Load Type Relay Output 1 Load Type Sets the type of load that will be applied to the relay. Must be properly set for the Predictive Maintenance function to predict the relay life. Important: Only used by 11-Series I/0 Module models 20-750-1132C-2R and 20-750-1132D-2R.	Default: Options:	$\begin{aligned} & 1=\text { "DC Inductive" } \\ & 0=\text { "DC Resistive" } \\ & 1=\text { "DC Inductive" } \\ & 2=\text { "AC Resistive" } \\ & 3=\text { "AC Inductive" } \end{aligned}$	RW	$\begin{array}{\|l\|} \hline \text { 32-bit } \\ \text { Integer } \end{array}$
		111	R01 Load Amps Relay Output 1 Load Amps Load current that will be applied to the relay contacts. Must be properly set for the Predictive Maintenance function to approximate the relay life. Important: Only used by $11-$ Series I/O Module models 20-750-1132C-2R and 20-750-1132D-2R.	Units: Default: Min/Max:	$\begin{array}{\|l\|} \hline \text { Amps } \\ 2.000 \\ 0.000 / 2.000 \end{array}$	RW	Real
$\frac{9}{4}$	$\sum_{0}^{-\frac{\pi}{n}}$	112	R01 TotalLife Relay Output 1 Total Life Total life cycles of the relay based on programmed load type and amps. Important: Only used by 11-Series I/0 Module models 20-750-1132C-2R and 20-750-1132D-2R.	Units: Default: Min/Max:	$\begin{array}{\|l} \text { Cycl } \\ 0 \\ 0 / 2147483647 \end{array}$	RO	32-bit Integer
~	$\begin{aligned} & \text { E } \\ & \text { 霽 } \end{aligned}$	113	R01 ElapsedLife Relay Output 1 Elapsed Life Non-resettable, total accumulated cycles of the relay. Important: Only used by 11-Series I/0 Module models 20-750-1132C-2R and 20-750-1132D-2R.	Units: Default: Min/Max:	$\begin{array}{\|l\|} \hline \text { Cycl } \\ 0 \\ 0 / 2147483647 \end{array}$	RO	$\begin{array}{\|l\|} \hline \text { 32-bit } \\ \text { Integer } \end{array}$
		114	R01 RemainLife Relay Output 1 Remaining Life The difference between the Total Life and the Elapsed Life. Important: Only used by 11-Series I/0 Module models 20-750-1132C-2R and 20-750-1132D-2R.	Units: Default: Min/Max:	$\begin{array}{\|l\|} \hline \text { Cycl } \\ 0 \\ 0 / 2147483647 \end{array}$	RO	32-bit Integer
		115	R01 LifeEvntLvI Relay Output 1 Life Event Level Sets the percentage of relay life cycles before action is taken. Important: Only used by 11-Series I/O Module models 20-750-1132C-2R and 20-750-1132D-2R.	Units: Default: Min/Max:	$\%$ 80.000 $0.000 / 100.000$	RW	Real
		116	R01 LifeEvntActn Relay Output 1 Life Event Action Sets the action that will be taken when the percentage of relay life cycles has been reached. Important: Only used by 11-Series I/O Module models 20-750-1132C-2R and 20-750-1132D-2R. "Ignore" (0) - No action is taken. "Alarm" (1) - Type 1 alarm indicated. "Flt Minor" (2) - Minor fault indicated. If running, drive continues to run. Enable with P950 [Minor Flt Cfg]. If not enabled, acts like a major fault. "FltCoastStop" (3) - Major fault indicated. Coast to Stop. "FIt RampStop" (4) - Major fault indicated. Ramp to Stop. "Flt CL Stop" (5) - Major fault indicated. Current Limit Stop.	Default: Options:	$\begin{aligned} & 1=\text { ="Alarm" } \\ & 0=\text { "Ignore" } \\ & 1=\text { "Alarm" } \\ & 2=\text { "Flt Minor" } \\ & 3=\text { "FltCoastStop" } \\ & 4=\text { "Flt RampStop" } \\ & 5=\text { "Flt CL Stop" } \end{aligned}$	RW	32-bit Integer

22-Series I/O Module Parameters

읖	은	No.	Display Name Full Name Description	Values		隹	䘡
		1	Dig In Sts Digital Input Status Status of the digital inputs. Options	$\begin{aligned} & 0=\text { Input Not Activated } \\ & 1=\text { Input Activated } \end{aligned}$		R0	16-bit Integer
		2	Dig In Filt Mask Digital Input Filter Mask Filters the selected digital input. Important: Only used by 22-Series 1/0 Module models 20-750-2263C-1R2T and 20-7	$750-2262 C-2 R$ $\begin{aligned} & 0=\text { Input No } \\ & 1=\text { Input Filt } \end{aligned}$	Modules with 24V DC inputs.) Filtered red	RW	16-bit Integer
		3	Dig In Filt Digital Input Filter Sets the amount of filtering on the digital inputs. Important: Only used by 22-Series I/0 Module models 20-750-2263C-1R2T and 20-750-2262C-2R. (Modules with 24V DC inputs.)	Units: Default: Min/Max:	$\begin{aligned} & \mathrm{mS} \\ & 4 \\ & 2 / 10 \end{aligned}$	RW	32-bit Integer

T00 Level Cmpsts
Transistor Output 0 Level Compare Status - 22-Series I/0 Module model 20-750-2263C-1R2T is installed.
Status of the level compare, and a possible source for a relay or transistor output. Relay Output n Select or Transistor Output n Select must have this selected to energize the output. Can be used without a physical output as status information only.

Bit 0 "Less Than" - Level source is less than the level value.
Bit 1 "Grt Than Equ" - Level source is greater than or equal to the level value.
Bit 2 "Abs Less Than" - Absolute value of the level source is less than the absolute value of the level value.
Bit 3 "AbsGrtThanEq" - Absolute value of the level source is greater than or equal to the absolute value of the level value.

24	RO1 On Time

Relay Output 1 On Time - 22-Series I/0 Module model 20-750-2262C-2R or 20-750-
2262D-2R is installed.

TOO On Time

Transistor Output 0 On Time - 22-Series I/O Module model 20-750-2263C-1R2T is installed.
Sets the "ON Delay" time for the digital outputs. This is the time between the occurrence of a condition and activation of the relay or transistor.

Units:	Secs	RW	Real
Default:	0.0		
Min/Max:	$0.0 / 600.0$		

늪	른	No.	Display Name Full Name Description	Values	(1)	
		45	Anlg In Type Analog Input Type Status of the analog input mode set by the option jumpers.	$\begin{aligned} & 0=\text { Voltage Mode } \\ & 1=\text { Current Mode } \end{aligned}$	R0	16-bit Integer
		46	Anlg In Sqrt Analog Input Square Root Enables/disables the square root function for each input.	$\begin{aligned} & 0=\text { Square Root Disabled } \\ & 1=\text { Square Root Enabled } \end{aligned}$	RW	16-bit Integer

$\stackrel{\text { 늘 }}{i}$	$\begin{aligned} & \text { 을 } \\ & \text { 응 } \end{aligned}$	No.	Display Name Full Name Description	Values			
		82	Anlg OutO Val Analog Output 0 Value Displays the analog output value.	Units: Default: Min/Max:	Volt mA 10.000 Volts 20.000 mA $-/+10.000$ Volts $0.000 / 20.000 \mathrm{~mA}$	R0	Real
		85	Anlg Out1 Sel Analog Output 1 Select Selects the source for the analog output.	Default: Min/Max:	$\begin{aligned} & 7 \\ & 0 / 159999 \end{aligned}$	RW	32-bit Integer
		86	Anlg Out1 Stpt Analog Output 1 Setpoint A possible source for an analog output. Can be used to control an analog output from a communication device using a DataLink. Not affected by analog output scaling.	Units: Default: Min/Max:	Volt mA 0.000 Volts 0.000 mA $-/+10.000$ Volts $0.000 / 20.000 \mathrm{~mA}$	RW	Real
		87	Anlg Out1 Data Analog Output 1 Data Displays the value of the source selected by P85 [Anlg Out1 Sel].	Default: Min/Max:	$\begin{aligned} & 0.000 \\ & 0.000 / 4140.00 \end{aligned}$	RO	Real
		88	Anlg Out1 DataHi Analog Output 1 Data High Sets the high value for the data range of analog out scale.	Default: Min/Max:	$\begin{aligned} & 1.000 \\ & 0.000 / 4140.00 \end{aligned}$	RW	Real
		89	Anlg Out1 DataLo Analog Output 1 Data Low Sets the low value for the data range of analog out scale.	Default: Min/Max:	$\begin{aligned} & 0.000 \\ & 0.000 / 4140.00 \end{aligned}$	RW	Real
		90	Anlg Out1 Hi Analog Output 1 High Sets the high value for the analog output value when the data value is at its maximum.	Units: Default: Min/Max:	Volt mA 10.000 Volts 20.000 mA $-/+10.000$ Volts $0.000 / 20.000 \mathrm{~mA}$	RW	Real
		91	Anlg Out1 Lo Analog Output 1 Low Sets the low value for the analog output value when the data value is at its minimum.	Units: Default: Min/Max:	Volt mA 0.000 Volts 0.000 mA $-/+10.000$ Volts $0.000 / 20.000 \mathrm{~mA}$	RW	Real
		92	Anlg Out1 Val Analog Output 1 Value Displays the analog output value.	Units: Default: Min/Max:	Volt mA 0.000 Volts 0.000 mA $-/+10.000$ Volts $0.000 / 20.000 \mathrm{~mA}$	RO	Real

Single Incremental Encoder
 Module Parameters

$\stackrel{\otimes}{i}$	을	No.	Display Name Full Name Description	Values			
		7	Phase Loss Count Phase Loss Count Displays the total number of encoder errors detected by the encoder card every 1 millisecond sample interval. These values are reset to zero every 1 millisecond. Diagnostic Items are available for the encoder that show the errors counted over 8 milliseconds as well as the peak error values. The peak values are reset when the drive faults are cleared.	Default: Min/Max:	$\begin{array}{\|l\|} \hline 0 \\ 0 / 127 \end{array}$	R0	Real
		8	Quad Loss Count Displays the total number of encoder errors detected by the encoder card every 1 millisecond sample interval. These values are reset to zero every 1 millisecond. Diagnostic Items are available for the encoder that show the errors counted over 8 milliseconds as well as the peak error values. The peak values are reset when the drive faults are cleared.	Default: Min/Max:	$\begin{aligned} & 0 \\ & 0 / 15 \end{aligned}$	R0	Real

Dual Incremental Encoder

Module Parameters

Universal Feedback Module
 Parameters

른	응	No.	Display Name Full Name Description	Values			
	$\begin{aligned} & \frac{0}{\bar{訁}} \\ & \stackrel{0}{0} \end{aligned}$	2	Module Err Reset Module Error Reset Selects the module reset type. The Universal Feedback module allows errors to be reset directly on the module. The drive's fault and alarm clear mechanisms will do this automatically and should normally be used instead of this parameter. In cases where the errors need to be reset directly, this parameter can be used. "Ready" (0) - This is the normal state for this parameter. All other states are temporary. This parameter will return to "Ready" once the requested reset operation is complete. "Clr FB Intlz" (1) - Requests the module to clear all errors and re-execute its initialization routines. Only possible when the drive is stopped. "Clear Errors" (2) - Requests the module to clear all errors without re-executing its initialization routines. Allowed if the drive is active. "FB Initlz" (3) - Requests the module to execute a software reset. Only possible when the drive is stopped.	Default: Options:	$\begin{aligned} & 0=\text { "Ready" } \\ & 0=\text { "Ready" } \\ & 1=\text { "Clr FB Intlz" } \\ & 2=\text { "Clear Errors" } \\ & 3=\text { "FB Initlz" } \end{aligned}$	RW	32-bit Integer

$\stackrel{\text { 웇 }}{ }$	은	No.	Display Name Full Name Description	Values		(1)	
		5	FBO Position Feedback 0 Position Displays the position value from the feedback 0 device. For parameter 6 [FBO Device Select] options 1, 2,3, and 4, one revolution of the feedback $=1048576$. For options 11,12 , and 13 , typically one revolution of the feedback is 4 x Pulses Per Revolution.	Default: Min/Max:	$\begin{array}{\|l\|} \hline 0 \\ -2147483648 / 2147483647 \end{array}$	R0	32-bit Integer
			FBO Device Sel Feedback 0 Device Select Specifies the encoder type for the feedback 0 device. In some cases, there is a choice of terminal blocks to use. Channel X refers to devices wired to TB1 and Channel Y refers to TB2. "None" (0) - No feedback device selected. Use this selection if the feedback device is unused. For example, only one feedback device is present and it is used on the other feedback. "EnDat SC" (1) - EnDat encoder with sine/cosine signals (Heidenhain). Terminal block 1. "Hiperface SC" (2) - Hiperface encoder with sine/cosine signals (Stegmann). Terminal block 1. The following Hiperface Type ID codes are supported: $02 \mathrm{~h}, 07 \mathrm{~h}, 22 \mathrm{~h}, 27 \mathrm{~h}, 23 \mathrm{~h}$, and 37h. Refer to manufacturer data sheet for more information. "BiSS SC" (3) - BiSS encoder with sine/cosine signals. Terminal block 1. "SSI SC" (4) - SSI encoder with sine/cosine signals. Terminal block 1. "EnDat FD ChX" (5) - Full digital EnDat encoder without sine/cosine signals (Heidenhain). Terminal block 1. "EnDat FD ChY" (6) - Full digital EnDat encoder without sine/cosine signals (Heidenhain). Terminal block 2. "BiSS FD ChX" (7) - Full digital BiSS encoder without sine/cosine signals. Terminal block 1. "BiSS FD ChY" (8) - Full digital BiSS encoder without sine/cosine signals. Terminal block 2. "SSI FD ChX" (9) - SSI Full Digital ChX "SSI FD ChY" (10) - SSI Full Digital ChY "SinCos Only" (11) - Generic sine/cosine encoder. Terminal block 1. "Inc A B Z" (12) - A Quad B encoder with Z marker. Terminal block 1, Pins 17... 22. "Inc SC" (13) - A Quad B encoder without Z marker. Terminal block 1, Pins 1...4. "LinTempo ChX" (14) - Temposonic linear encoder. Terminal block 1. "LinTempo ChY" (15) - Temposonic linear encoder. Terminal block 2. "LinStahl ChX" (16) - Stahl linear encoder. Terminal block 1. "LinStahl ChY" (17) - Stahl linear encoder. Terminal block 2. "LinSSI ChX" (18) - Any linear encoder with an SSI interface. Terminal block 1. "LinSSI ChY" (19) - Any linear encoder with an SSI interface. Terminal block 2.	Default: Options:	$\begin{aligned} & 0=\text { "None" } \\ & 0=\text { "None" } \\ & 1=\text { ="EnDat SC" } \\ & 2=\text { ="Hiperface SC" } \\ & 3=\text { "BiSS SC" } \\ & 4=\text { "SSI SC" } \\ & 5=\text { "EnDat FD ChX" } \\ & 6=\text { "EnDat FD ChY" } \\ & 7=\text { "BisS FD ChX" } \\ & 8=\text { ="BiSS FD ChY" } \\ & 9=\text { "Reserved" (See "SSI FD ChX") } \\ & 10=\text { "Reserved" (See "SSI FD ChY") } \\ & 11=\text { "SinCos Only" } \\ & 12=\text { "Inc A BZ" } \\ & 13=\text { "Inc S" } \\ & 14=\text { "LinTempo ChX" } \\ & 15=\text { "LinTempo ChY" } \\ & 16=\text { "LinStahl ChX" } \\ & 17=\text { "LinStahI ChY" } \\ & 18=\text { "LinSSI ChX" } \\ & 19=\text { "LinSSI ChY" } \end{aligned}$	RW	Real

읓	은	No.	Display Name Full Name Description	Values		隹	汞
	읓 읗 훈	10	FBO Sts Feedback 0 Status Shows feedback specific errors and alarms for the feedback 0 device. Bit 0 "Encoder Err" - When set, indicates that a device specific error has occurred. Further - Linear Stahl device on Feedback 0, see P27 [FBO LinStahl Sts] bits 4, 8... 14. - Linear Stahl device on Feedback 1, see P57 [FB1 LinStahl Sts] bits 4, 8... 14. - EnDat device on Feedback 0, see Universal Feedback diagnostic Item 9 [FBO EnDat Sts - EnDat device on Feedback 1, see Universal Feedback diagnostic Item 15 [FB1 EnDat - BiSS device on Feedback 0, see Universal Feedback diagnostic Item 10 [FBO BiSS Sts - BiSS device on Feedback 1, see Universal Feedback diagnostic Item 16 [FB1 BiSS Sts - Hiperface device (either feedback, 0 or 1), see diagnostic Item 18 [Hiperface Sts] bits Bit 1 "Msg Checksum" - When asserted, the module has experienced a checksum error w communication channel. Bit 2 "Timeout" - When asserted, the module has experienced a time out condition while channel. Bit 3 "Comm" - When asserted, there was an error (except Checksum and Time Out) while channel. Bit 4 "Diagnostic" - When asserted, the module has experienced a diagnostic test failure Bit 5 "SpplyVItRng" - When asserted, the voltage source to the encoder is out of range. Bit 6 "SC Amplitude" - When asserted, the Universal Feedback option module has detected Bit 7 "Open Wire" - When asserted, the module has detected an open wire. The open wi opposite states to their corresponding NOT signals. Note that when the "A Chan Only" con configuration is not selected, then then the Z signal will be ignored. The open wire condition condition will occur when both the sine and cosine signals are smaller than 0.03 V . If only condition will occur. Bit 8 "Quad Loss" - Indicates that there is a signal quadrature error. Bit 9 "Phase Loss" - Indicates that an A or B signal of an A Quad B Incremental encoder was Bit 10 "Unsupp Enc" - Indicates that the connected encoder is not supported. Bit 12 "Encoder Alm" - When asserted, there is an Encoder Alarm.	Condition Condition detail can Sts] bits 0 . t Sts] bits 0 ts] bits 0,8 . ts] bits 0,8 . its 0... 31. while attem attemptin e attemptin on power ted that the re condition nfiguration tion for sine one of the was not dete	alse True e found for e 6. . 6 15. 15. ing to comm to communi to commun nalog Sine/C for A quad B is selected, the cosine devices wo analog sig ted.	R0	16-bit Integer unication unication lerance. als are in Enbl" en wire error
		15	FBO IncAndSC PPR Feedback 0 Incremental and Sine Cosine Pulses Per Revolution Indicates the Pulses Per Revolution (Encoder Lines) of the SinCos or A Quad B encoder for the feedback 0 device. When using a permanent magnet motor, the pulses per revolution (PPR) must be an exponent of two. For example: 512, 1024, 2048, 4096, 8192...524288... For the following selections, PPR is automatically read from the encoder: - EnDatSC - BiSS SC (not manually configured) - Hiperface SC For the following selections, PPR has to be entered by the user: - BiSS SC, Manually configured - Gen SinCos - A Quad B Important: Parameter is only updated on power up.	Units: Default: Min/Max:	$\begin{array}{\|l\|} \hline \text { PPR } \\ 1024 \\ 1 / 100000 \end{array}$	RW	32-bit Integer

은	을	No.	Display Name Full Name Description	Values			
		35	FB1 Position Feedback 1 Position Displays the position value from the feedback 1 device. For parameter 36 [FB1 Device Select] options 1, 2, 3, and 4, one revolution of the feedback $=1048576$. For options 11,12 , and 13, typically one revolution of the feedback is 4 x Pulses Per Revolution.	Default: Min/Max:	$\begin{aligned} & 0 \\ & -2147483648 / 2147483647 \end{aligned}$	R0	$\begin{aligned} & \hline \text { 32-bit } \\ & \text { Integer } \end{aligned}$
		36 \square	FB1 Device Sel Feedback 1 Device Select Specifies the encoder type for the feedback 1 device. In some cases, there is a choice of terminal blocks to use. Channel X refers to devices wired to TB1 and Channel Y refers to TB2. "None" (0) - No feedback device selected. Use this selection if the feedback device is unused. For example, only one feedback device is present and it is used on the other feedback. "EnDat SC" (1) - EnDat encoder with sine/cosine signals (Heidenhain). Terminal block 1. "Hiperface SC" (2) - Hiperface encoder with sine/cosine signals (Stegmann). Terminal block 1. The following Hiperface Type ID codes are supported: 02h, 07h, 22h, 27h, 23h, and 37h. Refer to manufacturer data sheet for more information. "BiSS SC" (3) - BiSS encoder with sine/cosine signals. Terminal block 1. "SSI SC" (4) - SSI encoder with sine/cosine signals. Terminal block 1. "EnDat FD ChX" (5) - Full digital EnDat encoder without sine/cosine signals (Heidenhain). Terminal block 1. "EnDat FD ChY" (6) - Full digital EnDat encoder without sine/cosine signals (Heidenhain). Terminal block 2. "BiSS FD ChX" (7) - Full digital BiSS encoder without sine/cosine signals. Terminal block 1. "BiSS FD ChY" (8) - Full digital BiSS encoder without sine/cosine signals. Terminal block 2. "SSI FD ChX" (9) - SSI Full Digital ChX "SSI FD ChY" (10) - SSI Full Digital ChY "SinCos Only" (11) - Generic sine/cosine encoder. Terminal block 1. "Inc A B Z" (12) - A Quad B encoder with Z marker. Terminal block 1, Pins 17... 22. "Inc SC" (13) - A Quad B encoder without Z marker. Terminal block 1, Pins 1... 4. "LinTempo ChX" (14) - Temposonic linear encoder. Terminal block 1. "LinTempo ChY" (15) - Temposonic linear encoder. Terminal block 2. "LinStahl ChX" (16) - Stahl linear encoder. Terminal block 1. "LinStahl ChY" (17) - Stahl linear encoder. Terminal block 2. "LinSSI ChX" (18) - Any linear encoder with an SSI interface. Terminal block 1. "LinSSI ChY" (19) - Any linear encoder with an SSI interface. Terminal block 2.	Default: Options:	$\begin{aligned} & 0=\text { "None" } \\ & 0=\text { ="None" } \\ & 1=\text { ="EnDat SC" } \\ & 2=\text { "Hiperface SC" } \\ & 3=\text { ="BiSS SC" } \\ & 4=\text { "SSI SC" } \\ & 5=\text { "EnDat FD ChX" } \\ & 6=\text { "EnDat FD ChY" } \\ & 7=\text { ="BiSS FD ChX" } \\ & 8=\text { "BiSS FD ChY" } \\ & 9=\text { "SSI FD ChX" } \\ & 10=\text { "SSI FD ChY" } \\ & 11=\text { "SinCos Only" } \\ & 12=\text { "Inc A B Z" } \\ & 13=\text { "Inc SC" } \\ & 14=\text { "LinTempo ChX" } \\ & 15=\text { "LimTempo ChY" } \\ & 16=\text { "LinStahl ChX" } \\ & 17=\text { "LinStahl ChY" } \\ & 18=\text { "LinSSI ChX" } \\ & 19=\text { "LinSSI ChY" } \end{aligned}$	RW	Real

$\stackrel{\text { ® }}{\text { ¢ }}$	言 ${ }^{\text {은 }}$	Display Name Full Name Description	Values			
	45 \qquad	FB1 IncAndSC PPR Feedback 1 Incremental and Sine Cosine Pulses Per Revolution Indicates the Pulses Per Revolution (Encoder Lines) of the SinCos or A Quad B encoder for the feedback 1 device. For the following selections, PPR is automatically read from the encoder: - EnDatSC - BiSS SC (not manually configured) - Hiperface SC For the following selections, PPR has to be entered by the user: - BiSS SC, Manually configured - Gen SinCos - A Quad B	Units: Default: Min/Max	PPR 1024 1/100000	RW	32-bit Integer
	46	FB1 Inc Cfg Feedback 1 Incremental Configuration			RW	16-bit Integer

Configures Incremental Feedback for the feedback 1 device.

Options			몬						$\begin{aligned} & \stackrel{\rightharpoonup}{د} \\ & \stackrel{y y}{\omega} \\ & \underset{\sim}{む} \end{aligned}$							$\begin{aligned} & \text { 은 } \\ & \text { 든 } \\ & \text { 든 } \end{aligned}$	
Default	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0		
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	

Bit 0 "Z Chan Enbl" - When set, Channel Z is also monitored for Phase Loss. When cleared, Channel Z is ignored for Phase Loss detection.
Only used if [FB1 Device Sel] = "Inc A B Z."
Bit 1 "A Chan Only" - When set, logic monitors only channel A. When clear, logic monitors both A and B.
Bit 2 "Edge Mode" - When set, speed calc uses AB edge data. When clear, speed calc does not use AB edge data.
Bit 4"Single Ended" - This bit has to be set if the connected A Quad B encoder has single ended signals. For these encoders, the Phase Loss detection is switched off.
FB1 Inc Sts
Displays Incremental Feedback status for the feedback 1 device.

Bit 0 "Z Chan Enbl" - Indicates that Channel Z is monitored for Phase Loss. Only used if [FB1 Device Sel] = "Inc A B Z."
Bit 1 "A Chan Only" - Indicates only A channel is monitored, B channel not used.
Bit 2 "A Input" - State of encoder A input signal
Bit 3 "A Not Input" - State of encoder A Not input signal
Bit 4 "B Input" - State of encoder B input signal
Bit 5 "B Not Input" - State of encoder B Not input signal
Bit 6 "Z Input" - State of encoder Z input signal
Bit 7 "Z Not Input" - State of encoder Z Not input signal

Configures the communication to a SSI encoder for the feedback 1 device. Transmission format: [MSB...Position...LSB], [Error Bit]*, [Parity Bit]*.

Options		$\begin{aligned} & \text { 민 } \\ & \text { 20 } \\ & 0 \end{aligned}$						$\begin{aligned} & \stackrel{\rightharpoonup}{0} \\ & \stackrel{y y y}{0} \end{aligned}$	$\begin{aligned} & \stackrel{\rightharpoonup}{\dddot{y y}} \\ & \stackrel{\rightharpoonup}{0} \end{aligned}$				$\begin{aligned} & \text { 를 } \\ & \text { 흘 } \\ & \text { \|n } \end{aligned}$						
Default	0	0	0	0	0	0	0	0			0			-	1				
Bit	15	14	13	12	11	10	9	8			5			3	2			0	

Bit 0 "Parity Bit" - If set, SSI encoder has to support a parity bit (even parity).
Bit 2 "Gray Code" - Enables the gray to binary conversion of the position.
Bit 3 "Err Bit Enbl" - If set, there is an error bit transmitted by the encoder.
Bit 4 "DblWordQuery" - If set, a Double Word Query is executed at startup which means that the same position is transmitted twice by the encoder. If the two positions are not identical, the "Comm" error bit in [FB1 Sts]] set. This bit only needs to be cleared if the encoder does not support Double Word Query and it does not send zeros instead of the second position (which it actually should according to the SSI specification).

	51	FB1 SSI Resol Feedback 1 SSI Resolution Configures the number of bits for the position within one revolution (resolution) of the SSI encoder for the feedback 1 device.	Units: Default: Min/Max	$\begin{array}{\|l} \hline \text { Bits } \\ 13 \\ 8 / 32 \end{array}$	RW	32-bit Integer
	$\stackrel{52}{0}$	FB1 SSI Turns Feedback 1 SSI Turns Configures the number of bits for the revolutions of the SSI encoder for the feedback 0 device. Setting is based on the encoder specifications. Set to 0 for a linear SSI encoder.	Units: Default: Min/Max	$\begin{array}{\|l\|} \text { Bits } \\ 12 \\ 0 / 16 \end{array}$	RW	32-bit Integer
	55 \square	FB1 Lin CPR Feedback 1 Linear Encoder Counts Per Revolution Specifies the counts per motor revolution for a linear encoder for the feedback 1 device.	Default: Min/Max:	$\begin{aligned} & 0 \\ & 0 / 4294967295 \end{aligned}$	RW	32-bit Integer
	56 \square	FB1 Lin Upd Rate Feedback Linear Update Rate Sets the sample rate for the linear channel for the feedback 1 device.	Default: Options:	$\begin{aligned} & 2=" 1.5 \mathrm{~ms}^{\prime \prime} \\ & 0=" 0.5 \mathrm{~ms}^{\prime \prime} \\ & 1=" 1.0 \mathrm{~ms}^{\prime \prime} \\ & 2=\text { " } 1.5 \mathrm{~ms}^{\prime \prime} \\ & 3=\text { " } 2.0 \mathrm{~ms}^{\prime \prime} \end{aligned}$	RW	32-bit Integer
	57	FB1 LinStahl Sts Feedback 1 Linear Stahl Status			R0	16-bit Integer

Displays the error status of the linear Stahl encoder for the feedback 1 device.

Options		$\begin{aligned} & \text { 흐 } \\ & \text { :ㅡㅡㅇ } \\ & \text { o } \\ & \hline 0 \end{aligned}$			$\begin{aligned} & \text { 흔 } \\ & \sum_{0}^{2} \\ & \text { 운 } \\ & \hline \end{aligned}$	$\sum_{\underset{\sim}{2}}^{\sum_{\substack{2}}^{2}}$											
Default	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	

Bit 0 "Optics Alarm" - Displays an alarm when fiber optics require cleaning.
Bit 1 "OutOfRailAlm" - Indicates that the read encoder count is at the maximum value $(524,287)$.
Bit 4 "OutOfRailErr" - Indicates that there is no more room between the read head and the rail.
Bit 8 "Read Head 1" - Indicates that the read head must be cleaned or installed correctly.
Bit 9 "Read Head 2" - Indicates that the read head must be cleaned or installed correctly.
Bit 10 "RAM Error" - Indicates a RAM error. Reading head needs to be repaired.
Bit 11 "EPROM Error" - Indicates an EPROM error. Reading head needs to be repaired.
Bit 12 "ROM Error" - Indicates a ROM error. Reading head needs to be repaired.
Bit 14 "No Position" - Indicates that no position value was available. Only happens after power on or reset.

은	은	No.	Display Name Full Name Description	Values		(1)	
			Enc Out Sel Encoder Output Select Selects the Encoder Output. If the feedback 0 or 1 device is configured as A Quad BZ then this parameter has to be set to None. Otherwise, there is an Encoder Output Alarm (Bit 16 of [Module Sts]).	Default: Options:	$\begin{aligned} & 0=\text { "None" } \\ & 0=\text { "None" } \\ & 1=\text { "Reserved" } \\ & 2=\text { "Sine Cosine" } \\ & 3=\text { "Channel X" (FBO Channel) } \\ & 4=\text { "Channel Y" (FB1 Channel) } \end{aligned}$	RW	$\begin{aligned} & \text { 32-bit } \\ & \text { Integer } \end{aligned}$
		81 \square	Enc Out Mode Encoder Output Mode Configures the Encoder Output type. "A Quad B " (0) - Sets the phase relationship between the A and B signal. "Inv A Quad B" (1) - Inverts the phase relationship between the A and B signal. Forward and reverse exchange meanings.	Default: Options:	$\begin{aligned} & 0=" \mathrm{~A} \text { Quad B" } \\ & 0=" \mathrm{~A} \text { Quad B" } \\ & 1=" I n v \text { A Quad B" } \end{aligned}$	RW	32-bit Integer
			Enc Out FD PPR Full Digital Encoder Feedback Emulator Output Pulses Per Revolution Specifies the emulated encoder output PPR when the Feedback Selection (FB device 0/1 Sel) is set to Full Digital (values $5 \ldots 10$). When the Feedback selection is set to Sin/Cos "SC", the Sin/Cos native PPR defines the emulated encoder outputs PPR.	Default: Options:		RW	32-bit Integer
		83	Enc Out Z Offset Encoder Output Z Offset Configures the offset of the Z pulse for both simulated and emulated encoder output. The marker offset is specified within one revolution. Simulated mode is used for full digital rotary devices and is selected by "Channel X " and "Channel Y" in P80 [Enc Out Sel]. Emulated mode is used when "Sine Cosine" devices are selected in P80 [Enc Out Sel]. The encoder output function cannot be used with linear feedback devices.	Units: Default: Min/Max:	$\begin{aligned} & \text { PPR } \\ & 0 \\ & 0 / 100000 \end{aligned}$	RW	$\begin{aligned} & \text { 32-bit } \\ & \text { Integer } \end{aligned}$
		84 \qquad	Enc Out Z PPR Encoder Output Z Pulses Per Revolution Configures the number of Z-Pulses per encoder revolution. For example, if "32 Z-Pulses" (5) is selected, then 32 Z pulses will be generated for each complete revolution of the full digital input encoder. Each input encoder revolution will produce the number of output pulses specified on the A and B output channels in addition to 32 pulses on the Z output channel. The Z pulses will be evenly spaced throughout the specified number of A / B output pulses.	Default: Options:	$\begin{aligned} & 0=" 1 Z-\text {-Puls" } \\ & 0=" 12-\text { Pulse" } \\ & 1=" 2 Z-\text { Pulses" } \\ & 2=" 4 Z-\text { Pulses" } \\ & 3=" 8 Z \text {-Pulses" } \\ & 4=" 16 Z \text {-Pulses" } \\ & 5=" 32 \text { Z-Pulses" } \end{aligned}$	RW	$\begin{aligned} & \text { 32-bit } \\ & \text { Integer } \end{aligned}$

$\underline{\underline{1}}$	言	No.	Display Name Full Name Description	Values				
		91	Rgsn In 0 Filter Registration Input 0 Filter Configures a digital filter for the registration input 0 . This filter can be used to reject spurious noise. The filter works by waiting a programmed time before deciding that the signal is valid. This waiting imposes a mandatory delay in the registration signal. The filter delay is programmable in increments of 100 nanoseconds from 0 (or no delay) up to 1500 nanoseconds.	Default: Options:		RW	Real	Real
		92	Rgsn In 1 Filter Registration Input 1 Filter Configures a digital filter for the registration input 1 . This filter can be used to reject spurious noise. The filter works by waiting a programmed time before deciding that the signal is valid. This waiting imposes a mandatory delay in the registration signal. The filter delay is programmable in increments of 100 nanoseconds from 0 (or no delay) up to 1500 nanoseconds.	Default: Options:		RW		Real
		93	Rgsn Hmin Filter Registration Home Input Filter Configures a digital filter for the home input. This filter can be used to reject spurious noise. The filter works by waiting a programmed time before deciding that the signal is valid. This waiting imposes a mandatory delay in the registration signal. The filter delay is programmable in increments of 100 nanoseconds from 0 (or no delay) up to 1500 nanoseconds.	Default: Options:		RW		Real

Registration Latch Configuration Parameters

Functionality of the Registration Latch Configuration parameter bits are listed in the tables that follow.
The registration parameters P100, P103, P106, ...P127 can only be used when the drive's Spindle Orientation and Homing functions are active. These functions will overwrite any manually entered configuration.

Feedback Selection

Selects the feedback device for registration and marker pulse.
Bit 0 "Channel Sel" - $0=$ Feedback 0
1 = Feedback 1

Direction Selection.

Bit 2"Rev Capture"	Bit 1 "Fwd Capture"	Description
0	1	Latch only if rotation is forward
1	0	Latch only if rotation is reverse
1	1	Latch for both forward and reverse rotation
0	0	Not defined. No latch will occur

Trigger Stage 1

Bit 4"Stg $1 \ln \mathrm{~b} 1$ "	Bit 3 "Stg 1 ln b0"	Description
0	0	Registration Input 0 (TB2: -R0, +R0)
0	1	Registration Input 0 (TB2: -R1, +R1)
1	0	Home Input (TB2: - Hm , + Hm)
1	1	Marker Input of respective feedback channel. (Z channel must be activated for respective feedback channel.)

Bit 7"Stg1EdgeFall"	Bit 6 "Stg1EdgeRise"	Description
0	0	Trigger Disabled
0	1	Trigger on rising edge or high level of signal
1	0	Trigger on falling edge or low level of signal
1	1	Trigger on either edge. (Invalid as level select. Result is always true for level select.)

Trigger Stage Combination Logic
The two trigger stages are combined to form the final or resulting trigger condition for each registration latch.

Bit 9"Logic Sel b1"	Bit 8 "Logic Sel b0"	Description
0	0	None: Stage 1 Only (Stage 2 ignored)
0	1	THEN: Stage 1 Edge Transition THEN Stage 2 Edge Transition
1	0	OR: Stage 1 Edge Transition OR Stage 2 Edge Transition
1	1	AND: Stage 1 Level Transition AND Stage 2 Level Transition

Trigger Stage 2

Bit 11 "Stg2 \ln b1"	Bit 10"Stg $1 \ln$ b0"	Description
0	0	Registration Input 0 (TB2: -R0, +RO)
0	1	Registration Input 0 (TB2: -R1, +R1)
1	0	BEFORE: Stage 1 edge causes acquisition of time and position data. Stage 2 edge causes the latch of the last acquired position.
1	1	Marker Input of respective feedback channel. (Z channel must be activated for respective feedback channel.)
Bit 14"Stg2EdgeFall"	Bit 13 "Stg2EdgeRise"	Description
0	0	Trigger Disabled
0	1	Trigger on rising edge or high level of signal
1	0	Trigger on falling edge or low level of signal
1	1	Trigger on either edge. (Invalid as level select. Result is always true for level select.)

Figure 2 - Registration Trigger Logic

$\stackrel{\otimes}{\underline{Z}}$	을	No.	Display Name Full Name Description	Values			
	은	101 104 107 110 113 116 119 122 125 128	Rgsn Latch1 Psn Rgsn Latch2 Psn Rgsn Latch3 Psn Rgsn Latch4 Psn Rgsn Latch5 Psn Rgsn Latch6 Psn Rgsn Latch7 Psn Rgsn Latch8 Psn Rgsn Latch9 Psn Rgsn Latch10 Psn Registration Latch X Position Position Captured during the Registration Event for Latch X.	Default: Min/Max:	$\begin{aligned} & 0 \\ & 2147483648 / 2147483647 \end{aligned}$	R0	32-bit Integer
		$\begin{aligned} & 102 \\ & 105 \\ & 108 \\ & 111 \\ & 114 \\ & 117 \\ & 120 \\ & 123 \\ & 126 \\ & 129 \end{aligned}$	Rgsn Latch1 Time Rgsn Latch2 Time Rgsn Latch3 Time Rgsn Latch4 Time Rgsn Latch5 Time Rgsn Latch6 Time Rgsn Latch7 Time Rgsn Latch8 Time Rgsn Latch9 Time Rgsn Latch10 Time Registration Latch X Time Time Captured when the Registration Event occurred for Latch X.	Units: Default: Min/Max:	$\begin{aligned} & \text { Cnt } \\ & 0 \\ & 0 / 4294967295 \end{aligned}$	R0	$\begin{aligned} & \text { 32-bit } \\ & \text { Integer } \end{aligned}$

Safe Speed Monitor Module Parameters

For detailed information on the Safe Speed Monitor option, refer to the Safe Speed Monitor Option Module for PowerFlex 750-Series AC Drives Safety Reference Manual, publication 750-RM001.

$\stackrel{\text { 2 }}{\text { ¢ }}$	$\begin{aligned} & \text { 응 } \\ & \hline \text { 응 } \end{aligned}$	No.	Display Name Full Name Description	Values		(1)	$\begin{aligned} & \text { 品 } \\ & \substack{\mathbf{N} \\ \stackrel{y}{0} \\ \hline} \end{aligned}$
	글	70	Config FIt Code Configuration Fault Code $0=$ No Fault 1 = Password Required (Password Req) $2=$ P21 [Safety Mode] value not legal based on P20 [Cascaded Config] value. 3 = P57 [Door Out Type] value not legal based on P20 [Cascaded Config] value. 4 = P46 [Stop Mon Delay] value not legal based on P45 [Safe Stop Type] value. $5=$ P50 [Decel Ref Speed] value not legal based on P31 [Fbk 1 Resolution] value. $6=$ P48 [Standstill Speed] value not legal based on P20 [Cascaded Config] value. $7=$ P53 [LimSpd Mon Delay] value not legal based on P21 [Safety Mode] value. $8=$ P55 [Safe Speed Limit] value not legal based on P21 [Safety Mode] and P31 [Fbk 1 Resolution] value. $9=$ P56 [Speed Hysteresis] value not legal based on P21 [Safety Mode] value. $10=$ P62 [Safe Max Speed] value not legal based on P31 [Fbk 1 Resolution] value. $11=$ P42 [Direction Mon] value not legal based on P21 [Safety Mode] value. $12=$ P59 [Lock Mon Enable] value not legal based on P21 [Safety Mode] value. $13=$ P36 [Fbk 2 Resolution] value not legal based on P27 [Fbk Mode] value. 14 = P35 [Fbk 2 Polarity] value not legal based on P27 [Fbk Mode] value. $15=$ P39 [Fbk Speed Ratio] value not legal based on P27 [Fbk Mode] value. $16=$ P41 [Fbk Pos Tol] value not legal based on P27 [Fbk Mode] value. $17=$ P40 [Fbk Speed Tol] value not legal based on P27 [Fbk Mode] value. $18=$ P44 [Safe Stop In Typ] value not legal based on P21 [Safety Mode] value. $19=$ P52 [Lim Spd In Typ] value not legal based on P21 [Safety Mode] value. $20=$ P58 [DM Input Type] value not legal based on P20 [Cascaded Config] and P21 [Safety Mode] value. $21=$ P54 [Enable SW In Typ] value not legal based on P21 [Safety Mode] value. $22=$ P60 [Lock Mon In Type] value not legal based on P21 [Safety Mode] value and P59 [Lock Mon Enable] value. $23=$ Illegal P20 [Cascaded Config] value. $24=$ Illegal P22 [Reset Type] value. $25=$ Reserved $26=$ Illegal P45 [Safe Stop Type] value. 27 = Illegal P51 [Stop Decel Tol] value. $28=$ Illegal P27 [Fbk Mode] value. $29=$ Illegal P28 [Fbk 1 Type] value. $30=$ Illegal P31 [Fbk 1 Resolution] value. 31 = Illegal P32 [Fbk1 Volt Mon] value. 32 = Illegal P37 [Fbk 2 Volt Mon] value. $33=$ Illegal P24 [OverSpd Response] value. $34=$ Reserved $36=$ Unknown Error (Unknown Err).	Default: Options:	$\begin{aligned} & \hline N A \\ & 0 \ldots . .36 \end{aligned}$	R0	8-bit Integer

$\stackrel{\text { ®2 }}{\underline{E}}$	$\begin{aligned} & \text { O} \\ & \frac{2}{3} \\ & \hline \end{aligned}$	No.	Display Name Full Name Description	Values			
	픔읗푼	27	Fbk Mode Feedback Mode Selects the number of feedback devices and the type of discrepancy checking. "Single Fbk" (0) - 1 Encoder "Dual S/P Chk" (1) - 2 Encoders with Speed and Position Discrepancy Checking "Dual Spd Chk" (2) - 2 Encoders with Speed Discrepancy Checking "Dual Pos Chk" (3) - 2 Encoders with Position Discrepancy Checking	Default: Options:	$\begin{aligned} & 0=\text { "Single Fbk" } \\ & 0=\text { "Single Fbk" } \\ & 1=\text { "Dual S/P Chk" } \\ & 2=\text { "Dual Spd Chk" } \\ & 3=\text { "Dual Pos Chk" } \end{aligned}$	RW	8-bit Integer
		28	Fbk 1 Type Feedback 1 Type Selects the type of feedback for encoder 1. When using the Safe Speed Monitor module with a 20-750-UFB-1 Universal Feedback module, set this parameter to 0 "Sine/Cosine" and ensure that the Universal Feedback module is set to a Sine/Cosine type device (P6 [FBO Device Sel] and/or P36 [FB1 Device Sel]).	Default: Options:	$\begin{aligned} & 1=\text { "Incremental" } \\ & 0=\text { "Sine/Cosine" } \\ & 1=\text { "Incremental" } \end{aligned}$	RW	8-bit Integer
		29	Fbk 1 Units Feedback 1 Units Selects rotary or linear feedback for encoder 1.	Default: Options:	$\begin{aligned} & 0=\text { "Rev" } \\ & 0=\text { "Rev" (Rotary) } \\ & 1=\text { "mm" (Linear) } \end{aligned}$	RW	8-bit Integer
		30	Fbk 1 Polarity Feedback 1 Polarity Defines the direction polarity for encoder 1.	Default: Options:	$\begin{aligned} & 0=\text { "Normal" } \\ & 0=\text { "Normal" (Same as encoder) } \\ & 1=\text { "Reversed" } \end{aligned}$	RW	8-bit Integer
		31	Fbk 1 Resolution Feedback 1 Resolution Counts/Revolution. 1...65,535 pulses/revolution or pulses/mm based on rotary or linear configuration defined by P29 [Fbk 1 Units].	Default: Min/Max:	$\begin{array}{\|l\|} \hline 1024 \\ 1 / 65535 \end{array}$	RO	16-bit Integer
		32	Fbk 1 Volt Mon Feedback 1 Voltage Monitor Encoder 1 voltage to be monitored.	Default: Options:	$\begin{aligned} & 0=\text { Voltage not monitored } \\ & 0=\text { Voltage not monitored } \\ & 5=5 \mathrm{~V}+/-5 \% \\ & 9=7 \ldots 12 \mathrm{~V} \\ & 12=12 \mathrm{~V}+/-5 \% \\ & 24=24 \mathrm{~V}-10 \% \ldots 24 \mathrm{~V}+5 \% \end{aligned}$	RW	8-bit Integer
		33	Fbk 1 Speed Feedback 1 Speed Displays the output speed of encoder 1 . Units based on rotary or linear configuration defined by P29 [Fbk 1 Units].	Units: Min/Max:	RPM mm / s $-214748364.8 / 214748364.7 \mathrm{RPM}$ $-214748364.8 / 214748364.7 \mathrm{~mm} / \mathrm{s}$	R0	32-bit Integer
		34	Fbk 2 Units Feedback 2 Units Selects rotary or linear feedback for encoder 2.	Default: Options:	$\begin{aligned} & 0=\text { "Rev" } \\ & 0=\text { "Rev" (Rotary) } \\ & 1=\text { "mm" (Linear) } \end{aligned}$	RW	8-bit Integer
		35	Fbk 2 Polarity Feedback 2 Polarity Defines the direction polarity for encoder 2.	Default: Options:	$\begin{aligned} & 0=\text { "Normal" } \\ & 0=\text { "Normal" (Same as encoder) } \\ & 1=\text { "Reversed" } \end{aligned}$	RW	8-bit Integer
		36	Fbk 2 Resolution Feedback 2 Resolution Counts/Revolution. $0 . . .65,535$ pulses/revolution or pulses/mm based on rotary or linear configuration defined by P34 [Fbk 2 Units].	Default: Min/Max:	$\begin{array}{\|l\|} \hline 0 \\ 0 / 65535 \end{array}$	RW	16-bit Integer

은	$\begin{aligned} & \text { 을 } \\ & \text { 은 } \end{aligned}$	No.	Display Name Full Name Description	Values			$$
흘을흔른		37	Fbk 2 Volt Mon Feedback 2 Voltage Monitor Encoder 2 voltage to be monitored.	Default: Options:	$\begin{aligned} & 0=\text { Voltage not monitored } \\ & 0=\text { Voltage not monitored } \\ & 5=5 \mathrm{~V}+/-5 \% \\ & 9=7 \ldots 12 \mathrm{~V} \\ & 12=12 \mathrm{~V}+/-5 \% \\ & 24=24 \mathrm{~V}-10 \% \ldots 24 \mathrm{~V}+5 \% \end{aligned}$	RW	8-bit Integer
		38	Fbk 2 Speed Feedback 2 Speed Displays the output speed of encoder 2. Units based on rotary or linear configuration defined by P34 [Fbk 2 Units].	Units: Min/Max:	RPM mm / s $-214748364.8 / 214748364.7 \mathrm{RPM}$ $-214748364.8 / 214748364.7 \mathrm{~mm} / \mathrm{s}$	R0	32-bit Integer
		39	Fbk Speed Ratio Feedback Speed Ratio Defines the ratio of the expected speed of encoder 2 divided by the expected speed of encoder 1. Ratio based on rotary or linear configuration defined by P29 [Fbk 1 Units].	Default: Min/Max:	$\begin{aligned} & 0.0000 \\ & 0.0000 / 10000.0 \end{aligned}$	RW	Real
		40	Fbk Speed Tol Feedback Speed Tolerance Acceptable difference in speed between P33 [Fbk 1 Speed] and P38 [Fbk 2 Speed]. Units are based on rotary or linear configuration defined by P29 [Fbk 1 Units].	Units: Min/Max:	RPM mm / s $0 / 6553.5 \mathrm{RPM}$ $0 / 6553.5 \mathrm{~mm} / \mathrm{s}$	RW	16-bit Integer
		41	Fbk Pos Tol Feedback Position Tolerance Acceptable difference in position between encoder 1 and encoder 2. Units are based on rotary or linear configuration defined by P29 [Fbk 1 Units].	Units: Default: Min/Max:	Deg mm 0 $0 / 65535 \mathrm{deg}$ $0 / 65535 \mathrm{~mm}$	RW	16-bit Integer
		42	Direction Mon Direction Monitoring Defines the allowable direction if Safe Direction Monitoring is enabled. "Pos Always" (1) - Positive always "Neg Always" (2) - Negative always "Pos in SLS" (3) - Positive during safe limited speed monitoring "Neg in SLS" (4) - Negative during safe limited speed monitoring	Default: Options:	$\begin{aligned} & 0=\text { "Disable" } \\ & 0=\text { "Disable" } \\ & 1=\text { "Pos Always" } \\ & 2=\text { "Neg Always" } \\ & 3=\text { "Pos in SLS" } \\ & 4=\text { "Neg in SLS" } \end{aligned}$	RW	8-bit Integer
		43	Direction Tol Direction Tolerance The position limit in encoder units tolerated in the wrong direction when Safe Direction Monitoring is active. Units are based on rotary or linear configuration defined by P29 [Fbk 1 Units].	Units: Default: Min/Max:	Deg mm 10 $0 / 65535 \mathrm{deg}$ $0 / 65535 \mathrm{~mm}$	RW	16-bit Integer

$\stackrel{\text { © }}{i}$	을	No.	Display Name Full Name Description	Values			
Safe Speed Monitor		52	Lim Speed Input Limited Speed Input Configuration for Safe Limited Speed input (SLS_In). " 2 NC " (1) - Dual-channel equivalent "2NC 3s" (2) - Dual-channel equivalent 3s "1NC+1NO" (3) - Dual-channel complementary "1NC+1NO 3s" (4) - Dual-channel complementary 3 s "2 OSSD 3s" (5) - Dual-channel SS equivalent 3 s "1NC" (6) - Single channel equivalent	Default: Options:	$\begin{aligned} & 0=\text { "Not Used" } \\ & 0=\text { "Not Used" } \\ & 1=\text { "2NC" } \\ & 2=\text { "2NC } 3 s^{\prime} \\ & 3=" 1 N C+1 N 0 " \\ & 4=" 1 N C+1 N 03 s^{\prime \prime} \\ & 5=" 20 S S D 3 s^{\prime} \\ & 6=" 1 N C " \end{aligned}$	RW	8-bit Integer
		53	LimSpd Mon Delay Limited Speed Monitoring Delay Defines the Safe Limited Speed Monitoring Delay between the SLS_In ON to OFF transition and the initiation of the Safe Limited Speed (SLS) or Safe Maximum Speed (SMS) monitoring.	Units: Default: Min/Max:	$\begin{array}{\|l} \text { Secs } \\ 0 \\ 0 / 6553.5 \end{array}$	RW	16-bit Integer
		54	Enable SW Input Enable Switch Input Configuration for the Enabling Switch input (ESM_In). "2NC" (1) - Dual-channel equivalent "2NC 3s" (2) - Dual-channel equivalent 3s "1NC+1NO" (3) - Dual-channel complementary "1NC+1NO 3s" (4) - Dual-channel complementary 3 s "2 OSSD 3s" (5) - Dual-channel SS equivalent 3 s "1NC" (6) - Single channel equivalent	Default: Options:	$\begin{aligned} & 0=\text { "Not Used" } \\ & 0=\text { "Not Used" } \\ & 1=\text { "2NC" } \\ & 2=\text { "2NC } 3 s^{\prime} \\ & 3=" 1 N C+1 N 0 " \\ & 4=" 1 N C+1 N 03 s^{\prime \prime} \\ & 5=" 20 S S D 3 s^{\prime} \\ & 6=" 1 N C " \end{aligned}$	RW	8-bit Integer
		55	Safe Speed Limit Safe Speed Limit Defines the speed limit that will be monitored in Safe Limited Speed (SLS) mode. Units are based on rotary or linear configuration defined by P29 [Fbk 1 Units].	Units: Default: Min/Max:	RPM mm / s 0 $0 / 6553.5 \mathrm{RPM}$ $0 / 6553.5 \mathrm{~mm} / \mathrm{s}$	RW	16-bit Integer
		56	Speed Hysteresis Speed Hysteresis Provides hysteresis for SLS_Out output when Safe Limited Speed monitoring is active. 0% when P21 [Safety Mode] $=1,2,3,4,5,6,8$, or 9 $10 . . .100 \%$ when P21 [Safety Mode] $=7$ or 10	Units: Default: Min/Max:	$\begin{array}{\|l} \% \\ 0 \\ 0 / 100 \end{array}$	RW	8-bit Integer

읓	은	No.	Display Name Full Name Description	Values		¢	
	은ל잉0	57	Door Out Type Door Output Type Defines the lock and unlock state for door control output (DC_Out). When Door Out Type equals power to release, DC_Out is OFF in the lock state and ON in the unlock state. When Door Out Type equals power to lock, DC_Out is ON in the lock state and OFF in the unlock state. The first and middle units of a multi-axis system must be configured as cascading (2).	Default: Options:	$\begin{aligned} & 0=\text { "Pwr to Rel" } \\ & 0=\text { "Pwr to Rel" } \\ & 1=\text { "Pwr to Lock" } \\ & 2=\text { " } 2 \text { Ch Sourcing" } \end{aligned}$	RW	8-bit Integer
		58	DM Input Door Monitor Input Configuration for the Door Monitor input (DM_In). "2NC" (1) - Dual-channel equivalent "2NC 3s" (2) - Dual-channel equivalent 3s "1NC+1NO" (3) - Dual-channel complementary "1NC+1NO 3s" (4) - Dual-channel complementary 3 s "2 OSSD 3s" (5) - Dual-channel SS equivalent 3s "1NC" (6) - Single channel equivalent	Default: Options:	$\begin{aligned} & 0=" N o t \text { Used" } \\ & 0=" N o t \text { Used" } \\ & 1=" 2 N C " \\ & 2=" 2 N C 3 s " \\ & 3=" 1 N C+1 N 0 " \\ & 4=" 1 N C+1 N 03 s " \\ & 5=" 20 \text { OSSD 3s" } \\ & 6=" 1 N C " \end{aligned}$	RW	8-bit Integer
		59	Lock Mon Enable Lock Monitor Enable Lock Monitoring can only be enabled when the speed monitoring safety option is a single unit or as the first unit in a multi-axis system (P20 [Cascaded Config] $=0$ or 1).	Default: Options:	$\begin{aligned} & 0=\text { "Disable" } \\ & 0=\text { "Disable" } \\ & 1=\text { "Enable" } \end{aligned}$	RW	8-bit Integer
		60	Lock Mon Input Lock Monitor Input Configuration for the Lock Monitor input (LM_In). "2NC" (1) - Dual-channel equivalent "2NC 3s" (2) - Dual-channel equivalent 3s "1NC+1N0" (3) - Dual-channel complementary "1NC+1NO 3s" (4) - Dual-channel complementary 3 s "2 OSSD 3s" (5) - Dual-channel SS equivalent 3s "1NC" (6) - Single channel equivalent	Default: Options:	$\begin{aligned} & 0=" N o t \text { Used" } \\ & 0=" N o t \text { Used" } \\ & 1=" 2 N C " \\ & 2=" 2 N C 3 s " \\ & 3=" 1 N C+1 N 0 " \\ & 4=" 1 N C+1 N 03 s " \\ & 5=" 20 S S D 3 s " \\ & 6=" 1 N C " \end{aligned}$	RW	8-bit Integer
		74	Door Out Mode Door Output Mode Defines whether the DC_Out output is pulse-tested. If pulse-testing is turned off for any output, the SIL, Category, and PL rating is reduced for the entire safety system.	Default: Options:	$\begin{aligned} & 0=\text { "Pulse Test" } \\ & 0=\text { "Pulse Test" } \\ & 1=\text { "No Pulse Tst" } \end{aligned}$	RW	8-bit Integer

$\stackrel{\otimes}{i}$	$\begin{aligned} & \text { 을 } \\ & \text { 은 } \end{aligned}$	No.	Display Name Full Name Description	Values			
		61	Max Speed Enable Maximum Speed Enable Enable Safe Maximum Speed Monitoring.	Default: Options:	$\begin{aligned} & 0=\text { "Disable" } \\ & 0=\text { "Disable" } \\ & 1=\text { "Enable" } \end{aligned}$	RW	8-bit Integer
		62	Safe Max Speed Safe Maximum Speed Defines the maximum speed limit that will be tolerated if Safe Maximum Speed monitoring is enabled.	Units: Default: Min/Max:	RPM mm / s 0 $0 / 65535 \mathrm{RPM}$ $0 / 65535 \mathrm{~mm} / \mathrm{s}$	RW	16-bit Integer
		63	Max Spd Stop Typ Maximum Speed Stop Type Defines the safe stop type that will be initiated in the event of a SMS Speed Fault. "Torque Off" (0) - Safe Torque Off With Standstill Checking "Safe Stp Typ" (1) - Safe Torque Off Without Standstill Checking	Default: Options:	$\begin{aligned} & 0=\text { "Torque Off" } \\ & 0=\text { "Torque Off" } \\ & 1=\text { "Safe Stp Typ" } \end{aligned}$	RW	8-bit Integer
		64	Max Accel Enable Maximum Acceleration Enable Enable Safe Maximum Acceleration Monitoring.	Default: Options:	$\begin{aligned} & 0=\text { "Disable" } \\ & 0=\text { "Disable" } \\ & 1=\text { "Enable" } \end{aligned}$	RW	8-bit Integer
		65	Safe Accel Limit Safe Acceleration Limit Defines the Safe Maximum Acceleration Limit, relative to encoder 1, for which the system is being monitored. Units are based on rotary or linear configuration defined by P29 [Fbk 1 Units].	Units: Default: Min/Max:	$\begin{aligned} & \mathrm{Rev} / \mathrm{s}^{2} \\ & \mathrm{~mm} / \mathrm{s}^{2} \\ & 0 \\ & 0 / 65535 \mathrm{rev} / \mathrm{s}^{2} \\ & 0 / 65535 \mathrm{~mm} / \mathrm{s}^{2} \end{aligned}$	RW	16-bit Integer
		66	Max Acc Stop Typ Maximum Acceleration Stop Type Defines the safe stop type that will be initiated in the event of an Acceleration Fault. "Torque Off" (0) - Safe Torque Off With Standstill Checking "Safe Stp Typ" (1) - Safe Torque Off Without Standstill Checking	Default: Options:	$\begin{aligned} & 0=\text { "Torque Off" } \\ & 0=\text { "Torque Off" } \\ & 1=\text { "Safe Stp Typ" } \end{aligned}$	RW	8-bit Integer

$\stackrel{\text { ² }}{\text { ¢ }}$	응	No.	Display Name Full Name Description	Values		¢
		69	10 Diag Status I/O Diagnostics Status		R0	32-bit Integer

Indicates present state of $/ / 0$ used for diagnostics.
Important: When the safety option is not in the Run mode, this parameter is not updated.

Options			旁		$\begin{aligned} & \text { D} \\ & {\underset{y y y u}{0}}_{0}^{0} \end{aligned}$						$\left\lvert\, \begin{aligned} & \text { ㄷ } \\ & \underline{y} \\ & 0 \\ & 0 \\ & \end{aligned}\right.$			$\underset{\sim}{\underset{\sim}{\square}}$	$\begin{aligned} & \stackrel{\rightharpoonup}{0} \\ & \stackrel{y y}{0} \\ & \text { on } \end{aligned}$				$\left\lvert\, \begin{aligned} & \text { 드́ } \\ & \vdots \\ & 0 \\ & 0 \end{aligned}\right.$	O				$\begin{aligned} & \text { 읃 } \\ & \underline{=} \end{aligned}$				$\left\{\begin{array}{l} 0 \\ \text { 응 } \\ \text { n } \end{array}\right.$	$\left\{\begin{array}{l} = \\ y \\ y \\ y \end{array}\right.$			
Default	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
																														$1=\text { Closed }$		

Bit 0 "SS In Ch 0" - SS_in_ch_0 status Bit 1 "SS In Ch 1" - SS_in_ch_1 status Bit 2 "SS Out Ch 0" - SS_out_ch_0 status Bit 3 "SS Out Ch 1" - SS_out_ch_1 status Bit 4 "SLS In Ch 0 " - SLS_in_ch_0 status Bit 5 "SLS InCh 1" - SLS_in_ch_1 status Bit 6 "SLS Out Ch 0" - SLS_out_ch_0 status Bit 7 "SLS Out Ch 1" - SLS_out_ch_1 status Bit 8 "ESM In Ch 0" - ESM_in_ch_0 status Bit 9 "ESM InCh 1" - ESM_in_ch_1 status Bit 10 "DM In Ch 0 " - DM_in_ch_0 status Bit 11 "DM In Ch 1 " - DM_in_ch_1 status Bit 12 " DC Out Ch 0 " - DC_out_ch_O status Bit 13 "DC Out Ch 1" - DC_out_ch_1 status Bit 14 "LM In Ch 0" - LM_in_ch_0 status Bit 15 "LM InCh 1" - LM_in_ch_1 status Bit 16 "Reset In" - Reset_In status
Bit 17 "Reserved"
Bit 18 "SLS Cmd" - SLS_command status
Bit 19 "Stop Cmd" - Stop_command status
Bit 20 "MP Out Ch 0 " - MP_Out_Ch_O status
Bit 21 "MP Out Ch 1" - MP_Out_Ch_1 status

$\mathbf{7 0}$	See page 290.
$\mathbf{7 2}$	See page 291.
$\mathbf{7 3}$	See page 291.
$\mathbf{7 4}$	See page 296.

Troubleshooting

This chapter provides information to guide you through troubleshooting PowerFlex ${ }^{\circ} 750$-Series faults and alarms.

Topic	Page
Faults, Alarms, and Configurable Conditions	301
Drive Status Indicators	303
HIM Indication	305
Manually Clearing Faults	305
Power Layer Interface (PLI) Board 7-Segment Display	306
Setting Factory Defaults	307
System Resource Allocation	307
Hardware Service Manual	308
Integrated Motion Applications	308
Fault and Alarm Display Codes	308
Parameter Access Level	308
Drive Fault and Alarm Descriptions	309
Inverter (Port 10) Faults and Alarms (Frame 8 and Larger)	324
Converter (Port 11) Faults and Alarms (Frame 8 and Larger)	329
Precharge (Port 11) Faults and Alarms (Frame 8 and Larger)	334
N-1 and Re-Rate Functions	337
Embedded EtherNet/IP (Port 13) Events	341
I/0 Faults and Alarms	343
Safe Torque Off Fault	343
Single Incremental Encoder Faults and Alarms	344
Dual Incremental Encoder Faults and Alarms	345
Universal Feedback Faults and Alarms	346
Port Verification	353
Common Symptoms and Corrective Actions	353
PowerFlex 755 Lifting/Torque Proving	356
External Brake Resistor	356
Technical Support Options	357

Faults, Alarms, and
 Configurable Conditions

Faults

A fault identifies a condition that stops the drive. Faults are classified in two ways: Major/Minor and Auto Reset Run/Resettable/Non-Resettable/Automatic Drive Reset.

Type	Description
Major	This type of fault in an exception event that stops the drive while the drive is active. The drive goes to the Not Ready state. No faults can be present for the drive to be in the Ready state.
Minor	This type of fault is an exception event that does not stop the drive while the drive is active. To enable the drive from the Drive Not Ready state to the Ready state, the exception must no longer be present and the fault must be cleared.
Auto Reset Run	When this type of fault occurs, and P348 [Auto Rstrt Tries] is set to a value greater than "0," a user-configurable timer, P349 [Auto Rstrt Delay] begins. When the timer reaches zero, the drive attempts to reset the fault automatically. If the condition that caused the fault is no longer present, the fautl is reset and the drive is restarted A "Y" in the "Auto Reset" column in Table 10 on page 309 identifies an "Auto Reset Run" fault.
Resettable	This type of fault can be cleared. "Resettable Fault" in the "Type" column in Table 10 on page 309 identifies a Resettable fault.
Non-Resettable	This type of fault normally requires drive or motor repair. The cause of the fault must be corrected before the fault can be cleared. The fault will be reset on power-up after repair. "Non-Reset Fault" in the "Type" column in Table 10 on page 309 identifies a Non-Resettable fault.
Automatic Drive Reset	When this type of fault occurs, the drive resets. "Automatic Drive Reset" in the "Type" column in Table 10 on page 309 identifies an Automatic Crive Reset fault.

Alarms

An alarm identifies a condition that, if left unaddressed, can stop the drive if running or prevent the drive from starting. There are two types of alarms.

Type	Description
Alarm 1	Alarms of type 1 indicate that a condition exists. Type 1 alarms are configurable.
Alarm 2	Alarms of type 2 indicate that a configuration error exists and the drive cannot be started. Type 2 alarms are non-configurable.

Configurable Conditions

Configurable conditions can be enabled as an alarm or fault.

Type	Description
Configurable	The parameter identified in the "Configuration Parameter" column of Table 10 on page 309 enables/disables the event action. Options Ignore (0) - No action is taken. Alarm (1) - Type 1 alarm indicated. Flt Minor (2) - Minor fault indicated. If running, drive continues to run. Enable with P950 [Minor Flt Cfg]. If not enabled, acts like a major fault. FltCoastStop (3) - Major fault indicated. Coast to Stop. Flt RampStop (4) - Major fault indicated. Ramp to Stop. Flt CL Stop (5) - Major fault indicated. Current Limit Stop.

View Faults and Alarms

Diagnostic parameters indicate fault and alarm conditions. See the Fault/Alarm Info Group that begins on page 162.

To view fault history access Diagnostics and select Faults or Alarms.

Drive Status Indicators

The condition or state of the drive is constantly monitored and is indicated through the LEDs and/or the HIM (if present).

IMPORTANT The Status Indicator LEDs on the HIM cradle do not indicate the status of an installed Communication Adapter option. If an optional Communication Adapter is installed, refer to the option module user manual for a description of LED location and indication.

Table 6 - PowerFlex 753 Drive Status Indicator Descriptions

	Name	Color	State	Description
	$\begin{aligned} & \hline \text { STS } \\ & \text { (Status) } \end{aligned}$	Green	Flashing	Drive ready but not running, and no faults are present.
			Steady	Drive running, no faults are present.
		Yellow	Flashing	Drive is not running, a start inhibit condition exists and the drive cannot be started. See parameter 933 [Start Inhibits].
			Steady	A type 1 (configurable) alarm exists. A stopped drive cannot start until the alarm condition is cleared. If the drive is running, it continues to run but cannot restart until the alarm condition is cleared. See parameters 959 [Alarm Status A] and 960 [Alarm Status B].
		Red	Flashing	A major fault has occurred. The drive stops. Drive cannot be started until fault condition is cleared. See parameter 951 [Last Fault Code].
			Steady	A non-resettable fault has occurred.
		Red / Yellow	Flashing Alternately	A minor fault has occurred. When running, the drive continues to run. System is brought to a stop under system control. Fault must be cleared to continue. Use parameter 950 [Minor Flt Cfg] to enable. If not enabled, acts like a major fault.
		Yellow/ Green	Flashing Alternately	When running, a type 1 alarm exists. See parameters 959 [Alarm Status A] and 960 [Alarm Status B].
		Green/ Red	Flashing Alternately	Drive is flash updating.

Table 7 - PowerFlex 755 Drive Status Indicator Descriptions

	Name	Color	State	Description
	$\begin{aligned} & \hline \text { STS } \\ & \text { (Status) } \end{aligned}$	Green	Flashing	Drive ready but not running, and no faults are present.
			Steady	Drive running, no faults are present.
0		Yellow	Flashing	Drive is not running, a type 2 (non-configurable) alarm condition exists and the drive cannot be started. See parameter 961 [Type 2 Alarms].
			Steady	A type 1 (configurable) alarm exists. A stopped drive cannot start until the alarm condition is cleared. If the drive is running, it continues to run but cannot restart until the alarm condition is cleared. See parameters 959 [Alarm Status A] and 960 [Alarm Status B].
		Red	Flashing	A major fault has occurred. The drive stops. The drive cannot start until the fault condition is cleared. See parameter 951 [Last Fault Code].
			Steady	A non-resettable fault has occurred.
		$\begin{aligned} & \hline \text { Red / } \\ & \text { Yellow } \end{aligned}$	Flashing Alternately	A minor fault has occurred. A running drive continues to run. System is brought to a stop under system control. Fault must be cleared to continue. Use parameter 950 [Minor Flt Cfg] to enable. If not enabled, acts like a major fault.
		Yellow/ Green	Flashing Alternately	When running, a type 1 alarm exists. See parameters 959 [Alarm Status A] and 960 [Alarm Status B].
		Green / Red	Flashing Alternately	Drive is flash updating.
	ENET	Unlit	Off	Embedded EtherNet/IP is not properly connected to the network or needs an IP address.
		Red	Flashing	An EtherNet/IP connection has timed out.
			Steady	Adapter failed the duplicate IP address detection test.
		Red/ Green	Flashing Alternately	Adapter is performing a self-test.
		Green	Flashing	Adapter is properly connected but is not communicating with any devices on the network.
			Steady	Adapter is properly connected and communicating on the network.
	LINK	Unlit	Off	Adapter is not powered or is not transmitting on the network.
		Green	Flashing	Adapter is properly connected and transmitting data packets on the network.
			Steady	Adapter is properly connected but is not transmitting on the network.

HIM Indication

Fault Display Screen

The pop-up Fault Display screen automatically appears when a fault condition for the Host Drive or any connected peripheral is detected. The pop-up Fault Display screen flashes to alert that a fault condition exists. This screen displays the:

- Fault Code number (See Fault and Alarm Display Codes on page 308.)
- Fault description
- Elapsed time (in hh:mm:ss format) from fault detection

Figure 3 - Pop-Up/Flashing Fault Display Screen

Soft Key Functions

Label	Name	Description
ESC	Escape	Reverts to the previous screen without clearing the fault.
CLR	Clear	Removes the pop-up Fault Display screen from the display and clears the fault.

Single Function Key

Key	Name	Description
\square	Stop	Removes the pop-up Fault Display screen from the display and clears the fault.

Manually Clearing Faults

Step	Key
1. To acknowledge the fault, press the "Clear" soft key. The fault information is removed so that you	
can use the HIM.	
2. Address the condition that caused the fault.	
The cause must be corrected before the fault can be cleared.	
3. After corrective action has been taken, clear the fault by one of these methods:	
Press Stop (if running the drive stops)	
Cycle drive power	
Select the "Clear" soft key on the HIM Diagnostic folder Faults menu.	

Power Layer Interface (PLI) Board 7-Segment Display

PowerFlex 755 Frame 8 and larger drives provide a pair of 7 -segment displays to indicate drive status and conditions.

Series A Display

Lit Segment	Indication	Description
	Indicates that a fault condition has been cleared.	

Series B Display

Lit Segment	Indication	Description

Setting Factory Defaults

System Resource Allocation

The PowerFlex 20-HIM-A6 / -C6S HIM User Manual, publication 20HIMUM001, provides detailed Human Interface Module (HIM) use instructions and explains the HIM capabilities, including setting PowerFlex 750-Series drive to factory settings.

The following parameters are not reset when Set Defaults "Most" is executed: P300 [Speed Units], P301 [Access Level], P302 [Language], P305 [Voltage Class], P306 [Duty Rating], P471 [PredMaint Rst En], and P472 [PredMaint Reset].

Each option that is installed in the drive requires a percentage of the available system resources. Some options configurations can exceed the available resources of the main control board processor. If 90% of the available system resources is reached, an F19 Task Overrun alarm results, which indicates that system resource utilization is excessive.

Table 8 - System Resource Allocation - Drive Frames $1 . . .7$

Table 9 - System Resource Allocation - Drive Frames 8 ... 10

Hardware Service Manual

Integrated Motion
Applications

The PowerFlex 750-Series AC Drive Hardware Service Manual, publication 750TG001, provides schematics and detailed instructions on part replacement for Frame 8 drives and larger.

When a PowerFlex 755 is used in Integrated Motion on EtherNet/IP mode, the Logix controller and RSLogix 5000° are the exclusive owners of the drive (same as Kinetix ${ }^{\circ}$). A HIM or other drive software tools, such as DriveExplorer ${ }^{\text {™ }}$ and DriveTools ${ }^{\text {max }}$ SP, cannot be used to control the drive or change configuration settings. These tools can only be used for monitoring.

Event numbers for PowerFlex 750-Series faults and alarms are displayed in one of three formats.

- Port 00 (Host Drive) displays the event number only. For example, Fault 3 "Power Loss" is displayed as:
Fault Code 3.
- Ports $01 . . .09$ use the format PEEE, which identifies the port number (P) and event number (EEE). For example, Fault 1 "Analog In Loss" on an I/O module that is installed in Port 4 is displayed as: Fault Code 4001.
- Ports 10... 14 use the format PPEEE, which identifies the port number (PP) and event number (EEE). For example, Fault 37 "Net IO Timeout" on Port 14 is displayed as: Fault Code 14037.

Three parameter access level options are selectable by P301 [Access Level].

- Option 0 "Basic" is the most limited view that only displays commonly used parameters and options.
- Option 1 "Advanced" is an expanded view that can be required to access more advanced drive features.
- Option 2 "Expert" provides a comprehensive view of the entire drive parameter set.

If a parameter is not displaying, you can need to select the "Advanced" or
"Expert" view to make that parameter visible in the list.

Drive Fault and Alarm Descriptions

Table 10 contains a list of drive-specific faults and alarms and includes the following information:

- The fault or alarm type
- The action that is taken when the drive faults
- The parameter that is used to configure the fault or alarm (if applicable)
- A description and action (where applicable)

The faults and alarms that are listed in Table 10 only apply to non-Integrated Motion applications. See Table 39 on page 527 for a list of Integrated Motion faults.

Table 10-Drive Fault and Alarm Types, Descriptions, and Actions

Event No.	Fault/Alarm Text	Type	Fault Action	Configuration Parameter	Auto Reset	Description/Action(s)
0	No Entry					
2	Auxiliary Input	Resettable Fault	Coast	157 [DI Aux Fault]	Y	An auxiliary input interlock is open. A condition within the application is not allowing the drive to energize the motor and the digital input that is assigned in P157 [DI Aux Fault] has forced this fault.
3	Power Loss	Configurable		$\underline{449}$ [Power Loss Actn]	Y	The DC bus voltage remained below the [Pwr Loss n Level] of nominal for longer than the time programmed in [Pwr Loss n Time].
4	UnderVoltage	Configurable		460 [UnderVItg Action]	Y	If the bus voltage indicated in P11 [DC Bus Volts] falls below the value set in P461 [UnderVItg Level] an undervoltage condition exists.
5	OverVoltage	Resettable Fault	Coast		Y	The DC bus voltage exceeded the maximum value. See P11 [DC Bus Volts].
7	Motor Overload	Configurable		410 [Motor OL Actn]	Y	An internal electronic overload trip has occurred. See P7 [Output Current], P26 [Motor NP Amps, P413 [Mtr OL Factor], and/or P414 [Mtr 0L Hertz].
8	Heatsink OvrTemp	Resettable Fault	Coast		Y	The heatsink temperature has exceeded 100% of the drive temperature. Heatsink over temperature occurs between $115 \ldots 120^{\circ} \mathrm{C}$. The exact value is stored in drive firmware. See P943 [Drive Temp Pct] and/or P944 [Drive Temp C].
9	Trnsistr OvrTemp	Resettable Fault	Coast		Y	The output transistors have exceeded the maximum operating temperature. See P941 [IGBT Temp Pct] and/or P942 [IGBT Temp C]. If using the drive on a chiller plate, P38 [PWM Frequency] must be set to 2 kHz .
10	DynBrake OvrTemp	Alarm 1				The dynamic brake resistor has exceeded its maximum operating temperature. Check settings of parameters P382 [DB Resistor Type] through P385 [DB ExtPulseWatts].
12	HW OverCurrent	Resettable Fault	Coast		Y	The drive output current has exceeded the hardware current limit. Insulation Resistance (IR) test the wiring to motor.
13	Ground Fault	Resettable Fault	Coast		Y	A current path to earth ground greater than 25% of drive rating has occurred.
14	Ground Warning	Configurable		466 [Ground Warn Actn]		The ground current has exceeded the level set in P467 [Ground Warn Lvl].
15	Load Loss	Configurable		441 [Load Loss Action]		The output torque current is below the value programmed in P442 [Load Loss Level] for a time period greater than the time programmed in P443 [Load Loss Time].

Event No.	Fault/Alarm Text	Type	Fault Action	Configuration Parameter	Auto Reset	Description/Action(s)
26	Brake Slipped	Alarm 1				The encoder movement has exceeded the level in P1110 [Brk Slip Count] after the brake was set and the brake slip maneuver is controlling the drive. (Drive is active.) Cycle power to the drive to reset.
		Alarm 2				The encoder movement has exceeded the level in P1110 [Brk Slip Count] after the brake was set and the brake slip maneuver is finished. (Drive is stopped.) Cycle power to the drive to reset.
27	Torq Prove Cflct	Alarm 2				When P1100 [Trq Prove Cfg] is enabled, these parameters must be properly configured: - P35 [Motor Ctrl Mode] - P125 [Pri Vel Fdbk Sel] and P135 [Mtr Psn Fdbk Sel] must be set to a valid feedback device. The feedback device does not have to be the same device. However, Open Loop and Simulation Feedback are not considered valid feedback devices. If parameters 125 and 135 are set to a feedback module, verify that the module parameters are set properly. On the module, the feedback loss action CANNOT be set to 0 "Ignore." Does not work in PM FV mode. Does not work with single ended or channel A only encoders.
28	TP Encls Config	Alarm 2				Encoderless TorqProve has been enabled but the application concerns of encoderless operation have not read and understood. Read the "Attention" on page 356 relating to the use of TorqProve with no encoder.
29	Analog In Loss	Configurable		$\underline{263}$ [Anlg $\ln 0$ LssActn]		Analog input has a lost signal.
33	AuRsts Exhausted	Resettable Fault	Coast	348 [Auto Rstrt Tries]		The drive attempted to reset a fault and resume running for the programmed number of tries, unsuccessfully.
35	IPM OverCurrent	Resettable Fault	Coast			The current magnitude has exceeded the trip level set by P1640 [IPM Max Cur]. Set this value to 0 only when the drive is set to the V / Hz or SVC mode.
36	SW OverCurrent	Resettable Fault	Coast		Y	The drive output current has exceeded the 1 ms current rating. This rating is greater than the 3 second current rating and less than the hardware overcurrent fault level. It is typically 200. . . 250% of the drive continuous rating.
38 39 40	Phase U to Grnd Phase V to Grnd Phase W to Grnd	Resettable Fault	Coast			A phase to ground fault has been detected between the drive and motor in this phase. Rotate U/T1, V/TT2, W/T3 connections. - If the problem follows the wire, suspect a field wiring problem. - If no change, suspect a problem with the drive.
41 42 43	Phase UV Short Phase VW Short Phase WU Short	Resettable Fault	Coast			Excessive current has been detected between these two output terminals. Rotate U/T1, V/T2, W/T3 connections. - If the problem follows the wire, suspect a field wiring problem. - If no change, suspect a problem with the drive.
44 45 46	Phase UNegToGrnd Phase VNegToGrnd Phase WNegToGrnd	Resettable Fault	Coast			A phase to ground fault has been detected between the drive and motor in this phase. Rotate U/T1, V/T2, W/T3 connections. - If the problem follows the wire, suspect a field wiring problem. - If no change, suspect a problem with the drive.
48	System Defaulted	Resettable Fault	Coast			The drive was commanded to write default values.
49	Drive Powerup	-				A Power Up Marker in the Fault Queue indicating that the drive power cycled.
51	Clr Fault Queue	-				Indication that the fault queue has been cleared.
55	Ctrl Bd Overtemp	Resettable Fault	Coast			The temperature sensor on the main control board detected excessive heat. See product temperature requirement.
58	Module Defaulted	Resettable Fault	Coast			The module was commanded to write default values.
59	Invalid Code	Resettable Fault	Coast			Internal error.
61	Shear Pin 1	Configurable		435 [Shear Pin 1 Actn]	Y	The programmed value in P436 [Shear Pin1 Level] has been exceeded.
62	Shear Pin 2	Configurable		438 [Shear Pin 2 Actn]	Y	The programmed value in P439 [Shear Pin2 Level] has been exceeded.

Event No.	Fault/Alarm Text	Type	Fault Action	Configuration Parameter	Auto Reset	Description/Action(s)		
64	Drive OverLoad	Alarm 1			Y	P940 [Drive 0L Count] has exceeded 50 \% but is less than 100 \%		Resettable Fault
:---								

Event No.	Fault/Alarm Text	Type	Fault Action	Configuration Parameter	Auto Reset	Description/Action(s)
95	Aux VelFdbk Loss	Configurable		Note: See option module for configuration parameter number	A Feedback Loss has been detected for the source of P132 [Aux Vel Fdbk Sel]. The feedback loss could be due to a problem detected by the feedback option module selected by P132 [Aux Vel Fdbk Sel], or due to a loss in communication between the feedback option module and main control board.	
96	PositionFdbkLoss	Configurable		Note: See option module for configuration parameter number	A Feedback Loss has been detected for the source of P847 [Psn Fdbk]. The feedback loss could be due to a problem detected by the feedback option module selected by P135 [Mtr Psn Fdbk Sel], or due to a loss in communication between the feedback option module and main control board.	
97	Auto Tach Switch	Resettable Fault	Coast	635 [Spd Options Ctrl] Bit 7"Auto Tach SW"		Indication that either of the two following conditions exists. Tach switch has 0ccurred and alternate feedback device has failed. -
125	Appch switch has not occurred, Auto Tach Switch Option is enabled					
and both primary and alternate devices have failed.						

vent No.	Fault/Alarm Text		Type				Fault Action	Configuration Parameter					Auto Reset		Description/Action(s)										
158	Digln Cfg C	Alarm 2	Alarm 2					$\begin{array}{l}\text { Digital input conflict. Input functions that cannot be assigned to the } \\ \text { same digital input have been selected (for example run and stop). } \\ \text { Correct Digital Input configuration. }\end{array}$ Digital Input combinations marked " \bullet " cause an alarm.																	
				$\begin{aligned} & \overline{\overleftarrow{N}} \\ & \stackrel{0}{0} \\ & \stackrel{0}{0} \\ & \stackrel{0}{0} \end{aligned}$	$\begin{array}{\|l} \frac{0}{\omega} \\ \stackrel{0}{0} \\ \stackrel{0}{0} \\ \stackrel{0}{0} \end{array}$	픈 플 \sum_{0}^{0} 0						$\begin{aligned} & \text { 즘 } \\ & \text { } \end{aligned}$			$\overline{\bar{o}}$				$\begin{aligned} & \frac{\pi}{\#} \\ & \frac{\pi}{0} \end{aligned}$	늏 홓 홍					$\frac{0}{i}$
	DI Stop		\bullet		\bullet	\bullet		\bullet																	
	DI Coast Stop		-	-	\bullet	\bullet	-	\bullet	\bullet	-	\bullet		\bullet	\bullet		-	\bullet		\bullet						
	DI Cur Lmt Stop		-	\bullet	\bullet	-	\bullet	\bullet	\bullet	\bullet	\bullet		-	\bullet		-	\bullet	\bullet	-	\bullet	\bullet	\bullet		\bullet	\bullet
	DI Aux Fault		-	\bullet	-	-	\bullet	-	-	-	-	\bullet	-	\bullet	\bullet		\bullet	\bullet	\bullet						
	DI Clear Fault		\bullet	\bullet	\bullet	-	\bullet	-	\bullet	\bullet	-		-	-		-	-	\bullet				\bullet	\bullet	\bullet	\bullet
	DI HOA Start		\bullet	\bullet	\bullet		\bullet	\bullet	\bullet			\bullet			\bullet							\bullet	\bullet	\bullet	\bullet
	DI Start		\bullet	\bullet	\bullet		\bullet	\bullet	\bullet			\bullet			\bullet							\bullet	\bullet	\bullet	\bullet
	DI Run		\bullet			\bullet			\bullet						\bullet	\bullet	\bullet	\bullet	\bullet						
	DI Run Forward		\bullet	\bullet	\bullet	\bullet	\bullet	\bullet		\bullet	\bullet		\bullet	\bullet		-					\bullet	\bullet	\bullet	\bullet	\bullet
	DI Run Reverse		\bullet	\bullet	\bullet	\bullet	\bullet	\bullet		\bullet	\bullet		\bullet	\bullet			\bullet				\bullet	\bullet	\bullet	\bullet	\bullet
	DIJog 1		\bullet	\bullet	\bullet		\bullet	\bullet	\bullet			\bullet						\bullet	\bullet	\bullet		\bullet			
	DI Jog 1 Forward		\bullet	\bullet	\bullet	-	\bullet	\bullet		\bullet	\bullet		\bullet			-	\bullet				\bullet	-	\bullet	\bullet	\bullet
	DI Jog 1 Reverse		\bullet	\bullet	\bullet	-	\bullet	\bullet		\bullet	\bullet			\bullet		\bullet	\bullet				\bullet	-	\bullet	\bullet	\bullet
	DI Jog 2		\bullet	\bullet	\bullet		\bullet	\bullet	-						-			\bullet	\bullet	-		\bullet			
	DI Jog 2 Forward		\bullet	\bullet	\bullet	\bullet	\bullet	\bullet		\bullet			\bullet	\bullet		\bullet	\bullet				\bullet	-	\bullet	\bullet	\bullet
	DI Jog 2 Reverse		\bullet	\bullet	\bullet	\bullet	\bullet	\bullet			\bullet		\bullet	\bullet		\bullet	\bullet				\bullet	\bullet	\bullet	\bullet	\bullet
	DI Fwd Reverse		\bullet	\bullet	\bullet	\bullet	\bullet	\bullet				\bullet			\bullet			\bullet							
	DI Accel 2		\bullet	\bullet	\bullet	\bullet			\bullet																
	DI Decel 2		\bullet	\bullet	\bullet	\bullet			\bullet																
	DI Manual Ctrl		\bullet	\bullet	\bullet		\bullet	\bullet	\bullet	\bullet	\bullet		\bullet	\bullet		\bullet	\bullet	\bullet			\bullet	\bullet	\bullet	\bullet	\bullet
	DI Speed Sel 0		\bullet	\bullet		\bullet	-	\bullet	\bullet																
	DI Speed Sel 1		\bullet		\bullet	-	\bullet	\bullet	\bullet	\bullet	\bullet	\bullet	-	\bullet	\bullet	-	\bullet	\bullet							
	DI Speed Sel 2			\bullet																					
	DI Stop Mode B																								
161	Sleep Config			m 2												re is a ct, po e is st $=C$, tions.	Sleep ssible opped Run,	Wake causes and un Fw	config includ Wake L d, or R	uratio de: evel un Rev	nerror Sleep is no		Sle gure	Wak in Di	Mode = ital Input
162	Waking			rm 1												Wak	time	is CO	nting	owar	a va	ue th	sta	the	rive.
168	HeatSinkUnderTmp			ettable	Fault											tsink 6° F) 0 P943	empe the s [Drive	rature ensor Temp	senso feedba Pct]		orting uit is 944	a val open. Drive	ue bel Temp	$\text { ow - } 18$	$8.7^{\circ} \mathrm{C}(-$
169	PWM Freq Reduced			rm 1												PWM M Fre also P	Frequ quenc 420 [ency y] due rive	as bee to exc L Mod	n red essive e].	uced f IGBT	rom th juncti	evalu on tem	set perat	P38 ures.
170	CurLimit Reduced			rm 1												curre rent ve OL also P	$\begin{aligned} & \text { nt limi } \\ & \text { imit } n \\ & \text { Count] } \\ & 420 \end{aligned}$	value due $j=95$ Drive	has b 0 exce \%. L Mod	een r ssive e].	duced GBT ju	from nctio	the valu temp	lue se eratu	in es or P940

$\begin{aligned} & \hline \text { Event } \\ & \text { No. } \end{aligned}$	Fault/Alarm Text	Type	Fault Action	Configuration Parameter	Auto Reset	Description/Action(s)
171	Adj Vltg Ref	Alarm 1				Invalid adjustable-voltage reference selection conflict.
175	Travel Lim Cflct	Non-Reset Fault	Current Limit Stop			Travel limits are in conflict. Both the forward and reverse travel limits indicate that they are simultaneously active. If digital limits (hardware signals) are in use, ensure that the following forward and reverse digital input pairs are not both off simultaneously: fwd/rev decel travel limit digital inputs and fwd/rev end stop travel limit digital inputs. The travel limit digital inputs are meant to be connected to normally closed switch contacts, so the digital input status reads an off ($0=$ False) bit status when the machine is on limit and the switch contact opens. A possible cause for this condition is loss of common power to both the forward and reverse travel limit switches. If software travel limits are in use, check the state of the fwd/rev travel limit bits in P1101 [Trq Prove Setup]. These bits read an on ($1=$ Enabled) bit status when the machine is on limit. Bit 2 "Decel Fwd" and Bit 4 "Decel Rev" should not be on simultaneously. Similarly, Bit 3 "End Stop Fwd" and Bit 5 "End Stop Rev" should not be on simultaneously.
177	Profiling Active	Alarm 1				The Profile/Indexer is active.
178	Homing Active	Alarm 1				The Homing function is active.
179	Home Not Set	Alarm 1				The Home position was not set before profile operation.
181	Fwd End Limit	Resettable Fault	Current Limit Stop			The selected digital input for one of the end limit switches, P196 [DI Fwd End Limit] or P198 [DI Rev End Limit], has detected a falling edge and P313 [Actv SpTqPs Mode] is not set to 1 "Speed Reg." If digital limits (hardware signals) are in use, ensure that the digital inputs are connected to normally closed contacts. When the end limit is reached the contacts open.
182	Rev End Limit	Resettable Fault	Current Limit Stop			The selected digital input for one of the end limit switches, P196 [DI Fwd End Limit] or P198 [DI Rev End Limit], has detected a falling edge and P313 [Actv SpTqPs Mode] is not set to 1 "Speed Reg." If digital limits (hardware signals) are in use, ensure that the digital inputs are connected to normally closed contacts. When the end limit is reached the contacts open.
185	Freq Conflict	Alarm 2				Indicates that the values of P520 [Max Fwd Speed] and P521 [Max Rev Speed] are in conflict with the value of P63 [Break Frequency].
186	VHz Neg Slope	Alarm 2				Indicates that the V / Hz curve segment resulted in a negative V / Hz slope. See P60 [Start Acc Boost] through P63 [Break Frequency].
187	VHz Boost Limit	Alarm 2				Indication that one of the two following conditions exists. - P60 [Start/Acc Boost] and P61 [Run Boost] are greater than P25 [Motor NP Volts] x 0.25 when P65 [VHz Curve] = 0 "Custom V/Hz." - P61 [Run Boost] is greater than P25 [Motor NP Volts] $\times 0.25$ when P65 [VHz Curve] = 1 "Fan/Pump."
190	PM FV Pri Fdbk	Alarm 2				Indicates a control mode and primary-feedback device configuration error. P35 [Motor Ctrl Mode] is set to the permanent magnet flux vector "PM FV" control mode, P125 [Pri Vel Fdbk Sel] is set to P137 [Open Loop Fdbk] (port 0).
191	PM FV Alt Fdbk	Alarm 2				Indicates a control mode and alternate-feedback device configuration error. P35 [Motor Ctrl Mode] is set to the permanent magnet flux vector "PM FV" control mode, P635 [Spd Options Ctrl] is set to bit 7 "Auto Tach SW," P128 [Alt Vel Fdbk Sel] is set to P137 [Open Loop Fdbk] (port 0).
192	Fwd Spd Lim Cfg	Alarm 2				The forward speed reference is out of range. Verify the settings of P38 [PWM Frequency] and P520 [Max Fwd Speed]. Lower carrier frequencies reduce the output frequency range. Verify that P522 [Min Fwd Speed] is less than or equal to P520 [Max Fwd Speed].

$\begin{aligned} & \hline \text { Event } \\ & \text { No. } \end{aligned}$	Fault/Alarm Text	Type	Fault Action	Configuration Parameter	Auto Reset	Description/Action(s)
193	Rev Spd Lim Cfg	Alarm 2				The reverse speed reference is out of range. Verify the settings of P38 [PWM Frequency] and P521 [Max Rev Speed]. Lower carrier frequencies reduce the output frequency range. Verify that P523 [Min Rev Speed] is greater than or equal to P521 [Max Rev Speed].
194	PM Offset Conflict	Alarm 2				Both P80 [PM Cfg] bit 0 "AutoOfstTest" and bit 2 "StatiCTestEn" are set. Select only one.
195	IPMSpdEstErr	Resettable Fault	Coast			Speed Estimator failed to track High-Speed angle.
196	PM FS Cflct	Alarm 2				Attempted to set P356 [FlyingStart Mode] to 2 "Sweep" with a permanent magnet motor selected in P35 [Motor Ctrl Mode].
197	PM Offset Failed	Resettable Fault	Coast			Indicates that the PM Offset test failed due to interruption of the test before completion or the motor movement failed to reach the proper amount of rotation during the test. The test is rescheduled when this fault occurs. If failure occurred because of movement limitations, increase the [PM OfstTst Cur]. If this solution fails to correct the problem, the load on the motor maybe too large.
201	SpdReg DL Err	Alarm 2				Attempted to establish a Datalink to P644 [Spd Err Flt BW], P645 [Speed Reg KP], or P647 [Speed Reg Ki] and P636 [Speed Reg BW] is set to a value other than zero.
202	AltSpdReg DL Err	Alarm 2				Attempted to establish a Datalink to P649 [Alt Speed Reg Kp], P650 [Alt Speed Reg Ki], or P651 AltSpdErr FltrBW] and P648 [Alt Speed Reg $B W$] is set to a value other than zero.
203	Port 13 Adapter	Resettable Fault	Coast			The embedded EtherNet/IP adapter has a fault. See EtherNet event queue.
204	Port 14 Adapter	Resettable Fault	Coast			The DeviceLogix adapter has a fault.
205	DPI TransportErr	Alarm 1				A DPI Communication Error has occurred.
210	HW Enbl Jmpr Out	Resettable Fault	Coast			A Safety Option module is present and ENABLE Jumper is removed. Install the jumper. This fault occurs only on frames $1 . . .7$.
211	Safety Brd Fault	Resettable Fault	Coast			A Safety option module has indicated a fault. Verify that ENABLE Jumper is installed. Reset or power cycle drive. Safe Speed Monitor (20-750-S1): - See P67 [Fault Status] on page 298 for more information on the fault statuses. - See publication 750-RM001 for more information. Safe Torque Off (20-750-S): - If DC power drops below 17V DC "Not Enable" is indicated. - If voltage drops below 11 V DC the module faults. - See publication 750-UM002 for more information. ATEX (20-750-ATEX): - Possible hardware damage. - The motor to the thermal sensor is shorted. - Excessive EMC noise due to improper grounding/shielding. - See publication 750-UM003 for more information.
212	Safety Jmpr Out	Resettable Fault	Coast			SAFETY Jumper is not installed and a Safety option module is not present. Install the jumper.
213	Safety Jumper In	Resettable Fault	Coast			SAFETY Jumper is installed and a Safety option module is present. Remove the jumper.
214	SafetyPortCnflct	Alarm 2				Allowable number of safety options exceeded. Only one safety option module can be installed at a time.

$\begin{aligned} & \text { Event } \\ & \text { No. } \end{aligned}$	Fault/Alarm Text	Type	Fault Action	Configuration Parameter	Auto Reset	Description/Action(s)
$\begin{aligned} & 224 \\ & 225 \\ & 226 \\ & 227 \\ & 228 \\ & 229 \\ & 230 \\ & 231 \\ & 232 \\ & 233 \\ & 234 \end{aligned}$	Port 4 Comm Loss Port 5 Comm Loss Port 6 Comm Loss Port 7 Comm Loss Port 8 Comm Loss Port 9 Comm Loss Port10 Comm Loss Port11 Comm Loss Port12 Comm Loss Port13 Comm Loss Port14 Comm Loss	Resettable Fault	Coast			The device at the port has stopped communicating with the main control board. Verify that the device is present and functional. Verify network connections. Verify options that are installed in ports $4 \ldots 8$ are seated in the port and secured with mounting screws.
$\begin{aligned} & 244 \\ & 245 \\ & 246 \\ & 247 \\ & 248 \\ & 249 \\ & 250 \\ & 251 \\ & 252 \\ & 253 \\ & 254 \end{aligned}$	Port 4 Cfg Port 5 Cfg Port 6 Cfg Port 7 Cfg Port 8 Cfg Port 9 Cfg Port 10 Cfg Port 11 Cfg Port 12 Cfg Port 13 Cfg Port 14 Cfg	Alarm 2				The main control board does not have the correct option in the port. Option may not be compatible with product or MCB firmware must be updated to support it. Option may have to be moved or removed, accept option configuration change.
$\begin{aligned} & \hline 264 \\ & 265 \\ & 266 \\ & 267 \\ & 268 \\ & 269 \\ & 270 \\ & 271 \\ & 272 \\ & 273 \\ & 274 \end{aligned}$	Port 4 Checksum Port 5 Checksum Port 6 Checksum Port 7 Checksum Port 8 Checksum Port 9 Checksum Port10 Checksum Port11 Checksum Port12 Checksum Port13 Checksum Port14 Checksum	Resettable Fault	Coast			An option module storage checksum failed. Option data has been set to default values.
281	Enet Checksum	Resettable Fault	Coast			EtherNet/IP storage checksum failed. Data set to default values.
282	DLX Checksum	Resettable Fault	Coast			DeviceLogix storage checksum failed. Data set to default values.
290	Prev Maint Reset	Alarm 1				Predictive maintenance function has reset an elapsed life parameter.
291	HSFan Life	Configurable		493 [HSFan EventActn]		Predictive maintenance function has reached the event level. Perform maintenance.
292	InFan Life	Configurable		500 [InFan EventActn]		
293	MtrBrng Life	Configurable		506 [MtrBrngEventActn]		
294	MtrBrng Lube	Configurable		510 [MtrlubeEventActn]		
295	MachBrng Life	Configurable		515 [MtrBrngEventActn]		
296	MachBrng Lube	Configurable		519 [MchLubeEventActn]		
307	Port7InvalidCard	Non-Reset Fault	Coast			Option not valid in that port. Remove option module.
308	Port8InvalidCard	Non-Reset Fault	Coast			
310	Regeneration OK	Resettable Fault	Coast			The drive has detected that the 'Regeneration OK' input has transition to an 'inactive' state.
315	Excess Psn Err	Configurable		Configured with Logix controller.		The absolute maximum Position Error value has been exceeded.
$\begin{aligned} & 318 \\ & 319 \\ & 320 \end{aligned}$	OutCurShare PhU OutCurShare PhV OutCurShare PhW	Alarm 1				There is output current sharing imbalance between parallel inverters in the phase indicated that is greater than 15% of the inverter rated current.

$\begin{aligned} & \hline \text { Event } \\ & \text { No. } \end{aligned}$	Fault/Alarm Text	Type	Fault Action	Configuration Parameter	Auto Reset	Description/Action(s)
322	N -1 Operation	Alarm 1		$\underline{20}$ (Port 10) [Recfg Acknowledg] $\underline{21}$ (Port 10) [Effctv I Rating]		Drive is operating with fewer inverters than the original parallel configuration.
324	DC Bus Mismatch	Non-Reset Fault	Coast			There is a bus voltage imbalance between parallel inverters that is greater than 50V DC.
$\begin{aligned} & 327 \\ & 328 \\ & 329 \end{aligned}$	HS Temp Imbal U HS Temp Imbal V HS Temp Imbal W	Alarm 1				There is a heatsink temperature imbalance between parallel inverters in the phase indicated that is greater than $11.5^{\circ} \mathrm{C}\left(52.7^{\circ} \mathrm{F}\right)$.
$\begin{aligned} & 331 \\ & 332 \\ & 333 \end{aligned}$	I1 Comm Loss 12 Comm Loss 13 Comm Loss	Resettable Fault	Coast			A communications fault has occurred between the main control board and the power layer interface board on inverter n.
$\begin{aligned} & \hline 341 \\ & 342 \\ & 343 \end{aligned}$	C1 Comm Loss C2 Comm Loss C3 Comm Loss	Resettable Fault	Coast			A communications fault has occurred between the main control board and the converter gate board on converter n.
$\begin{aligned} & 351 \\ & 352 \\ & 353 \end{aligned}$	In Cur Share L1 In Cur Share L2 In Cur Share L3	Alarm 1				There is an input current sharing imbalance between parallel converters in the AC line indicated that is greater than 15% of the converter rated current.
$\begin{aligned} & 357 \\ & 358 \\ & 359 \end{aligned}$	In VIt Imbal L12 In VIt Imbal L23 In VIt Imbal L31	Alarm 1				There is an input line voltage imbalance between parallel converters in the AC lines indicated that is greater than 5% of the converter rated voltage.
360	N -1 See Manual	Resettable Fault	Coast			The number of active inverters has been reduced from the original parallel configuration. See $\mathrm{N}-1$ and Re-Rate Functions on page 337.
361	Rerate See Manual	Resettable Fault	Coast			The drive rating has changed from the original parallel configuration. See $\mathrm{N}-1$ and Re-Rate Functions on page 337.
362	Cnv/Inv Mismatch	Alarm 2				There is a voltage class mismatch between the installed parallel inverters and converters.
363	CBP/Inv Mismatch	Alarm 2				There is a voltage class mismatch between the installed parallel inverters and common DC bus precharge units.
364	CBP Num Mismatch	Alarm 2				The number of active inverters and active common DC bus precharge units does not match.
365	Zero Cnv/Prechrg	Alarm 2				No converter or common DC bus precharge unit exists.
366	Cnv Num Mismatch	Alarm 2				The number of active inverters and active converters does not match.
$\begin{aligned} & \hline 371 \\ & 372 \end{aligned}$	P1 Comm Loss P2 Comm Loss	Resettable Fault	Coast			A communications fault has occurred between the main control board and the $D C$ precharge control board on the common $D C$ bus precharge unit n.
380	PWM FPGA Overrun	Alarm 1				The time limit on the PWM write to the FPGA was exceeded.
900	900	Automatic Drive Reset	Coast			Critical input exception. Contact technical support.
901	Machine Check	Automatic Drive Reset	Coast			Internal error. Replace the main control board.
902	Data Storage Error	Automatic Drive Reset	Coast			Cache memory corrupt. Replace the main control board.
903	Instruction Storage Error	Automatic Drive Reset	Coast			Cache memory corrupt. Replace the main control board.
905	Alignment Error	Automatic Drive Reset	Coast			Pointer is pointing to a non-boundary member. Obtain test points and check grounding.
906	Program Error	Automatic Drive Reset	Coast			Bad memory read. Check grounding or replace the main control board.

Event No.	Fault/Alarm Text	Type	Fault Action	Configuration Parameter	$\begin{array}{\|l\|} \hline \text { Auto } \\ \text { Reset } \end{array}$	Description/Action(s)
907	Floating Point Unit Not On	Automatic Drive Reset	Coast			Firmware issue. Obtain test points.
909	Aux Processor Not On	Automatic Drive Reset	Coast			Auxiliary processor interrupt. Contact technical support.
912	Watchdog	Automatic Drive Reset	Coast			The timer counted down, reached 0 , and fault occurred. Replace the main control board.
913	Data TLB Error	Automatic Drive Reset	Coast			Processor attempted to access non-boundary memory. Check grounding or replace the main control board.
914	Instruction TLB Error	Automatic Drive Reset	Coast			Processor attempted to access non-boundary memory. Check grounding or replace the main control board.
916	FPGA Failed to Load	Automatic Drive Reset	Coast			MCB failed to load on powerup. Replace the main control board.
917	FPGA CRC Failure	Resettable Fault (753) Disabled (755 LP) Automatic Drive Reset (755 HP)	Coast	$\begin{array}{\|l\|l} \hline 964 \text { [CRC Flt Cfg] } \\ 753 \text { only } \end{array}$		Change fault configuration (753). Replace the main control board.
918	Control Task Overrun	Automatic Drive Reset	Coast			Carrier frequency changes when passing through 7 Hz . In P40 [Mtr Option Cfg], set the PWM to 2 kHz or turn on the "PWM FreqLock" Bit 9 . Or flash the drive to 8.001 .
919	System Task Overrun	Automatic Drive Reset	Coast			The control task not finished and being told to run again. If fault does not clear, replace the main control board.
920	5 mSec Task Overrun	Automatic Drive Reset	Coast			The control task not finished and being told to run again. If fault does not clear, replace the main control board.
921	Control Task Stall	Automatic Drive Reset	Coast			Control task stalled. Check grounding or replace the main control board.
922	System Task Stall	Automatic Drive Reset	Coast			System task stalled. Check grounding or replace the main control board.
923	5 mSec Task Stall	Automatic Drive Reset	Coast			5 msec task stalled. Check grounding or replace the main control board.
924	Background Task Stall	Automatic Drive Reset	Coast			Background task stalled. Check grounding or replace the main control board.
925	Stack Overflow	Automatic Drive Reset	Coast			Firmware overflow. Obtain test points.
926	Ethernet Error	Automatic Drive Reset	Coast			Ethernet error. Contact technical support.
927	CIP Motion Error	Automatic Drive Reset	Coast			Integrated motion error. Contact technical support.
14037	Net 10 Timeout	Configurable		52 [DLX Prog Cond]		DeviceLogix has been disabled.

IMPORTANT A module installed in a port generate fault and alarm event numbers 3000...13999. See Fault and Alarm Display Codes on page 308 for an explanation. For event numbers that fall from 13000 to 13999, refer to the PowerFlex 755 Drive Embedded EtherNet/IP Adapter User Manual, publication 750COM-UM001 for descriptions.

Table 11 - Drive Fault and Alarm Cross Reference By Name

Fault/Alarm Text	Number
Adj Vltg Ref	171
Alt VelFdbk Loss	94
AltSpdReg DL Err	202
Analog In Loss	29
Anlg Cal Chksum	108
App ID Changed	124
AuRsts Exhausted	33
Autn Enc Angle	141
Autn Spd Rstrct	142
Auto Tach Switch	97
AutoTune Aborted	80
Autotune CurReg	143
Autotune Inertia	144
Autotune Travel	145
Aux VelFdbk Loss	95
Auxiliary Input	2
Bipolar Conflict	155
Brake Slipped	26
C1 Comm Loss	341
C2 Comm Loss	342
CBP Num Mismatch	364
CBP/Inv Mismatch	363
Clr Fault Queue	51
Cnv Num Mismatch	366
Cnv/Inv Mismatch	362
Comm Loss Net	280
Ctrl Bd Overtemp	55
CurLimit Reduced	170
DC Bus Mismatch	324
Decel Inhibit	24
Digln Cfg B	157
Digln Cfg C	158
DLX Checksum	282
DPI TransportErr	205
Drive OverLoad	64
Drive Powerup	49
DynBrake OvrTemp	10
Enet Checksum	281
Excess Psn Err	315
Excessive Load	79
Ext Prechrg Err	137
FluxAmpsRef Rang	78
Freq Conflict	185
Fwd End Limit	181

Fault/Alarm Text	Number
Fwd Spd Lim Cfg	192
Ground Fault	13
Ground Warning	14
Heatsink OvrTemp	8
HeatSinkUnderTmp	168
Home Not Set	179
Homing Active	178
HS Temp Imbal U	327
HS Temp Imbal V	328
HS Temp Imbal W	329
HSFan Life	291
Hw Enable Check	93
HW Enbl Jmpr Out	210
HW OverCurrent	12
11 Comm Loss	331
12 Comm Loss	332
In Cur Share L1	351
In Cur Share L2	352
In Cur Share L3	353
In VIt Imbal L12	357
In VIt Imbal L23	358
In VIt Imbal L31	359
Incompat MCB-PB	106
InFan Life	292
Input Phase Loss	17
Invalid Code	59
IPM OverCurrent	35
IPMSpdEstErr	195
IR Volts Range	77
Ivld Pwr Bd Data	110
IXo VoltageRange	87
Load Loss	15
MachBrng Life	295
MachBrng Lube	296
Module Defaulted	58
Motor Overload	7
Motor PTC Trip	18
MtrBrng Life	293
MtrBrng Lube	294
N -1 Operation	322
N -1 See Manual	360
Net IO Timeout	14037
No Stop Source	152
NVS Not Blank	102

Fault/Alarm Text	Number
OutCurShare PhU	318
OutCurShare PhV	319
OutCurShare PhW	320
Output PhaseLoss	21
OverSpeed Limit	25
OverVoltage	5
P1 Comm Loss	371
P2 Comm Loss	372
Parameter Chksum	100
Phase U to Grnd	38
Phase UNegToGrnd	44
Phase UV Short	41
Phase V to Grnd	39
Phase VNegToGrnd	45
Phase VW Short	42
Phase W to Grnd	40
Phase WNegToGrnd	46
Phase WU Short	43
PM FS Cflct	196
PM FV Alt Fdbk	191
PM FV Pri Fdbk	190
PM Offset Conflict	194
PM Offset Failed	197
Port 1 Adapter	71
Port 1 DPI Loss	81
Port 10 Cfg	250
Port 11 Cfg	251
Port 12 Cfg	252
Port 13 Adapter	203
Port 13 Cfg	253
Port 14 Adapter	204
Port 14 Cfg	254
Port 2 Adapter	72
Port 2 DPI Loss	82
Port 3 Adapter	73
Port 3 DPI Loss	83
Port 4 Adapter	74
Port 4 Cfg	244
Port 4 Checksum	264
Port 4 Comm Loss	224
Port 4 DPI Loss	84
Port 5 Adapter	75
Port 5 Cfg	245

Fault/Alarm Text	Number
Port 5 Checksum	265
Port 5 Comm Loss	225
Port 5 DPI Loss	85
Port 6 Adapter	76
Port 6 Cfg	246
Port 6 Checksum	266
Port 6 Comm Loss	226
Port 6 DPI Loss	86
Port 7 Cfg	247
Port 7 Checksum	267
Port 7 Comm Loss	227
Port 8 Cfg	248
Port 8 Checksum	268
Port 8 Comm Loss	228
Port 9 Cfg	249
Port 9 Checksum	269
Port 9 Comm Loss	229
Port10 Checksum	270
Port10 Comm Loss	230
Port11 Checksum	271
Port11 Comm Loss	231
Port12 Checksum	272
Port12 Comm Loss	232
Port13 Checksum	273
Port13 Comm Loss	233
Port14 Checksum	274
Port14 Comm Loss	234
Port7InvalidCard	307
Port8InvalidCard	308
PositionFdbkLoss	96
Power Loss	3
Precharge Open	138
Prev Maint Reset	290
Pri VelFdbk Loss	91
Profiling Active	177
Pump Off	67
PWM FPGA Overrun	380
PWM Freq Reduced	169
Pwr Brd Checksum	104
PwrBd App MinVer	112
PwrBd Invalid ID	111
PwrBd PwrDn Chks	118
PwrDn Data Chksm	117

Fault/Alarm Text	Number
PwrDn NVS Blank	101
PwrDn NVS Incomp	103
PwrDn Table Full	115
PwrDnEntry2Large	116
Regeneration OK	310
Replaced MCB-PB	107
Rerate See Manual	361
Rev End Limit	182
Rev Spd Lim Cfg	193
Safety Brd Fault	211
Safety Jmpr Out	212
Safety Jumper In	213
SafetyPortCnflct	214
Shear Pin 1	61
Shear Pin 2	62
Sleep Config	161
SpdReg DL Err	201

Fault/Alarm Text	Number
Start On PowerUp	134
SW OverCurrent	36
System Defaulted	48
Task Overrun	19
Torq Prove Cflct	27
TorgPrv Spd Band	20
TP Encls Config	28
Tracking DataErr	113
Travel Lim Cflct	175
Trnsistr OvrTemp	9
UnderVoltage	4
Using Backup App	125
VHz Boost Limit	187
VHz Neg Slope	186
Waking	162
Zero Cnv/Prechrg	365

Inverter (Port 10) Faults and Alarms (Frame 8 and Larger)

Table 12 contains a list of Inverter-specific faults and alarms, the type of fault or alarm, the action that is taken when the drive faults, the parameter that is used to configure the fault or alarm (if applicable), and a description and action (where applicable). These faults and alarms only apply to Frame 8 drives and larger.

Table 12 - Inverter Fault and Alarm Types, Descriptions, and Actions

Event No.	Fault/Alarm Text	Type	Fault Action	Configuration Parameter	Auto Reset	Description/Action(s)
$\begin{aligned} & 10101 \\ & 10201 \\ & 10301 \end{aligned}$	I1 Comm Loss I2 Comm Loss I3 Comm Loss	Non-Reset Fault	Coast			Indicates that the communication connection from the fiber optic interface board to the power layer interface board has been lost. Once the root cause of the communication fault has been resolved, power must be cycled or a drive reset must be initiated to clear this fault. - Verify the status of the Fiber Loss pin segment of the power-layer interface board LED. - Verify that the fiber optic cables are properly connected to the transceivers. - Verify that the transceivers are properly seated in the ports. - Verify that the fiber optic cable is not cracked or broken. - Verify that power is applied to the fiber optic interface board and power layer interface board.
$\begin{aligned} & 10102 \\ & 10202 \\ & 10302 \end{aligned}$	I1 Thermal Const I2 Thermal Const I3 Thermal Const	Non-Reset Fault	Coast			The thermal model data sent to the power layer interface board is incorrect. - Verify that the inverter is the correct rating for the drive. - Compare the firmware revisions of the power layer interface and control board for compatibility. - If necessary, reflash the application firmware in control board.
$\begin{aligned} & 10103 \\ & 10203 \\ & 10303 \end{aligned}$	I1 HSFan Slow I2 HSFan Slow 13 HSFan Slow	Alarm 1				The inverter heatsink fan is running below normal operating speed. - Verify the actual fan speed in [In HSFan Speed] (Port 10). - Check for debris in the fan. If necessary, clean the fan and housing. - Check for noise at the fan, indicating motor bearing failure. - Verify that the fan power and feedback connections are not loose or disconnected. - Replace the fan, if necessary.

Event No.	Fault/Alarm Text	Type	Fault Action	Configuration Parameter	Auto Reset	Description/Action(s)
$\begin{aligned} & 10104 \\ & 10204 \\ & 10304 \end{aligned}$	I1 Overcurr UPos I2 Overcurr UPos I3 Overcurr UPos	Resettable Fault	Coast	Y		An instantaneous overcurrent (IOC) has occurred in the U, V, or W phase, positive or negative leg. - Reduce the mechanical load. - Check the motor and connections. - With motor disconnected, run the drive in open loop, in V/Hz mode and check for sufficient output phase-to-phase voltages. If an IOC occurs immediately after restarting the drive, check the appropriate current sensor. - Check the power and signal connections to the gate driver board for the phase that is identified, or replace it. The IGBT could also have failed open (and the opposite leg is receiving excess current).
$\begin{aligned} & 10105 \\ & 10205 \\ & 10305 \end{aligned}$	I1 Overcurr UNeg I2 Overcurr UNeg I3 Overcurr UNeg					
$\begin{aligned} & 10106 \\ & 10206 \\ & 10306 \end{aligned}$	11 Overcurr VPos 12 Overcurr VPos 13 Overcurr VPos					
$\begin{aligned} & 10107 \\ & 10207 \\ & 10307 \end{aligned}$	I1 Overcurr VNeg I2 Overcurr VNeg 13 Overcurr VNeg					
$\begin{aligned} & 10108 \\ & 10208 \\ & 10308 \end{aligned}$	I1 Overcurr WPos I2 Overcurr WPos I3 Overcurr WPos					
$\begin{aligned} & 10109 \\ & 10209 \\ & 10309 \end{aligned}$	I1 Overcurr WNeg I2 Overcurr WNeg 13 Overcurr WNeg					
$\begin{aligned} & 10110 \\ & 10210 \\ & 10310 \end{aligned}$	I1 Bus Overvolt I2 Bus Overvolt I3 Bus Overvolt	Resettable Fault	Coast		Y	The DC bus has exceeded the maximum value. - Verify the correct voltage on the AC input line. - Reduce the mechanical load and/or rate of deceleration. - Compare the DC bus voltage displayed in [In DC Bus Volt] (port 10), in [Cn DC Bus Volt] (port 11), and with a meter using the DC+ and DCtest points at the top of the inverter. If the measurements do not match, the components that are used for DC bus voltage feedback sensing can be damaged or incorrect. Replace the power supply, power control, and power-layer interface circuit boards.
$\begin{aligned} & 10111 \\ & 10211 \\ & 10311 \end{aligned}$	11 Ground Fault 12 Ground Fault I3 Ground Fault	Resettable Fault	Coast		Y	A current path to earth ground greater than 25% of drive rating has occurred. - Perform a Megger or surge test on a disconnected motor. Replace the motor, if necessary. - Check the output phase current displayed in [In U Phase Curr], [In V Phase Curr], and [In W Phase Curr] (port 10) for an imbalance. [In Gnd Current] (port 10) is the calculated (not measured) ground current based on the phase currents. - If the ground fault happens immediately when the drive is started, view the values of the output phase current parameters (noted in the second bullet) when running the drive with a light load or perform a trending analysis. - Reseat the rating plug and current transducer wiring harness.
$\begin{aligned} & 10112 \\ & 10212 \\ & 10312 \end{aligned}$	I1 IGBT OvrTemp I2 IGBT OvrTemp I3 IGBT OvrTemp	Resettable Fault	Coast		Y	An IGBT over temperature has been detected. This power layer interface board calculated this value based on the NTC temperature plus a rise based on recent currents through the inverter. - Check the NTC temperature that is displayed in [In Heatsink Temp] (port 10) and verify that it is not near the limit. If this value is near the limit, check for cooling problems caused by a blocked or slow heatsink fan. - Check the output phase current displayed in [In U Phase Curr], [In V Phase Curr], and [In W Phase Curr] (port 10) for an imbalance. - Check for high-current operation at low speeds, since nearly all current goes through one IGBT in this case. - Replace the power layer interface board.
$\begin{aligned} & 10113 \\ & 10213 \\ & 10313 \end{aligned}$	I1 HS OvrTemp I2 HS OvrTemp I3 HS OvrTemp	Resettable Fault	Coast		Y	A heatsink over temperature has occurred in inverter 1. - Verify that the NTC is not disconnected or shorted. - Check for cooling problems - the heatsink cooling fan is running slow, the enclosure filter or heatsink fins are dirty, or the ambient temperature is too high. - Check the NTC resistance with a meter. If the resistance is correct, replace the power layer interface board.

Event No.	Fault/Alarm Text	Type	Fault Action	Configuration Parameter	Auto Reset	Description/Action(s)
$\begin{aligned} & 10114 \\ & 10214 \\ & 10314 \end{aligned}$	I1 Main PS Low I2 Main PS Low I3 Main PS Low	Resettable Fault	Coast			The main power supply is producing a low voltage. The inverter power board provides $+/-24 \mathrm{~V}$ for the stirring fans, LEMs, and floating supply for the gate driver boards. This fault can occur during a power-down sequence. - If this fault occurs when the drive is started, check the stirring fans for a short. - Disconnect the individual loads that are powered by this board and look for a short or excessive current. - Replace the inverter power supply board.
$\begin{aligned} & 10115 \\ & 10215 \\ & 10315 \end{aligned}$	I1 IPwrIF PS Low I2 IPwrIF PS Low I3 IPwrIF PS Low	Resettable Fault	Coast			The local power supply is producing a low voltage. The inverter power supply board generates $+/-12 \mathrm{~V}$ from the system power supply and provides power to the power control and power layer interface (PLI) boards. - Check for a short on the power layer interface or backplane board and replace as necessary. - If no short is present on the power layer interface or backplane board, replace the inverter power board.
$\begin{aligned} & 10116 \\ & 10216 \\ & 10316 \end{aligned}$	I1 Sys PS Low I2 Sys PS Low I3 Sys PS Low	Alarm 1				A system power supply under voltage has occurred. - Using a meter, check for 24 V on the inverter power supply board. Replace the board if necessary.
$\begin{aligned} & 10117 \\ & 10217 \\ & 10317 \end{aligned}$	I1 SysPS Overcur 12 SysPS Overcur I3 SysPS Overcur	Resettable Fault	Coast			A system power supply over current has occurred. This fault can occur during a power-down sequence. - Check the wiring harness from the inverter power supply board to the converter gate firing board and control pod for shorts/reversals. - Check for a short on incoming power to the converter gate firing board or fiber interface board. - Disconnect P6 on the inverter power board to remove the load from this power supply. If the breaker remains tripped, replace the inverter power supply board.
$\begin{aligned} & 10118 \\ & 10218 \\ & 10318 \end{aligned}$	11 HSFan PS Low 12 HSFan PS Low I3 HSFan PS Low	Alarm 1				A heatsink fan power-supply undervoltage has occurred. - Check for 230V supply on the inverter power supply board at connector P6. If there is voltage, replace the inverter power supply board. - If there is no voltage, check the control power transformer, its primary and secondary fuses, and wiring harness.
$\begin{aligned} & \hline 10119 \\ & 10219 \\ & 10319 \end{aligned}$	I1 CT Harness I2 CT Harness I3 CT Harness	Non-Reset Fault	Coast			The drive has detected a connection loss to a current transducer. - Verify that the current transducer wiring harness is connected to J22, J23, and J24 on the power interface board.
$\begin{aligned} & 10120 \\ & 10220 \\ & 10320 \end{aligned}$	I1 PLI OvrTemp I2 PLI OvrTemp I3 PLI OvrTemp	Resettable Fault	Coast		Y	The power-layer interface circuit board is over temperature. - Verify that the ambient temperature is not too high. - Verify that the stirring fans are operational. - Check the temperature sensor test point on the power layer interface board to verify that the output is within range. If necessary, replace the power layer interface board.
$\begin{aligned} & 10121 \\ & 10221 \\ & 10321 \end{aligned}$	I1 PSBrd OvrTemp 12 PSBrd OvrTemp I3 PSBrd OvrTemp	Resettable Fault	Coast		Y	The power supply board is over temperature. - Verify that the ambient temperature is not too high. - Verify that the stirring fans are operational. - Check the temperature sensor test point on the power layer interface board to verify that the output is within range. The temperature sensor is on the inverter power supply board but the A/D processing is on the power layer interface board. If necessary, replace the inverter power supply board. If this problem persists after replacing the inverter power supply board, replace the power layer interface board.

Event No.	Fault/Alarm Text	Type	Fault Action	Configuration Parameter	Auto Reset	Description/Action(s)
$\begin{aligned} & 10122 \\ & 10222 \\ & 10322 \end{aligned}$	11 InFan1 Slow 12 InFan 1 Slow 13 InFan1 Slow	Alarm 1 / Resettable Fault				Stirring fan 1 is under speed. - Visually verify that fan 1 is turning. - Check the measured fan speed displayed in [In InFan n Speed] (port 10). - Check the wiring harness to the stirring fans to verify that the power and tachometer signals are connected. - If necessary, replace both stirring fans. When the fans are replaced, the elapsed hours, displayed in [In PredMainReset] (port 10) must be reset.
$\begin{aligned} & 10123 \\ & 10223 \\ & 10323 \end{aligned}$	11 InFan2 Slow 12 InFan2 Slow 13 InFan2 Slow					
$\begin{aligned} & 10124 \\ & 10224 \\ & 10324 \end{aligned}$	I1 NTC Open 12 NTC Open 13 NTC Open	Non-Reset Fault	Coast			An NTC open condition has occurred. - Check the ribbon cable that runs between the backplane board and gate driver board for loose connections or damage. The capacitor bank must be removed to check this cable. - If the drive is located in cold conditions, raise the ambient temperature. - Check the power-layer interface board testpoints for the individual phase NTC temperatures to determine which is open. - Reseat the power layer interface board. If this problem persists, replace the power layer interface board.
$\begin{aligned} & 10125 \\ & 10225 \\ & 10325 \end{aligned}$	I1 Incompat UBrd I2 Incompat UBrd I3 Incompat UBrd	Non-Reset Fault	Coast			The power layer interface and power control board do not detect the correct gate driver board on the U, V, or W phase. This fault can occur during a power-down sequence.
$\begin{aligned} & 10126 \\ & 10226 \\ & 10326 \end{aligned}$	I1 Incompat VBrd I2 Incompat VBrd I3 Incompat VBrd					- Check the ribbon cable that runs between the backplane board and gate driver board for loose connections or damage and verify that the correct gate driver board is installed. The capacitor bank must be removed to check this cable and the board.
$\begin{aligned} & 10127 \\ & 10227 \\ & 10327 \end{aligned}$	I1 Incompat WBrd I2 Incompat WBrd I3 Incompat WBrd					- Reflash the control board. - Check the rating plug.
$\begin{aligned} & 10128 \\ & 10228 \\ & 10328 \end{aligned}$	I1 Incompat Brdn I2 Incompat Brdn I3 Incompat Brdn	Non-Reset Fault	Coast			The drive detected an incompatible burden resistor. - Verify that the correct rating plug is installed. Reseat the rating plug.
$\begin{aligned} & 10129 \\ & 10229 \\ & 10329 \end{aligned}$	I1 DC Bus Imbal I2 DC Bus Imbal I3 DC Bus Imbal	Resettable Fault	Coast			Either the lower or upper leg of the capacitor bank is getting too much voltage (based on the bus voltage, measured voltage across the lower leg, and a calculation to find the voltage across the upper leg) or the voltage sensing components are damaged. - Check the value of the bus bleeder resistor and bus balancing resistor and replace as necessary. - Inspect the capacitor bank for leakage or damage and replace as necessary. Replacing the capacitor bank assembly also replaces the bus balancing resistor. - Measure the voltage on each half of the bus to confirm the calculations. If the bus measurements aren't correct, replace the power interface board and/or inverter power supply board.
$\begin{aligned} & 10130 \\ & 10230 \\ & 10330 \end{aligned}$	I1 Curr Offset I2 Curr Offset I3 Curr Offset	Alarm 1				The calculated current offset for any phase is larger than expected. - Check the current sensor offset reading inverter testpoint and power supply. If necessary, replace the current sensor. - If this problem persists, replace the inverter power supply board and/ or the power layer interface board.

Event No.	Fault/Alarm Text	Type	Fault Action	Configuration Parameter	Auto Reset	Description/Action(s)
$\begin{aligned} & 10131 \\ & 10231 \\ & 10331 \end{aligned}$	I1 Fault Q Full 12 Fault Q Full 13 Fault Q Full	Resettable Fault	Coast			The fault queue is full. There are at least three other faults in the queue. Troubleshooting and clearing the existing faults makes room for additional faults in the queue (if any). This fault can occur during a power-down sequence.
$\begin{aligned} & 10132 \\ & 10232 \\ & 10332 \end{aligned}$	11 Incompat PS 12 Incompat PS I3 Incompat PS	Resettable Fault	Coast			The drive has detected an incompatible power supply for the drive AC input rating. - Check the power supply and replace it if incorrect. - If the power supply is correct, reflash the control board. - If this problem persists, replace the inverter power supply board or power layer interface board.
$\begin{aligned} & 10134 \\ & 10234 \\ & 10334 \end{aligned}$	I1 UBrd Fault 12 UBrd Fault 13 UBrd Fault	Resettable Fault	Coast			The power supply on the U, V, or W phase gate driver board has failed. - If this fault occurred on this phase only, replace the appropriate gate driver board.
$\begin{aligned} & 10135 \\ & 10235 \\ & 10335 \end{aligned}$	11 VBrd Fault 12 VBrd Fault 13 VBrd Fault					on the inverter power supply board that feeds the gate driver boards and replace the inverter power supply board if necessary.
$\begin{aligned} & 10136 \\ & 10236 \\ & 10336 \end{aligned}$	11 WBrd Fault 12 WBrd Fault 13 WBrd Fault					
$\begin{aligned} & 10137 \\ & 10237 \\ & 10337 \end{aligned}$	I1 Flash Failed 12 Flash Failed I3 Flash Failed	Resettable Fault	Coast			This fault will be asserted if an attempt to flash the FPGA configuration device fails.
$\begin{aligned} & 10138 \\ & 10238 \\ & 10338 \end{aligned}$	I1 Powering Down 12 Powering Down 13 Powering Down	Resettable Fault	Coast			This fault will be asserted at 80% of the rated DC bus voltage.

Converter (Port 11) Faults and Alarms (Frame 8 and Larger)

Table 13 contains a list of Converter-specific faults and alarms, the type of fault or alarm, the action that is taken when the drive faults, the parameter that is used to configure the fault or alarm (if applicable), and a description and action (where applicable). These faults and alarms only apply to Frame 8 drives and larger.

Table 13 - Converter Fault and Alarm Types, Descriptions, and Actions

Event No.	Fault/Alarm Text	Type	Fault Action	Configuration Parameter	Auto Reset	Description/Action(s)
$\begin{aligned} & \hline 11101 \\ & 11201 \\ & 11301 \end{aligned}$	C1 Precharge C2 Precharge C3 Precharge	Alarm 1 Non-Reset Fault	Coast			1. The $A C$ line voltage is in the range of $50 \ldots 300 \mathrm{~V}$ (for 400 V class drives) or 50...400V (for 600 V class drives). Precharge begins when the AC line voltage reaches 300 V or 400 V . 2. The drive has been in precharge for more than 12 seconds. If the " Cn Precharge" alarm persists for more than 30 seconds the drive will fault. Following powerup or a fault reset, the converter does not issue any voltage-related alarms until the AC input voltage exceeds 50 V to prevent an alarm when a customer-supplied auxiliary power supply is used. 3. The $D C$ bus open circuit test can be cycling. If this test cycles for more than 10 seconds, event 144/244 "Cn DC Bus Open" occurs. Alarm: - Check the line voltage displayed in [Cn L12 Line Volt], [Cn L23 Line Volt], and [CV L31 Line Volt] (port 11). - Check the phase current displayed in [Cn L1 Phase Curr], [Cn L2 Phase Curr], and [C n L3 Phase Curr] (port 11) and the bus voltage in [Cn DC Bus Volt] (port 11). Line current, line voltage, and bus voltage sensing are all performed on the converter gate firing board. If this alarm persists, replace the converter gate firing board. Fault: - Verify that the current transducers have not all failed. If necessary, replace all three current transducers. - Verify that the DC link inductor has not failed. If necessary, replace the DC link choke. - Verify that the converter line and DC bus wiring is connected. - Verify that the capacitor bank is properly installed and connected.
11102 11202 11302 11103 11203 11303	C1 Phase Loss L1 C2 Phase Loss L1 C3 Phase Loss L1 C1 Phase Loss L2 C2 Phase Loss L2 C3 Phase Loss L2	Alarm 1				The AC line-to-line voltages are imbalanced, indicating an open AC input phase. - Check for an upstream AC line loss. - Verify that the AC input line wiring is properly connected. - Check the wiring harness to the converter gate firing board for loose connections and/or damage. If necessary, replace the converter gate-firing board wiring harness.
$\begin{aligned} & 11104 \\ & 11204 \\ & 11304 \end{aligned}$	C1 Phase Loss L3 C2 Phase Loss L3 C3 Phase Loss L3					
$\begin{aligned} & 11111 \\ & 11211 \\ & 11311 \end{aligned}$	C1 SCR OvrTemp C2 SCR OvrTemp C3 SCR OvrTemp	Alarm 1 Resettable Fault	Coast		Y	An alarm occurs if the calculated SCR temperature exceeds $125^{\circ} \mathrm{C}(257$ ${ }^{\circ}$ F) and a fault occurs when the calculated SCR temperature exceeds 135 ${ }^{\circ} \mathrm{C}\left(275{ }^{\circ} \mathrm{F}\right)$. - Check for cooling problems - the heatsink cooling fan is running slow, the enclosure filter or heatsink fins are dirty, or the ambient temperature is too high.
$\begin{aligned} & 11112 \\ & 11212 \\ & 11312 \end{aligned}$	C1 HS OvrTemp C2 HS OvrTemp C3 HS OvrTemp	Alarm 1 Resettable Fault	Coast		Y	An alarm when the heatsink temperature exceeds $95^{\circ} \mathrm{C}\left(203^{\circ} \mathrm{F}\right)$ and a fault when the heatsink temperature exceeds $100^{\circ} \mathrm{C}\left(212^{\circ} \mathrm{F}\right)$. - Check the NTC for a short or verify that it is connected. - Measure the resistance of the NTC. The reading should be approximately 11.5Ω, at room temperature. - Check for cooling problems - the heatsink cooling fan is running slow, the enclosure filter or heatsink fins are dirty, or the ambient temperature is too high.

Event No.	Fault/Alarm Text	Type	Fault Action	Configuration Parameter	Auto Reset	Description/Action(s)
$\begin{aligned} & 11113 \\ & 11213 \\ & 11313 \end{aligned}$	C1 TVSS Blown C2 TVSS Blown C3 TVSS Blown	Alarm 1				The MOV block is reporting that the transient voltage suppression system (TVSS) has blown. - Check the MOV wiring harness for loose connections and/or damage and replace if necessary. - Replace the MOV block. - If the MOV block is not blown and the wiring harness is properly connected and not damaged, replace the converter gate firing board.
$\begin{aligned} & 11114 \\ & 11214 \\ & 11314 \end{aligned}$	C1 Blower Speed C2 Blower Speed C3 Blower Speed	Alarm 1				The converter cooling fan is running below normal operating speed. - Check for debris in the fan. If necessary, clean the fan and housing. - Check for noise at the fan, indicating motor bearing failure. - Verify that the fan power and feedback connections are not loose or disconnected. - Replace the fan, if necessary.
$\begin{aligned} & \hline 11115 \\ & 11215 \\ & 11315 \end{aligned}$	C1 Line Dip C2 Line Dip C3 Line Dip	Alarm 1			Y	The bus voltage has fallen below the value specified in P451 [Pwr Loss A Level] or P454 [Pwr Loss B Level] (port 0) minus 20 volts. Until the converter has established communications with the main control board, this value defaults to 180 V below the converter bus memory. The converter stops firing the SCRs until the nominal value of the DC bus voltage for the present AC line voltage is within 60 volts of P12 [DC Bus Memory] (port 0). If the line dip condition persists for more than 60 seconds the alarm becomes a fault. - Verify the power wiring connections. - Compare the actual DC bus voltage to the value displayed in [Cn DC Bus Volt]. If the values are different, replace the converter gate firing board.
		Resettable Fault	Coast			
$\begin{aligned} & 11116 \\ & 11216 \\ & 11316 \end{aligned}$	C1 Minimum Line C2 Minimum Line C3 Minimum Line	Alarm 1				The AC line voltage is less than 280V (for a 400V class drive) / 400V (for a 600 V class drive). - The AC line voltage must exceed $320 \mathrm{~V} / 440 \mathrm{~V}$ to recover from this alarm.
$\begin{aligned} & 11117 \\ & 11217 \\ & 11317 \end{aligned}$	C1 Line Freq C2 Line Freq C3 Line Freq	Alarm 1				The measured line frequency is out of the range (below 40 Hz , or above 65 Hz). This alarm becomes a fault if the condition persists for more than 30 seconds. - Check the incoming power line frequency. - Check the wiring harness to the converter gate firing board for loose connections and/or damage and replace if necessary. - If the wiring harness is properly connected and not damaged, replace the converter gate firing board.
		Resettable Fault	Coast			
11118	C1 Single Phase C2 Single Phase C3 Single Phase	Alarm 1				The converter was intentionally powered up in single-phase mode with only AC phase L1-L2 present. Intentional single-phase mode is only detected at the initial application of AC line voltage. Application of 3phase voltage after the converter has entered single-phase mode results in the single phase alarm becoming a fault. - Verify that only one phase is applied to a drive in single-phase mode.
$\begin{aligned} & 11218 \\ & 11318 \end{aligned}$		Resettable Fault	Coast			
$\begin{aligned} & 11134 \\ & 11234 \\ & 11334 \end{aligned}$	C1 Overcurrent C2 Overcurrent C3 Overcurrent	Resettable Fault	Coast			The peak AC input current has exceeded 3000 A for five line cycles. - Verify that the current transducers are connected. - Check the wiring harness to the converter gate firing board for loose connections or damage and replace if necessary. - If the current transducers are properly connect and the wiring harness for the gate firing board is OK , replace the converter gate firing board. - Check for an open SCR or DC bus short.

Event No.	Fault/Alarm Text	Type	Fault Action	Configuration Parameter	Auto Reset	Description/Action(s)
$\begin{aligned} & 11135 \\ & 11235 \\ & 11335 \end{aligned}$	C1 Ground Fault C2 Ground Fault C3 Ground Fault	Resettable Fault	Coast		Y	The converter input ground current (peak) has exceeded the threshold set P16 [Gnd Cur Flt Lvl] (port 11) for 5 line cycles. A possible internal short in the drive between a phase, ground, or the DC bus can have occurred. - Verify that the current transducer wiring harness is connected to the converter gate firing board and that they are functioning properly. If necessary, replace all three current transducers (CTs). - If the current transducer wiring harness is connected and the CTs are functioning properly, replace the converter gate firing board. - To determine if there is an imbalance between the phases, view the input phase current values in [C n L1 Phase Curr], [Cn L2 Phase Curr], and [Cn L3 Phase Curr] (port 11). [Cn Gnd Current] (port 11) is the calculated (not measured) ground current based on the phase currents. If necessary, use trending when the ground fault occurs upon drive power-up.
$\begin{aligned} & 11136 \\ & 11236 \\ & 11336 \end{aligned}$	C1 HS NTC Open C2 HS NTC Open C3 HS NTC Open	Non-Reset Fault	Coast			The converter heatsink NTC is open. The heatsink NTC is mounted on the converter heatsink and is wired to the converter gate firing board. An open NTC is assumed when the heatsink temperature is below $-40^{\circ} \mathrm{C}$ (-40 $\left.{ }^{\circ} \mathrm{F}\right)$. - Check for loose connections or damage to the NTC wiring harness. - Measure the resistance of the NTC and verify that it is within range. - If the NTC wiring harness and resistance measurement is OK, replace the converter gate firing board.
$\begin{aligned} & 11137 \\ & 11237 \\ & 11337 \end{aligned}$	C1 HS NTC Short C2 HS NTC Short C3 HS NTC Short	Non-Reset Fault	Coast			The converter heatsink NTC is shorted. The heatsink NTC is mounted on the converter heatsink and is wired to the converter gate firing board. A shorted NTC is assumed when the heatsink temperature is above $200^{\circ} \mathrm{C}$ ($392^{\circ} \mathrm{F}$). - Check for loose connections or damage to the NTC wiring harness. - Measure the resistance of the NTC and verify that it is within range. - If the NTC wiring harness and resistance measurement is OK, replace the converter gate firing board.
$\begin{aligned} & 11138 \\ & 11238 \\ & 11338 \end{aligned}$	C1 Brd OvrTemp C2 Brd OvrTemp C3 Brd OvrTemp	Resettable Fault	Coast		Y	The gate firing board is over temperature. This fault occurs when the gate firing board temperature exceeds $70^{\circ} \mathrm{C}\left(158^{\circ} \mathrm{F}\right)$. - Check the cabinet fan wiring harness for loose connections or damage and that the fan is running. If necessary, replace the fan wiring harness and/or fan. - Lower the ambient temperature. - Replace the converter gate firing board.
$\begin{aligned} & 11139 \\ & 11239 \\ & 11339 \end{aligned}$	C1 Brd NTC Open C2 Brd NTC Open C3 Brd NTC Open	Non-Reset Fault	Coast			The converter gate firing board NTC is open. An open NTC is assumed when the temperature is below $-40^{\circ} \mathrm{C}\left(-40^{\circ} \mathrm{F}\right)$. - Replace the converter gate firing board.
$\begin{aligned} & 11140 \\ & 11240 \\ & 11340 \end{aligned}$	C1 Brd NTC Short C2 Brd NTC Short C3 Brd NTC Short	Non-Reset Fault	Coast			The converter gate firing board NTC is shorted. A shorted NTC is assumed when the temperature is above $200^{\circ} \mathrm{C}\left(392^{\circ} \mathrm{F}\right)$. - Replace the converter gate firing board.
$\begin{aligned} & 11141 \\ & 11241 \\ & 11341 \end{aligned}$	C1 Power Supply C2 Power Supply C3 Power Supply	Resettable Fault	Coast			A power supply input voltage (24V input and/or +/-12V internal supply) is operating outside of the acceptable range. - Check input power to the converter gate firing board. The following thresholds are used: 24 V is below 20.1 V 12 V is below 10.0 V 12 V is above 15.0 V -12 V is above -10.0 V - If the power supply voltage is within the acceptable range, replace the converter gate firing board.

Event No.	Fault/Alarm Text	Type	Fault Action	Configuration Parameter	Auto Reset	Description/Action(s)
$\begin{aligned} & \hline 11142 \\ & 11242 \\ & 11342 \end{aligned}$	C1 Comm Loss C2 Comm Loss C3 Comm Loss	Resettable Fault	Coast			The converter gate firing board lost communications (through the power layer interface board) to the main control board. Once the root cause of the communication fault has been resolved, power must be cycled or a drive reset must be initiated to clear this fault. ATTENTION: Hazard of permanent eye damage exists when using optical transmission equipment. This product emits intense light and invisible radiation. Do not look into fiber-optic ports or fiber-optic cable connectors. Remove power from the drive before disconnecting fiber optic cables. - Verify that the fiber optic cables are properly connected to the transceivers. - Verify that the transceivers are properly seated in the ports. - Verify that the fiber optic cable is not cracked or broken. - Verify that power is applied to the fiber optic interface board, gate firing board, and power layer interface board. If necessary, replace the fiber optic interface, gate firing board, and/or power layer interface board.
$\begin{aligned} & 11143 \\ & 11243 \\ & 11343 \end{aligned}$	C1 Firmware Flt C2 Firmware FIt C3 Firmware Flt	Non-Reset Fault	Coast			A firmware fault has occurred. - Reset the drive. If this fault persists, replace the converter gate firing board.
$\begin{aligned} & 11144 \\ & 11244 \\ & 11344 \end{aligned}$	C1 DC Bus Open C2 DC Bus Open C3 DC Bus Open	Non-Reset Fault	Coast			The DC bus voltage did not rise above 12 V (for 400V class drives) or 20V (for 600V class drives) as the SCRs began to ramp on. In this case, the converter tries to turn on the SCRs for approximately 10 seconds before issuing this fault. Event 101/201 "Cn Precharge" is issued following the first retry. - Verify that the current transducers have not all failed. If necessary, replace all three current transducers. - Verify that the DC link inductor has not failed. If necessary, replace the DC link choke. - Verify that the converter line and $D C$ bus wiring is connected. - Verify that the capacitor bank is properly installed and connected.
$\begin{aligned} & 11145 \\ & 11245 \\ & 11345 \end{aligned}$	C1 DC Bus Short C2 DC Bus Short C3 DC Bus Short	Non-Reset Fault	Coast			The peak current has exceeded 150% of the converter rating during the precharge sequence. Peak charging current is normally limited to 50% of the converter rating. - Check for a DC bus short, internally and externally. - Verify that the wiring harness to P10 on the converter gate firing board is connected and not damaged. Replace the harness as necessary. - Verify that the capacitor bank is properly installed and connected. - Check for an IGBT short and replace as necessary.
$\begin{aligned} & 11146 \\ & 11246 \\ & 11346 \end{aligned}$	C1 CT Harness C2 CT Harness C3 CT Harness	Non-Reset Fault	Coast			A current transducer (CT) wiring harness connection loss has been detected. - Verify that the CT wiring harness is not damaged and is connected to P6 on the converter gate firing board. Replace the wiring harness if necessary. - If this problem persists, replace the converter gate firing board.
$\begin{aligned} & 11147 \\ & 11247 \\ & 11347 \end{aligned}$	C1 LFuse Harness C2 LFuse Harness C3 LFuse Harness	Non-Reset Fault	Coast			A line-fuse wiring harness connection loss has been detected. - Verify that the line fuse wiring harness is not damaged and is connected to P7 on the converter gate firing board. Replace the wiring harness if necessary. - If this problem persists, replace the converter gate firing board.

Precharge (Port 11) Faults and Alarms (Frame 8 and Larger)

Table 14 contains a list of Precharge-specific faults and alarms, the type of fault or alarm, the action that is taken when the drive faults, the parameter that is used to configure the fault or alarm (if applicable), and a description and action (where applicable). These faults and alarms only apply to Frame 8 drives and larger.

Table 14-Converter Fault and Alarm Types, Descriptions, and Actions

Event No.	Fault/Alarm Text	Type	Fault Action	Configuration Parameter	Auto Reset	Description/Action(s)
$\begin{aligned} & 11101 \\ & 11201 \\ & 11301 \end{aligned}$	P1 Precharge P2 Precharge P3 Precharge	Alarm 1				The DC bus delta voltage (Vbus_in - Vbus_out) is greater than 25V when the molded case switch (MCS) is open. This alarm is suppressed when the Precharge Fault is present.
		Resettable Fault	Coast			The $D C$ bus voltage did not meet the conditions that are required to close the molded case switch (MCS) within the timeout period. 1. DC bus input is not overvoltage 2. $D C$ bus input is not undervoltage 3. DC bus delta voltage (Vbus_in - Vbus_out) is less than 25V
$\begin{aligned} & 11115 \\ & 11215 \\ & 11315 \end{aligned}$	P1 Bus Dip P2 Bus Dip P3 Bus Dip	Alarm 1				Only occurs when the drive is offline or in stand-alone mode. The bus voltage has dipped more than 180V below the drive bus memory. The alarm is released when the bus voltage rises back to within 60 V of the drive bus memory.
$\begin{aligned} & 11119 \\ & 11219 \end{aligned}$	P1 240 V AC Loss P2 240 V AC Loss P3 240 V AC Loss	Alarm 1				240 V AC not present while the drive is in the inactive state. This alarm is suppressed when the 240V AC Loss Fault is present.
11319		Resettable Fault	Coast			240 V AC was lost while in the active state. Active state whenever the drive is not stopped, for example, the molded case switch (MCS) is opening or closing or is closed.
$\begin{aligned} & 11120 \\ & 11220 \\ & 11320 \end{aligned}$	P1 240V AC Discon P2 240V AC Discon P3 240V AC Discon	Alarm 1				The 240V AC disconnect is open when the precharge controller is in the ready state (MCS is not closed).
$\begin{aligned} & 11121 \\ & 11221 \\ & 11321 \end{aligned}$	P1 Bus Undervolt P2 Bus Undervolt P3 Bus Undervolt	Alarm 1				The input bus voltage is below 400V DC while the molded case switch (MCS) is open. Hysteresis level 420V DC. This alarm is suppressed when the Bus Undervoltage Fault is present.
		Resettable Fault	Coast			The bus input voltage fell below 400V while the molded case switch (MCS) was closed. Hysteresis level at 420V. The system SMPS cuts out near 340V DC.
$\begin{aligned} & 11122 \\ & 11222 \\ & 11322 \end{aligned}$	P1 Bus Overvolt P2 Bus Overvolt P3 Bus Overvolt	Alarm 1				The input bus voltage exceeds 820V DC. Hysteresis level 800V DC.
$\begin{aligned} & 11123 \\ & 11223 \\ & 11323 \end{aligned}$	P1 Door Open P2 Door Open P3 Door Open	Alarm 1				Door closure contact is open.
$\begin{aligned} & 11130 \\ & 11230 \\ & 11330 \end{aligned}$	P1 MCS ShuntTrip P2 MCS ShuntTrip P3 MCS ShuntTrip	Resettable Fault	Coast			The molded case switch (MCS) auxiliary contact did not open within 1 second following the shunt trip coil activation.
$\begin{aligned} & 11131 \\ & 11231 \\ & 11331 \end{aligned}$	P1 MCS CloseFail P2 MCS CloseFail P3 MCS CloseFail	Resettable Fault	Coast			The molded case switch (MCS) auxiliary contact did not close within 2 seconds following the close coil activation.
$\begin{aligned} & 11132 \\ & 11232 \\ & 11332 \end{aligned}$	P1 MCSAuxContact P2 MCSAuxContact P3 MCSAuxContact	Resettable Fault	Coast			The molded case switch (MCS) auxiliary contact was open when the MCS was closed or closed when the MCS was open. If the MCS Failed to Close Fault is present, then this fault is not reported.
$\begin{aligned} & 11133 \\ & 11233 \\ & 11333 \end{aligned}$	P1 MCS Closed P2 MCS Closed P3 MCS Closed	Resettable Fault	Coast			The voltage across the molded case switch (MCS) when it was closed exceeded 10 V .

Event No.	Fault/Alarm Text	Type	Fault Action	Configuration Parameter	Auto Reset	Description/Action(s)
11138	P1 Brd Overtemp 11238 11338	P2 Brd Overtemp P3 Brd Overtemp	Fault			

Event No.	Fault/Alarm Text	Type	Fault Action	Configuration Parameter	Auto Reset	Description/Action(s)
11158	P1 BFuse Pos 11258 P2 BFuse Pos	Non-Reset Fault	Coast			The DC+ bus fuse is blown. - Check the DC + bus fuse and wiring harness and replace if necessary. - If this problem persists, replace the converter gate firing board.
11358	P3 BFuse Pos					

N-1 and Re-Rate Functions

The $\mathrm{N}-1$ feature is available on Frame 9 and larger drives. This feature allows the drive to be run at reduced current limits if one of the paralleled inverter/ converter drive assemblies fails.

The letter N represents the number of drive assemblies in the drive. For example, a frame 9 drive has two drive assemblies, therefore $\mathrm{N}=2$. A Frame 9 drive running the $\mathrm{N}-1$ feature is running on one drive assembly, that is, $\mathrm{N}-1=1$.

The $\mathrm{N}-1$ feature does not change the rating of the drive. It is a way to impose temporary output restrictions on the drive until the damaged inverter/converter drive assembly is repaired and reinstalled. Some customers can elect to oversize their drives, to have redundant inverter/converter assemblies.

The Re-Rate function allows the rating of the drive to be changed. This procedure is used when making long-term changes.

$\mathrm{N}-1$ and Re-Rating with Integrated Motion on EtherNet/IP

These features cannot be used while the drive is in Integrated Motion on EtherNet/IP mode. If these features are needed, disconnect the drive from the EtherNet/IP network, perform the $\mathrm{N}-1$ or Re-Rate procedure, then reconnect the drive to the network.

Use the $\mathrm{N}-1$ Feature

This procedure describes how to use the $\mathrm{N}-1$ feature to run the drive at reduced limits because an inverter/converter assembly has failed.

IMPORTANT You cannot flash update a drive that is using the N -1 feature.

For information on assembly removal and general safety precautions that are related to AC input and Common DC input PowerFlex 755 drives, refer to the PowerFlex 750-Series AC Drives Installation Instructions, publication 750IN001.

1. Remove all incoming power to the drive.
2. Disconnect and remove the failed drive assembly from the cabinet.

The control pod can need to be moved from the disabled drive assembly to one of the remaining drive assemblies. See the PowerFlex 750-Series AC Drives Hardware Service Manual, publication 750-TG001.
3. Energize the drive.

With the drive assembly removed, an F360 "N-1 See Manual" fault is indicated.
4. Verify the new rating shown in Port 10, P21 [Effctv I Rating].

Set Port 10, P20 [Recfg Acknowledg] to 1 "Acknowledge" to accept the reconfiguration.
5. To clear the fault, press the Stop key on the HIM.

P20 [Recfg Acknowledg] automatically returns to 0 "Ready."
Alarm 322 " N -1 Operation" is indicated, and persists, while the drive is in this reconfigured state.
6. Run the reconfigured drive with reduced current and power limits.

Use the Re-Rate Feature

This procedure describes how to use the Re-Rate feature to run the drive at a reduced rating because a drive assembly has been removed.

1. Save the drive current parameter settings by using the Human Interface Module (HIM), DriveExecutive ${ }^{\text {m" }}$, or DriveExplorer ${ }^{\text {mis }}$.
2. Remove all incoming power to the drive.

ATTENTION: 0 avoid an electric shock hazard, verify that the voltage on the buscapacitors has discharged completely before servicing. Measure the $D C$ bus voltage at the $D C+$ and $D C$ - TESTPOINT sockets on the front of the power module.
3. Disconnect all fiber-optic cables from the fiber interface board, including the connections to the drive assemblies not removed.
4. Remove the selected drive assembly from the cabinet.
5. Energize the drive.

With all fiber-optic cables disconnected, "No Inverters" and "No Converters" port verification errors are indicated.
6. On the HIM, press FIX to acknowledge the error then Enter to confirm.
7. Remove all incoming power to the drive. Verify that the bus capacitors have discharged before continuing.
8. Reconnect the fiber-optic cables to the fiber interface board.
9. Energize the drive.

With the drive assembly removed, a "One Inverter" port verification error is indicated.
10. On the HIM, press FIX to acknowledge the error then Enter to confirm. An F361 "Rerate See Manual" fault is indicated.
11. Verify the new rating shown in Port 10, P21 [Effctv I Rating].

Set Port 10, P20 [Recfg Acknowledg] to 1 "Acknowledge" to accept the reconfiguration.

> | IMPORTANT | Drive parameters are set to factory defaults when the new rating is |
| :--- | :--- |
| acknowledged. If a condition exists that does not allow the drive | |
| parameters to be set to factory defaults, setting P20 to 1 | |
| "Acknowledge" is not accepted. Such conditions include the drive is | |
| running, DeviceLogix is running, or the drive is communicating with a | |
| PLC. | |

12. To clear the fault, press the Stop key on the HIM. P20 [Recfg Acknowledg] automatically returns to 0 "Ready."
13. Use the HIM download function, DriveExecutive download function, or DriveExplorer download function to download the parameter settings saved in Step1.

IMPORTANT	Do not use the Compare Screen Copy function in DriveExecutive or the Error Check Download function in DriveExplorer to perform this step.

14. Run the reconfigured drive at the reduced rating and power limits.

Use the Re-Rate Feature to Add or Replace a Drive Assembly

This procedure describes how to use the Re-Rate feature to increase the drive rating because a drive assembly has been added. For example, a drive assembly has been repaired and is being reinstalled. Because the drive was Re-Rated when the drive assembly was removed, it must be re-rated again to run at full rating and power limits.

1. Save the drive current parameter settings by using the Human Interface Module (HIM), DriveExecutive, or DriveExplorer.
2. Remove all incoming power to the drive.
ATTENTION: To avoid an electric shock hazard, verify that the voltage
on the bus capacitors has discharged completely before servicing.
Measure the $D C$ bus voltage at the $D C+$ and $D C$ - TESTPOINT sockets on
the front of the power module.
3. Add the drive assembly to the drive and connect it to the fiber interface board in consecutive order.
4. Energize the drive.

With the addition of a drive assembly, port verification errors indicate the number of installed drive assemblies. For example, a frame 9 would indicate "Two Inverters" and "Two Converters."
5. On the HIM press FIX to acknowledge the error then Enter to confirm.

An F361 "Rerate See Manual" fault is indicated.
6. Verify the new rating shown in Port 10, P21 [Effctv I Rating].

Set Port 10, P20 [Recfg Acknowledg] to 1 "Acknowledge" to accept the reconfiguration.

IMPORTANT	Drive parameters are set to factory defaults when reconfiguration is acknowledged. If a condition exists that does not allow the drive parameters to be set to factory defaults, setting P20 to 1 "Acknowledge" is not accepted. Such conditions include the drive is
	running, DeviceLogix is running, or the drive is communicating with a PLC.

7. To clear the fault, press the Stop key on the HIM.

P20 [Recfg Acknowledg] automatically returns to 0 "Ready."
8. Use the HIM download function, DriveExecutive download function, or DriveExplorer download function to download the parameter settings saved in Step 1.

IMPORTANT	De not use the Compare Screen Copy function in DriveExecutive or the
	Error Check Download function in DriveExplorer to perform this step.

9. Run the drive at the full rating and full power limits.

The adapter has an event queue to record significant events that occur in the operation of the adapter. When such an event occurs, an entry consisting of the event numeric code and a timestamp is put into the event queue. You can view the event queue by using the PowerFlex 20-HIM-A6/-C6S HIM, DriveExplorer software (version 6.01 or later), DriveExecutive software (version 5.01 or later), or other clients by using the DPI Fault object. For details on how to view and clear events by using the HIM, see the PowerFlex 20-HIM-A6/-C6S HIM (Human Interface Module) User Manual, publication 20HIM-UM001.

Many events in the event queue occur under normal operation. If you encounter unexpected communications problems, the events can help you or Rockwell Automation personnel troubleshoot the problem. The following events can appear in the event queue.
Table 15-Adapter Events

Code	Event	Description
13001	No Event	Text that is displayed in an empty event queue entry.
13002	Device Power Up	Power was applied to the adapter.
13003	Device Reset	The adapter was reset.
13004	EEPROM CRC Error	The EEPROM checksum/CRC is incorrect, which limits adapter functionality. Default parameter values must be loaded to clear this condition.
13005	App Updated	The adapter application firmware was flash updated.
13006	Boot Updated	The adapter boot firmware was flash updated.
$13007 \ldots$	Reserved	-
13024		

Table 16-DPI Events

Code	Event	Description
13025	DPI Manual Reset	The adapter was reset.
$13026 \ldots$	Reserved	-
13028		

Table 17 - Network Events

Code	Event	Description
13029	Net Link Up	A network link was available for the adapter.
13030	Net Link Down	The network link was removed from the adapter.
13031	Net Dup Address	The adapter uses the same IP address as another device on the network.
13032	Net Comm Fault	The adapter detected a communications fault on the network.
13033	Net Sent Reset	The adapter received a reset from the network.
13034	Net IO Close	An I/0 connection from the network to the adapter was closed.
13035	Net Idle Fault	The adapter received "idle" packets from the network.
13036	Net IO Open	An I/O connection from the network to the adapter has been opened.
13037	Net IO Timeout	An I/O connection from the network to the adapter has timed out.
13038	Net IO Size Err	The adapter received an incorrectly sized I/O packet.
13039	PCCC IO Close	The device sending PCCC Control messages to the adapter has set the PCCC Control Timeout to zero.
13040	PCCC IO Open	The adapter has begun receiving PCCC Control messages (the PCCC Control Timeout was previously set to a non-zero value).

Code	Event	Description
13041	PCCC IO Timeout	The adapter has not received a PCCC Control message for longer than the PCCC Control Timeout.
13042	Msg Ctrl Open	The timeout attribute in either the CIP Register or Assembly object was written with a non-zero value, allowing control messages to be sent to the adapter.
13043	Msg Ctrl Close	The timeout attribute in either the CIP Register or Assembly object was written with a zero value, disallowing control messages to be sent to the adapter.
13044	Msg Ctrl Timeout	The timeout attribute in either the CIP Register or Assembly object elapsed between accesses of those objects.
13045	Peer IO Open	The adapter received the first Peer I/O message.
13046	Peer IO Timeout	The adapter has not received a Peer I/O message for longer than the Peer I/0 Timeout.
$13047 \ldots$	Reserved	-
13054	B00TP Response	The adapter received a response to its B00TP request.
13055	E-mail Failed	The adapter encountered an error attempting to send a requested e-mail message.
13056	Option Card Flt	The adapter experienced a generic fault condition (drive only).
13057	Module Defaulted	The adapter has been set to defaults.
13058	Net Memory Mgmt	The adapter encountered an error with buffer counters or lists.
13059		

I/O Faults and Alarms

Table 18 contains a list of I/O-specific faults and alarms, the type of fault or alarm, the action that is taken when the drive faults, the parameter that is used to configure the fault or alarm (if applicable), and a description and action (where applicable).

Table 18 - I/O Fault and Alarm Types, Descriptions, and Actions

$\begin{aligned} & \text { Event } \\ & \text { No. }{ }^{(1)} \end{aligned}$	Fault/Alarm Text	Type	Fault Action	Configuration Parameter	Auto Reset	Description/Action(s)
xx000	No Entry					
xx001	Analog In Loss	Configurable		$\begin{aligned} & \text { P53/P63 } \\ & \text { [Anlg } \ln X \text { LssActn] } \end{aligned}$		Analog input has a lost signal.
xx002	Motor PTC Trip	Configurable		P40 [PTC Cfg]		Motor PTC (Positive Temperature Coefficient) over temperature.
xx005	Relay0 Life	Configurable		P106 [R00 LifeEvntActn]		Predictive maintenance.
xx006	Relay1 Life	Configurable		P116 [R01 LifeEvntActn]		Predictive maintenance.
xx010	Anlg Cal Chksum	Non-Reset Fault	Coast			The checksum read from the analog calibration data does not match the checksum calculated. Replace option module.
x×058	Module Defaulted	Fault	Coast			Module was commanded to write default values.

(1) $x x$ indicates the port number. See Fault and Alarm Display Codes on page 308 for an explanation.

Safe Torque Off Fault

Table 19 lists the safe torque off-specific fault, the action taken when the drive faults, and its description.

Table 19 - Safe Torque Fault and Alarm Types, Descriptions, and Actions

Event No. ${ }^{(1)}$	Fault/Alarm Text	Type	Fault Action	Configuration Parameter	Auto Reset	Description/Action(s)
$x \times 000$	No Entry					
$x x 058$	Module Defaulted	Fault	Coast			Module was commanded to write default values.

[^0]
ATEX Faults

Table 20 lists the ATEX-specific fault, the action taken when the drive faults, and its description.

Table 20 - ATEX Fault Types, Descriptions, and Actions

Event No.	Fault/Alarm Text	Type	Fault Action	Configuration Parameter	Auto Reset	Description/Action(s)
$x \times 011$	PTC Over Temp	Resettable Fault	Coast		An over-temperature condition has been detected in the motor, or the sensor path has been broken.	
$x x 012$	PTC ShortCircuit	Resettable Fault	Coast		A short circuit condition has been detected in the sensor path. If unable to clear fault, be sure the thermal sensor that is connected is a PTC type and not a thermostatic type.	
$x x 013$	ATX VoltageLoss	Resettable Fault	Coast		Possible hardware damage. The motor to the thermal sensor is shorted. Excessive EMC noise due to improper grounding/shielding.	
$x x 014$	ThermostatOvrTmp	Resettable Fault	Coast		An over-temperature condition has been detected in the motor, or the sensor path has been broken.	

(1) $x x$ indicates the port number where the ATEX option is installed.

Single Incremental Encoder Faults and Alarms

Table 21 contains a list of encoder-specific faults and alarms, the type of fault or alarm, the action that is taken when the drive faults, the parameter that is used to configure the fault or alarm (if applicable), and a description and action (where applicable).

Table 21 - Single Incremental Encoder Fault and Alarm Types, Descriptions, and Actions

Event No. ${ }^{(1)}$	Fault/Alarm Text	Type	Fault Action	Configuration Parameter	Auto Reset	Description/Action(s) $x \times 000$ Open Wire
$x \times 001$	Configurable		P3 [Fdbk Loss Cfg]	The encoder module has detected an input signal (A, B, or Z) in the same state as its complement (A Not, B Not, or Z Not). For open wire detection to work, the encoder signals must be differential (not single ended). The Z channel is only checked when enabled. See P1 [Encoder Cfg].		
$x \times 002$	Quadrature Loss	Configurable		P3 [Fdbk Loss Cfg]		
[Fdbk Loss Cfg]						

(1) $x x$ indicates the port number. See Fault and Alarm Display Codes on page 308 for an explanation.

Dual Incremental Encoder Faults and Alarms

Table 22 contains a list of encoder-specific faults and alarms, the type of fault or alarm, the action that is taken when the drive faults, the parameter that is used to configure the fault or alarm (if applicable), and a description and action (where applicable).

Table 22 - Dual Incremental Encoder Fault and Alarm Types, Descriptions, and Actions

$\begin{aligned} & \text { Event } \\ & \text { No. (1) } \end{aligned}$	Fault/Alarm Text	Type	Fault Action	Configuration Parameter	Auto Reset	Description/Action(s)
xx000	Enc0 Open Wire	Configurable		P3 [Enc 0 FB Lss Cfg]		The dual encoder module has detected an encoder 0 input signal (A, B, or Z) in the same state as its complement (A Not, B Not, or ZNot). For open wire detection to work, the encoder signals must be differential (not single ended). The Z channel is only checked when enabled. See P1 [Enc 0 Cfg].
xx001	Enc0 Phase Loss	Configurable		P3 [Enc 0 FB Lss Cfg]		More than 30 encoder 0 phase loss (open wire) events have occurred over an 8 millisecond time period. The same restrictions as for Enc0 Open Wire detection apply.
x×002	Enco Quad Loss	Configurable		$\begin{aligned} & \hline \text { P3 } \\ & \text { [Enc 0 FB Lss Cfg] } \end{aligned}$		Encoder 0 Quadrature loss events occur when simultaneous edge transitions occur on both the A and B channels of encoder 0. This fault occurs when more than 10 quad loss events over a 10 millisecond time period are detected. Only valid when both A and B channels are used (not Bit 1 "A Chan Only") in P1 [Enc 0 Cfg].
xx030	Enc1 Open Wire	Configurable		P13 [Enc 1 FB Lss Cfg]		The dual encoder module has detected an encoder 1 input signal (A, B, or Z) in the same state as its complement (A Not, B Not, or Z Not). For open wire detection to work, the encoder signals must be differential (not single ended). The Z channel is only checked when enabled. See P11 [Enc 1 Cfg].
xx031	Enc1 Phase Loss	Configurable		P13 [Enc 1 FB Lss Cfg]		More than 30 encoder 1 phase loss (open wire) events have occurred over an 8 millisecond time period. The same restrictions as for Enc1 Open Wire detection apply.
xx032	Enc1 Quad Loss	Configurable		P13 [Enc 1 FB Lss Cfg]		Encoder 1 Quadrature loss events occur when simultaneous edge transitions occur on both the A and B channels of encoder 1. This fault occurs when more than 10 quad loss events over a 10 millisecond time period are detected. Only valid when both A and B channels are used (not Bit 1"A Chan Only") in P11 [Enc 1 (fg].
xx058	Module Defaulted	Fault	Coast			Module was commanded to write default values.

(1) $x x$ indicates the port number. See Fault and Alarm Display Codes on page 308 for an explanation.

Universal Feedback Faults and Alarms

Table 23 contains a list of universal feedback-specific faults and alarms, the type of fault or alarm, the action that is taken when the drive faults, the parameter that is used to configure the fault or alarm (if applicable), and a description and action (where applicable).

Table 23 - Universal Feedback Fault and Alarm Types, Descriptions, and Actions

$\begin{aligned} & \text { Event } \\ & \text { No. (1) } \end{aligned}$	Fault/Alarm Text	Type	Fault Action	Configuration Param	$\begin{aligned} & \text { Auto } \\ & \text { Reset } \end{aligned}$	Description
x×000	LightSrc Err	Configurable		$\begin{array}{\|l\|} \hline \text { P9 } \\ \text { [FBO Loss Cfg] } \end{array}$		Error reported by Heidenhain Encoder on Channel 0 with EnDat Interface - Light source failure
xx001	Ch0 SigAmp Err	Configurable		P9 [FBO Loss Cfg]		Error reported by Heidenhain Encoder on Channel 0 with EnDat Interface -Signal amplitude error
xx002	ChO PsnVal Err	Configurable		$\begin{aligned} & \text { P9 } \\ & {[\text { [FBO Loss Cfg] }} \end{aligned}$		Error reported by Heidenhain Encoder on Channel 0 with EnDat Interface - Position value error
x×003	Ch0 OverVolt Err	Configurable		$\begin{array}{ll} \hline \text { P9 } \\ \text { [FBO Loss Cfg] } \end{array}$		Error reported by Heidenhain Encoder on Channel 0 with EnDat Interface - Overvoltage error
xx004	Ch0 UndVolt Err	Configurable		$\begin{aligned} & \hline \text { P9 } \\ & \text { [FBO Loss Cfg] } \end{aligned}$		Error reported by Heidenhain Encoder on Channel 0 with EnDat Interface - Undervoltage error
xx005	Ch0 OverCur Err	Configurable		$\begin{aligned} & \text { P9 } \\ & {[\text { [FBO Loss Cfg] }} \end{aligned}$		Error reported by Heidenhain Encoder on Channel 0 with EnDat Interface - Overcurrent error
xx006	Ch0 Battery Err	Configurable		P9 [FBO Loss Cfg]		Error reported by Heidenhain Encoder on Channel 0 with EnDat Interface - Battery empty
xx009	Ch0 AnalSig Err	Configurable		$\begin{aligned} & \hline \text { P9 } \\ & \text { [FBO Loss Cfg] } \end{aligned}$		Error reported by Stegmann Encoder on Channel 0 with Hiperface Interface - Analog signals outside specification
xx010	Ch0 IntOfft Err	Configurable		$\begin{array}{\|l\|} \hline \text { P9 } \\ {[\text { [FBO Loss Cfg] }} \end{array}$		Error reported by Stegmann Encoder on Channel 0 with Hiperface Interface - Faulty internal angular offset
xx011	Ch0 DataTabl Err	Configurable		P9 [FBO Loss Cfg]		Error reported by Stegmann Encoder on Channel 0 with Hiperface Interface - Data field partitioning table damaged
xx012	Ch0 AnalLim Err	Configurable		P9 [FBO Loss Cfg]		Error reported by Stegmann Encoder on Channel 0 with Hiperface Interface - Analog limit values not available
xx013	Cho Int I2C Err	Configurable		$\begin{array}{\|l\|} \hline \text { P9 } \\ {[\text { [FBO Loss Cfg] }} \end{array}$		Error reported by Stegmann Encoder on Channel 0 with Hiperface Interface - Internal I2C bus not operational
xx014	ChO IntChksm Err	Configurable		P9 [FBO Loss Cfg]		Error reported by Stegmann Encoder on Channel 0 with Hiperface Interface - Internal checksum error
x×015	Ch0 PrgmResetErr	Configurable		P9 [FBO Loss Cfg]		Error reported by Stegmann Encoder on Channel 0 with Hiperface Interface - Encoder reset occurred as a result of program monitoring
xx016	ChO Cnt0vrflwErr	Configurable		$\begin{aligned} & \hline \text { P9 } \\ & \text { [FBO Loss Cfg] } \end{aligned}$		Error reported by Stegmann Encoder on Channel 0 with Hiperface Interface - Counter overflow
xx017	Ch0 Parity Err	Configurable		P9 [FBO Loss Cfg]		Error reported by Stegmann Encoder on Channel 0 with Hiperface Interface - Parity error
xx018	Ch0 Chksum Err	Configurable		P9 [FBO Loss Cfg]		Error reported by Stegmann Encoder on Channel 0 with Hiperface Interface - Checksum of the data that are transmitted is incorrect
xx019	Ch0 InvCmd Err	Configurable		P9 [FBO Loss Cfg]		Error reported by Stegmann Encoder on Channel 0 with Hiperface Interface - Unknown command code
xx020	ChO SendSize Err	Configurable		P9 [FBO Loss Cfg]		Error reported by Stegmann Encoder on Channel 0 with Hiperface Interface - Number of data that are transmitted is incorrect
xx021	Ch0 CmdArgmt Err	Configurable		P9 [FBO Loss Cfg]		Error reported by Stegmann Encoder on Channel 0 with Hiperface Interface - Command argument that is transmitted is not allowed
xx022	ChO InvWrtAdrErr	Configurable		$\begin{array}{\|l\|} \hline \text { P9 } \\ {[\text { [FBO Loss Cfg] }} \end{array}$		Error reported by Stegmann Encoder on Channel 0 with Hiperface Interface - The selected data field must not be written to (invalid write address)

$\begin{aligned} & \hline \text { Event } \\ & \text { No. }{ }^{(1)} \end{aligned}$	Fault/Alarm Text	Type	Fault Action	Configuration Param	Auto Reset	Description
x×023	Ch0 AccCode Err	Configurable		$\begin{array}{\|l\|} \hline \text { P9 } \\ {[\text { [FBO Loss Cfg] }} \end{array}$		Error reported by Stegmann Encoder on Channel 0 with Hiperface Interface - Incorrect access code
x×024	Ch0 FieldSizeErr	Configurable		$\begin{array}{\|l\|} \hline \text { P9 } \\ \text { [FBO Loss Cfg] } \end{array}$		Error reported by Stegmann Encoder on Channel 0 with Hiperface Interface - Size of data field that is stated cannot be changed
x×025	Ch0 Address Err	Configurable		$\begin{array}{\|l\|} \hline \text { P9 } \\ \text { [FBO Loss Cfg] } \end{array}$		Error reported by Stegmann Encoder on Channel 0 with Hiperface Interface - Word address that is stated is outside data field
xx026	Ch0 FieldAcc Err	Configurable		$\begin{array}{\|l\|} \hline \text { P9 } \\ \text { [FBO Loss Cfg] } \end{array}$		Error reported by Stegmann Encoder on Channel 0 with Hiperface Interface - Access to non-existent data field
xx028	Ch0 SiTurnPsnErr	Configurable		$\begin{array}{\|l\|} \hline \text { P9 } \\ {[\text { [FBO Loss Cfg] }} \end{array}$		Error reported by Stegmann Encoder on Channel 0 with Hiperface Interface - Single turn position unreliable
xx029	Ch0 MulTrnPsnErr	Configurable		$\begin{array}{\|l\|} \hline \text { P9 } \\ \text { [FBO Loss Cfg] } \end{array}$		Error reported by Stegmann Encoder on Channel 0 with Hiperface Interface - Multiple turn position unreliable
xx036	Ch0 AnalVal Err	Configurable		$\begin{array}{\|l\|} \hline \text { P9 } \\ \text { [FBO Loss Cfg] } \end{array}$		Error reported by Stegmann Encoder on Channel 0 with Hiperface Interface - Analog value error (process data)
xx037	Ch0 SendCurr Err	Configurable		$\begin{array}{\|l\|} \hline \text { P9 } \\ \text { [FBO Loss Cfg] } \end{array}$		Error reported by Stegmann Encoder on Channel 0 with Hiperface Interface - Transmitter current critical (dirt, broken transmitter)
xx038	Ch0 EncTemp Err	Configurable		$\begin{array}{\|l\|} \hline \text { P9 } \\ \text { [FBO Loss Cfg] } \end{array}$		Error reported by Stegmann Encoder on Channel 0 with Hiperface Interface - Encoder temperature critical
xx039	Ch0 Speed Err	Configurable		$\begin{array}{\|l\|} \hline \text { P9 } \\ \text { [FBO Loss Cfg] } \end{array}$		Error reported by Stegmann Encoder on Channel 0 with Hiperface Interface - Speed too high, no position formation possible
xx040	Ch0 General Err	Configurable		P9 [FBO Loss Cfg]		Error reported by an Encoder on Channel 0 with BiSS Interface - An error bit of the BiSS Single Cycle Data is set
xx046	Ch0 LED Curr Err	Configurable		$\begin{array}{\|l\|} \hline \text { P9 } \\ \text { [FBO Loss Cfg] } \end{array}$		Error reported by an Encoder on Channel 0 with BiSS Interface - LED current out of control range
xx047	Ch0 ExMulTurnErr	Configurable		$\begin{array}{\|l\|} \hline \text { P9 } \\ \text { [FBO Loss Cfg] } \end{array}$		Error reported by an Encoder on Channel 0 with BiSS Interface - External multi-turn error
xx048	Ch0 PsnCode Err	Configurable		P9 [FBO Loss Cfg]		Error reported by an Encoder on Channel 0 with BiSS Interface - Position code error (single-step error)
xx049	Ch0 Config Err	Configurable		$\begin{array}{\|l\|} \hline \text { P9 } \\ \text { [FBO Loss Cfg] } \end{array}$		Error reported by an Encoder on Channel 0 with BiSS Interface - failure configuring interface
xx050	ChO PsnVal Err	Configurable		$\begin{array}{\|l\|} \hline \text { P9 } \\ \text { [FBO Loss Cfg] } \end{array}$		Error reported by an Encoder on Channel 0 with BiSS Interface - Position data not valid
xx051	ChO SerialComErr	Configurable		$\begin{array}{\|l\|} \hline \text { P9 } \\ {[\text { [FBO Loss Cfg] }} \end{array}$		Error reported by an Encoder on Channel 0 with BiSS Interface - Serial interface failure
xx052	Ch0 Ext Failure	Configurable		$\begin{array}{\|l\|} \hline \text { P9 } \\ \text { [FBO Loss Cfg] } \end{array}$		Error reported by an Encoder on Channel 0 with BiSS Interface - External failure over NERR
xx053	Ch0 Temp Exc Err	Configurable		$\begin{array}{\|l\|} \hline \text { P9 } \\ \text { [FBO Loss Cfg] } \end{array}$		Error reported by an Encoder on Channel 0 with BiSS Interface Temperature out of defined range
xx058	Modul Defaulted	Fault	Coast			Parameter values for this encoder have been reset to their default settings.
x×064	Ch0 OutOfRailErr	Configurable		$\begin{array}{\|l\|} \hline \text { P9 } \\ {[\text { [FBO Loss Cfg] }} \end{array}$		Error reported by a linear Stahl encoder on Channel 0 - Rail is no longer present between the read head
xx068	Ch0 Read Head 1	Configurable		$\begin{array}{\|l\|} \hline \text { P9 } \\ \text { [FBO Loss Cfg] } \end{array}$		Error reported by a linear Stahl encoder on Channel 0 - Indicates that the read head must be cleaned or installed correctly
xx069	Ch0 Read Head 2	Configurable		P9 [FBO Loss Cfg]		Error reported by a linear Stahl encoder on Channel 0 - Indicates that the read head must be cleaned or installed correctly
x×070	Cho RAM Error	Configurable		$\begin{array}{\|l\|} \hline \text { P9 } \\ \text { [FBO Loss Cfg] } \end{array}$		Error reported by a linear Stahl encoder on Channel 0 - Indicates a RAM error. Reading head must be repaired
xx071	Ch0 EPROM Error	Configurable		$\begin{array}{\|l\|} \hline \text { P9 } \\ \text { [FBO Loss Cfg] } \end{array}$		Error reported by a linear Stahl encoder on Channel 0 - Indicates an EPROM error. Reading head must be repaired

$\begin{aligned} & \hline \text { Event } \\ & \text { No. }{ }^{(1)} \end{aligned}$	Fault/Alarm Text	Type	Fault Action	Configuration Param	Auto Reset	Description
x×072	Ch0 ROM Error	Configurable		$\begin{array}{\|l\|} \hline \text { P9 } \\ \text { [FBO Loss Cfg] } \end{array}$		Error reported by a linear Stahl encoder on Channel 0 - Indicates a ROM error. Reading head must be repaired
x×074	Ch0 No Position	Configurable		$\begin{array}{\|l\|} \hline \text { P9 } \\ \text { [FBO Loss Cfg] } \end{array}$		Error reported by a linear Stahl encoder on Channel 0 - Indicates that no position value was available - only possible following powerup or reset
x×081	Ch0 Msg Cheksum	Configurable		$\begin{array}{\|l\|} \hline \text { P9 } \\ \text { [FBO Loss Cfg] } \end{array}$		Indicates that the option card has detected a serial communications checksum error while attempting to communicate with the encoder on channel 0 .
x×082	Ch0 Timeout	Configurable		$\begin{array}{\|l\|} \hline \text { P9 } \\ \text { [FBO Loss Cfg] } \end{array}$		Indicates that the option card has detected a serial communications timeout error while attempting to communicate with the encoder on channel 0 .
x×083	Ch0 Comm	Configurable		$\begin{aligned} & \hline \text { P9 } \\ & \text { [FBO Loss Cfg] } \end{aligned}$		Indicates that the option card has detected a serial communications error (other than checksum or timeout) while attempting to communicate with the encoder on channel 0 .
x×084	Ch0 Diagnostic	Configurable		$\begin{array}{\|l\|} \hline \text { P9 } \\ \text { [FBO Loss Cfg] } \end{array}$		Indicates that the option card has detected a powerup diagnostic test failure for encoder channel 0 .
x×085	Ch0 SpplyVItgRng	Configurable		$\begin{aligned} & \hline \text { P9 } \\ & \text { [FBO Loss Cfg] } \end{aligned}$		Indicates that the voltage source to the encoder 0 is out of range.
xx086	Ch0 SC Amplitude	Configurable		$\begin{array}{\|l\|} \hline \text { P9 } \\ \text { [FBO Loss Cfg] } \end{array}$		Indicates that the encoder 0 signal amplitude is out of tolerance.
x×087	Ch0 Open Wire	Configurable		$\begin{array}{\|l\|} \hline \text { P9 } \\ \text { [FBO Loss Cfg] } \end{array}$		Indicates that an open wire condition has been detected for encoder 0 . Both Sine and Cosine signals fell below 0.3 volts.
x×088	Ch0 Quad Loss	Configurable		$\begin{array}{\|l\|} \hline \text { P9 } \\ \text { [FBO Loss Cfg] } \end{array}$		Indicates that a signal quadrature error has been detected for encoder 0 . Add ferite cores.
x×089	Ch0 Phase Loss	Configurable		$\begin{array}{\|l\|} \hline \text { P9 } \\ \text { [FBO Loss Cfg] } \end{array}$		Indicates that an A or B signal of an A quad B incremental encoder on Channel 0 is disconnected.
xx090	Ch0 Unsupp Enc	Configurable		$\begin{array}{\|l\|} \hline \text { P9 } \\ \text { [FBO Loss Cfg] } \end{array}$		Indicates that the connected encoder on Channel 0 is not supported
xx100	Ch0 FreqExc Alm	Alarm 1		$\begin{array}{\|l\|} \hline \text { P9 } \\ \text { [FBO Loss Cfg] } \end{array}$		Alarm reported by Heidenhain Encoder on Channel 0 with EnDat Interface - Frequency exceeded warning
xx101	Ch0 TempExc Alm	Alarm 1		$\begin{aligned} & \hline \text { P9 } \\ & \text { [FBO Loss Cfg] } \end{aligned}$		Alarm reported by Heidenhain Encoder on Channel 0 with EnDat Interface - Temperature exceeded warning
xx102	Ch0 LightLim Alm	Alarm 1		$\begin{array}{\|l\|} \hline \text { P9 } \\ \text { [FBO Loss Cfg] } \end{array}$		Alarm reported by Heidenhain Encoder on Channel 0 with EnDat Interface - Limit of light control reserve reached
xx103	Ch0 Battery Alm	Alarm 1		$\begin{array}{\|l\|} \hline \text { P9 } \\ \text { [FBO Loss Cfg] } \end{array}$		Alarm reported by Heidenhain Encoder on Channel 0 with EnDat Interface - Battery warning
xx104	Ch0 RefPoint Alm	Alarm 1		$\begin{array}{\|l\|} \hline \text { P9 } \\ \text { [FBO Loss Cfg] } \end{array}$		Alarm reported by Heidenhain Encoder on Channel 0 with EnDat Interface - Reference point not reached
xx108	Ch0 General Alm	Alarm 1		$\begin{array}{\|l\|} \hline \text { P9 } \\ \text { [FBO Loss Cfg] } \end{array}$		Alarm reported by an Encoder on Channel 0 with BiSS Interface - A warning bit of the BiSS Single Cycle Data is set
xx115	Ch0 Optics Alarm	Alarm 1		$\begin{array}{\|l\|} \hline \text { P9 } \\ \text { [FBO Loss Cfg] } \end{array}$		Alarm reported by a linear Stahl encoder on Channel 0 - Displays an alarm when the Stahl optical system requires cleaning
xx116	Ch0 Out0fRailAlm	Alarm 1		$\begin{array}{\|l\|} \hline \text { P9 } \\ {[\text { [FBO Loss Cfg] }} \end{array}$		Alarm reported by a linear Stahl encoder on Channel 0 - Indicates that the read encoder count is at the maximum value (524287)
x×200	Ch1 LightSrc Err	Configurable		$\begin{aligned} & \text { P39 } \\ & \text { [FB1 Loss Cfg] } \end{aligned}$		Error reported by Heidenhain Encoder on Channel 1 with EnDat Interface - Light source failure
x×201	Ch1 SigAmp Err	Configurable		$\begin{aligned} & \text { P39 } \\ & \text { [FB1 Loss Cfg] } \end{aligned}$		Error reported by Heidenhain Encoder on Channel 1 with EnDat Interface -Signal amplitude error
x×202	Ch1 PsnVal Err	Configurable		$\begin{aligned} & \hline \text { P39 } \\ & \text { [FB1 Loss Cfg] } \end{aligned}$		Error reported by Heidenhain Encoder on Channel 1 with EnDat Interface - Position value error
x×203	Ch1 OverVolt Err	Configurable		$\begin{aligned} & \hline \text { P39 } \\ & \text { [FB1 Loss Cfg] } \end{aligned}$		Error reported by Heidenhain Encoder on Channel 1 with EnDat Interface - Overvoltage error

$\begin{aligned} & \hline \text { Event } \\ & \text { No. }{ }^{(1)} \end{aligned}$	Faul//Alarm Text	Type	Fault Action	Configuration Param	Auto Reset	Description
xx204	Ch1 UndVolt Err	Configurable		$\begin{array}{\|l\|} \hline \text { P39 } \\ \text { [FB1 Loss Cfg] } \end{array}$		Erroor reported by Heidenhain Encoder on Channel 1 with EnDat Interface - Undervoltage error
xx205	Ch1 OverCur Err	Configurable		$\begin{array}{\|l\|} \hline \text { P39 } \\ \text { [FB1 Loss Cfg] } \end{array}$		Erroo reported by Heidenhain Encoder on Channel 1 with EnDat Interface - Overcurrent error
xx206	Ch1 Battery Err	Configurable		$\begin{array}{\|l\|} \hline \text { P39 } \\ \text { [FB1 Loss Cfg] } \end{array}$		Error reported by Heidenhain Encoder on Channel 1 with EnDat Interface - Battery empty
xx209	Ch1 AnalSig Err	Configurable		$\begin{array}{\|l\|} \hline \text { P39 } \\ \text { [FB1 Loss Cfg] } \end{array}$		Error reported by Stegmann Encoder on Channel 1 with Hiperface Interface - Analog signals outside specification
xx210	Ch1 Int0fst Err	Configurable		$\begin{array}{\|l\|} \hline \text { P39 } \\ \text { [FB1 Loss Cfg] } \end{array}$		Error reported by Stegmann Encoder on Channel 1 with Hiperface Interface - Faulty internal angular offset
xx211	Ch1 DataTabl Err	Configurable		$\begin{array}{\|l\|} \hline \text { P39 } \\ \text { [FB1 Loss Cfg] } \end{array}$		Error reported by Stegmann Encoder on Channel 1 with Hiperface Interface - Data field partitioning table damaged
xx212	Ch1 Anallim Err	Configurable		$\begin{array}{\|l\|} \hline \text { P39 } \\ \text { [FB1 Loss Cfg] } \end{array}$		Error reported by Stegmann Encoder on Channel 1 with Hiperface Interface - Analog limit values not available
xx213	Ch1 lnt I2C Err	Configurable		$\begin{array}{\|l\|} \hline \text { P39 } \\ \text { [FB1 Loss Cfg] } \end{array}$		Error reported by Stegmann Encoder on Channel 1 with Hiperface Interface - Internal I2C bus not operational
xx214	Ch1 IntChksm Err	Configurable		$\begin{array}{\|l\|} \hline \text { P39 } \\ \text { [FB1 Loss Cfg] } \end{array}$		Error reported by Stegmann Encoder on Channel 1 with Hiperface Interface - Internal checksum error
xx215	Ch1 PrgmResetErr	Configurable		$\begin{array}{\|l\|} \hline \text { P39 } \\ \text { [FB1 Loss Cfg] } \end{array}$		Error reported by Stegmann Encoder on Channel 1 with Hiperface Interface - Encoder reset occurred as a result of program monitoring
xx216	Ch1 CntOvrflwErr	Configurable		$\begin{aligned} & \hline \text { P39 } \\ & \text { [FB1 Loss Cfg] } \end{aligned}$		Error reported by Stegmann Encoder on Channel 1 with Hiperface Interface - Counter overflow
xx217	Ch1 Parity Err	Configurable		$\begin{array}{\|l\|} \hline \text { P39 } \\ \text { [FB1 Loss Cfg] } \end{array}$		Error reported by Stegmann Encoder on Channel 1 with Hiperface Interface - Parity error
xx218	Ch1 Chksum Err	Configurable		$\begin{array}{\|l\|} \hline \text { P39 } \\ \text { [FB1 Loss Cfg] } \end{array}$		Error reported by Stegmann Encoder on Channel 1 with Hiperface Interface - Checksum of the data that is transmitted is incorrect
xx219	Ch1 InvCmd Err	Configurable		$\begin{array}{\|l\|} \hline \text { P39 } \\ \text { [FB1 Loss Cfg] } \end{array}$		Error reported by Stegmann Encoder on Channel 1 with Hiperface Interface - Unknown command code
xx220	Ch1 SendSize Err	Configurable		$\begin{array}{\|l\|} \hline \text { P39 } \\ \text { [FB1 Loss Cfg] } \end{array}$		Error reported by Stegmann Encoder on Channel 1 with Hiperface Interface - Number of data that is transmitted is incorrect
xx221	Ch1 CmdArgmt Err	Configurable		$\begin{array}{\|l\|} \hline \text { P39 } \\ \text { [FB1 Loss Cfg] } \end{array}$		Error reported by Stegmann Encoder on Channel 1 with Hiperface Interface - Command argument that is transmitted is not allowed
xx222	Ch1 InvWrtAdrErr	Configurable		$\begin{array}{\|l\|} \hline \text { P39 } \\ \text { [FB1 Loss Cfg] } \end{array}$		Error reported by Stegmann Encoder on Channel 1 with Hiperface Interface - The selected data field must not be written to (invalid write address)
xx223	Ch1 AccCode Err	Configurable		$\begin{array}{\|l\|} \hline \text { P39 } \\ \text { [FB1 Loss Cfg] } \end{array}$		Error reported by Stegmann Encoder on Channel 1 with Hiperface Interface - Incorrect access code
xx224	Ch1 FieldSizeErr	Configurable		$\begin{array}{\|l\|} \hline \text { P39 } \\ \text { [FB1 Loss Cfg] } \end{array}$		Error reported by Stegmann Encoder on Channel 1 with Hiperface Interface - Size of data field that is stated cannot be changed
xx225	Ch1 Address Err	Configurable		$\begin{array}{\|l\|} \hline \text { P39 } \\ \text { [FB1 Loss Cfg] } \end{array}$		Error reported by Stegmann Encoder on Channel 1 with Hiperface Interface - Word address that is stated is outside data field
xx226	Ch1 FieldAcc Err	Configurable		$\begin{array}{\|l\|} \hline \text { P39 } \\ \text { [FB1 Loss Cfg] } \end{array}$		Error reported by Stegmann Encoder on Channel 1 with Hiperface Interface - Access to non-existent data field
xx228	Ch1 SiTurnPsnErr	Configurable		$\begin{array}{\|l} \hline \text { P39 } \\ \text { [FB1 Loss Cfg] } \end{array}$		Error reported by Stegmann Encoder on Channel 1 with Hiperface Interface - Single turn position unreliable
xx229	Ch1 MulTrnPsnErr	Configurable		$\begin{array}{\|l\|} \hline \text { P39 } \\ \text { [FB1 Loss Cfg] } \end{array}$		Error reported by Stegmann Encoder on Channel 1 with Hiperface Interface - Multiple turn position unreliable
xx236	Ch1 AnalVal Err	Configurable		$\begin{array}{\|l\|} \hline \text { P39 } \\ \text { [FB1 Loss Cfg] } \end{array}$		Error reported by Stegmann Encoder on Channel 1 with Hiperface Interface - Analog value error (process data)

$\begin{aligned} & \hline \text { Event } \\ & \text { No. }{ }^{(1)} \end{aligned}$	Fault/Alarm Text	Type	Fault Action	Configuration Param	Auto Reset	Description
xx237	Ch1 SendCurr Err	Configurable		$\begin{array}{\|l\|} \hline \text { P39 } \\ \text { [FB1 Loss Cfg] } \end{array}$		Error reported by Stegmann Encoder on Channel 1 with Hiperface Interface - Transmitter current critical (dirt, broken transmitter)
xx238	Ch1 EncTemp Err	Configurable		$\begin{array}{\|l\|} \hline \text { P39 } \\ \text { [FB1 Loss Cfg] } \end{array}$		Error reported by Stegmann Encoder on Channel 1 with Hiperface Interface - Encoder temperature critical
xx239	Ch1 Speed Err	Configurable		$\begin{array}{\|l\|} \hline \text { P39 } \\ \text { [FB1 Loss Cfg] } \end{array}$		Error reported by Stegmann Encoder on Channel 1 with Hiperface Interface - Speed too high, no position formation possible
xx240	Ch1 General Err	Configurable		$\begin{array}{\|l\|} \hline \text { P39 } \\ \text { [FB1 Loss Cfg] } \end{array}$		Error reported by an Encoder on Channel 1 with BiSS Interface - An error bit of the BiSS Single Cycle Data is set
xx246	Ch1 LED Curr Err	Configurable		$\begin{array}{\|l\|} \hline \text { P39 } \\ \text { [FB1 Loss Cfg] } \end{array}$		Error reported by an Encoder on Channel 1 with BiSS Interface - LED current out of control range
xx247	Ch1 ExMulTurnErr	Configurable		$\begin{array}{\|l\|} \hline \text { P39 } \\ \text { [FB1 Loss Cfg] } \end{array}$		Error reported by an Encoder on Channel 1 with BiSS Interface - External multi-turn error
xx248	Ch1 PsnCode Err	Configurable		$\begin{array}{\|l\|} \hline \text { P39 } \\ \text { [FB1 Loss Cfg] } \end{array}$		Error reported by an Encoder on Channel 1 with BiSS Interface - Position code error (single step error)
xx249	Ch1 Config Err	Configurable		$\begin{array}{\|l\|} \hline \text { P39 } \\ \text { [FB1 Loss Cfg] } \end{array}$		Error reported by an Encoder on Channel 1 with BiSS Interface - failure configuring interface
xx250	Ch1 PsnVal Err	Configurable		$\begin{array}{\|l\|} \hline \text { P39 } \\ \text { [FB1 Loss Cfg] } \end{array}$		Erroor reported by an Encoder on Channel 1 with BiSS Interface - Position data not valid
xx251	Ch1 SerialComErr	Configurable		$\begin{array}{\|l\|} \hline \text { P39 } \\ \text { [FB1 Loss Cfg] } \end{array}$		Error reported by an Encoder on Channel 1 with BiSS Interface - Serial interface failure
xx252	Ch1 Ext Failure	Configurable		$\begin{array}{\|l\|} \hline \text { P39 } \\ \text { [FB1 Loss Cfg] } \end{array}$		Error reported by an Encoder on Channel 1 with BiSS Interface - External failure over NERR
xx253	Ch1 Temp Exc Err	Configurable		$\begin{array}{\|l\|} \hline \text { P39 } \\ \text { [FB1 Loss Cfg] } \end{array}$		Error reported by an Encoder on Channel 1 with BiSS Interface Temperature out of defined range
xx256	Ch1 Out0fRailErr	Configurable		$\begin{array}{\|l\|} \hline \text { P39 } \\ \text { [FB1 Loss Cfg] } \end{array}$		Error reported by a linear Stahl encoder on Channel 1 - Rail is no longer present between the read head
xx260	Ch1 Read Head 1	Configurable		$\begin{array}{\|l\|} \hline \text { P39 } \\ \text { [FB1 Loss Cfg] } \end{array}$		Error reported by a linear Stahl encoder on Channel 1 - Indicates that the read head must be cleaned or installed correctly
xx261	Ch1 Read Head 2	Configurable		$\begin{array}{\|l\|} \hline \text { P39 } \\ \text { [FB1 Loss Cfg] } \end{array}$		Erroor reported by a linear Stahl encoder on Channel 1 - Indicates that the read head must be cleaned or installed correctly
xx262	Ch1 RAM Error	Configurable		$\begin{array}{\|l\|} \hline \text { P39 } \\ \text { [FB1 Loss Cfg] } \end{array}$		Error reported by a linear Stahl encoder on Channel 1 - Indicates a RAM error. Reading head must be repaired
xx263	Ch1 EPROM Error	Configurable		$\begin{array}{\|l\|} \hline \text { P39 } \\ \text { [FB1 Loss Cfg] } \end{array}$		Error reported by a linear Stahl encoder on Channel 1 - Indicates an EPROM error. Reading head must be repaired
xx264	Ch1 ROM Error	Configurable		$\begin{array}{\|l\|} \hline \text { P39 } \\ \text { [FB1 Loss Cfg] } \end{array}$		Error reported by a linear Stahl encoder on Channel 1 - Indicates a ROM error. Reading head must be repaired
xx266	Ch1 No Position	Configurable		$\begin{array}{\|l\|} \hline \text { P39 } \\ \text { [FB1 Loss Cfg] } \end{array}$		Error reported by a linear Stahl encoder on Channel 1 - Indicates that no position value was available - only possible following powerup or reset
xx281	Ch1 Msg Cheksum	Configurable		$\begin{array}{\|l\|} \hline \text { P39 } \\ \text { [FB1 Loss Cfg] } \end{array}$		Indicates that the option card has detected a serial communications checksum error while attempting to communicate with the encoder on channel 1.
xx282	Ch1 Timeout	Configurable		$\begin{array}{\|l\|} \hline \text { P39 } \\ \text { [FB1 Loss Cfg] } \end{array}$		Indicates that the option card has detected a serial communications timeout error while attempting to communicate with the encoder on channel 1.
xx283	Ch1 Comm	Configurable		$\begin{array}{\|l\|} \hline \text { P39 } \\ \text { [FB1 Loss Cfg] } \end{array}$		Indicates that the option card has detected a serial communications error (other than checksum or timeout) while attempting to communicate with the encoder on channel 1.
xx284	Ch1 Diagnostic	Configurable		$\begin{array}{\|l\|} \hline \text { P39 } \\ \text { [FB1 Loss Cfg] } \end{array}$		Indicates that the option card has detected a powerup diagnostic test failure for encoder channel 1.
xx285	Ch1 SpplyVItgRng	Configurable		$\begin{array}{\|l\|} \hline \text { P39 } \\ \text { [FB1 Loss Cfg] } \end{array}$		Indicates that the voltage source to the encoder 1 is out of range.

Event No. ${ }^{(1)}$	Fault/Alarm Text	Type	Fault Action	Configuration Param	Auto Reset	Description
xx286	Ch1 SC Amplitude	Configurable		$\begin{aligned} & \hline \text { P39 } \\ & \text { [FB1 Loss Cfg] } \end{aligned}$		Indicates that the encoder 1 signal amplitude is out of tolerance.
xx287	Ch1 Open Wire	Configurable		$\begin{aligned} & \hline \text { P39 } \\ & \text { [FB1 Loss Cfg] } \end{aligned}$		Indicates that an open wire condition has been detected for encoder 1.
xx288	Ch1 Quad Loss	Configurable		$\begin{aligned} & \hline \text { P39 } \\ & \text { [FB1 Loss Cfg] } \end{aligned}$		Indicates that a signal quadrature error has been detected for encoder 1
xx289	Ch1 Phase Loss	Configurable		P39 [FB1 Loss Cfg]		Indicates that an A or B signal of an A quad B incremental encoder on Channel 1 is disconnected.
x×290	Ch1 Unsupp Enc	Configurable		$\begin{aligned} & \text { P39 } \\ & \text { [FB1 Loss Cfg] } \end{aligned}$		Indicates that the connected encoder on Channel 1 is not supported
xx300	Ch1 FreqExc Alm	Alarm 1		$\begin{aligned} & \text { P39 } \\ & \text { [FB1 Loss Cfg] } \end{aligned}$		Alarm reported by Heidenhain Encoder on Channel 1 with EnDat Interface - Frequency exceeded warning
xx301	Ch1 TempExc Alm	Alarm 1		$\begin{aligned} & \text { P39 } \\ & \text { [FB1 Loss Cfg] } \end{aligned}$		Alarm reported by Heidenhain Encoder on Channel 1 with EnDat Interface - Temperature exceeded warning
x×302	Ch1 LightLim Alm	Alarm 1		$\begin{aligned} & \text { P39 } \\ & \text { [FB1 Loss Cfg] } \end{aligned}$		Alarm reported by Heidenhain Encoder on Channel 1 with EnDat Interface - Limit of light control reserve reached
xx303	Ch1 Battery Alm	Alarm 1		$\begin{aligned} & \hline \text { P39 } \\ & \text { [FB1 Loss Cfg] } \end{aligned}$		Alarm reported by Heidenhain Encoder on Channel 1 with EnDat Interface - Battery warning
x×304	Ch1 RefPoint Alm	Alarm 1		$\begin{aligned} & \text { P39 } \\ & \text { [FB1 Loss Cfg] } \end{aligned}$		Alarm reported by Heidenhain Encoder on Channel 1 with EnDat Interface - Reference point not reached
xx308	Ch1 General Alm	Alarm 1		$\begin{aligned} & \text { P39 } \\ & \text { [FB1 Loss Cfg] } \end{aligned}$		Alarm reported by an Encoder on Channel 1 with BisS Interface - A warning bit of the BiSS Single Cycle Data is set
xx315	Ch1 Optics Alarm	Alarm 1		$\begin{aligned} & \hline \text { P39 } \\ & \text { [FB1 Loss Cfg] } \end{aligned}$		Alarm reported by a linear Stahl encoder on Channel 1 - Displays an alarm when the Stahl optical system requires cleaning
xx316	Ch1 Out0fRailAlm	Alarm 1		$\begin{aligned} & \hline \text { P39 } \\ & \text { [FB1 Loss Cfg] } \end{aligned}$		Alarm reported by a linear Stahl encoder on Channel 1 - Indicates that the read encoder count is at the maximum value (524287)
xx412	Hardware Err	Configurable		Either P9 [FBO Loss Cfg] or P39 [FB1 Loss Cfg]		Indicates that there is a Hardware Error on the Feedback Option module.
xx413	Firmware Err	Configurable		Either P9 [FBO Loss Cfg] or P39 [FB1 Loss Cfg]		Indicates that there is a Firmware Error on the Feedback Option module. A Firmware Error occurs if the Hardware and the downloaded Firmware are not compatible. This error could also indicate that communication between the Feedback Option module and the Main Control Board was interrupted during power-up. Cycle power to clear this fault.
xx416	EncOut Cflct	Alarm 1		Either P9 [FBO Loss Cfg] or P39 [FB1 Loss Cfg]		Indicates that there is one of the following problems with the Encoder Output: - The selection in the P80 [Enc Out Sel] is not possible since the required pins on the terminal blocks are already used for Feedback 0 or 1 according to P6 [FB0 Device Sel] and P36 [FB1 Device Sel]. - P80 [Enc Out Sel] is set to 2"Sine Cosine" and there is no signal connected to the pins $1 . . .4$ of TB 1 . - P80 [Enc Out Sel] is set to 2"Sine Cosine," the value of P15/45 [FBX IncAndSCPPR] is not a power of two, and P84 [EncOut Z PPR] is not set to 0 " 1 ZPulse." The value of P15/45 [FBX IncAndSC PPR] must be a power of two. - P80 [Enc Out Sel] is set to 3 "Channel $\mathrm{X"}$ or 4 "Channel Y " and there is no encoder connected to that channel. - P80 [Enc Out Sel] is set to 3 "Channel $\mathrm{X"}$ or 4 "Channel Y " and there is a linear encoder connected to this channel.

Event No.	Fault/Alarm Text	Type	Fault Action	Configuration Param	Auto Reset	Description
$x \times 417$	Safety Cflct	Alarm 1		Either P9 [FBO Loss Cfg] or P39 [FB1 Loss Cfg]		Indicates that the Safety DIP switches are in an invalid position.
$x x 420$	FB0FB1 Cflct	Alarm 2			Indicates that the combination of the feedback selection that is done with P6 [FB0 Device Sel] and P36 [FB1 Device Sel] is invalid, i.e. both feedbacks have Sin-Cos-Signals (There is only place for one set of Sin- Cos-Signals on the Terminal Blocks). The drive cannot be started until this configuration conflict is resolved.	
$x x 421$	Initializing	Alarm 2			Indicates that the Universal Feedback State Machine is in the Initialize State. This Type 2 alarm is provided to be sure that the motor cannot be started during this state.	

(1) $x x$ indicates the port number. See Fault and Alarm Display Codes on page 308 for an explanation.

Port Verification

Common Symptoms and Corrective Actions

When connecting to select devices, such as PowerFlex 750-Series drives, the Port Verification dialog box displays if device conflicts are found during the connection process. These conflicts typically require resolution before the connection is established with the device.

The information and options available in this dialog box are detailed here:

Item	Description
Previous Setup	Identifies the device that was previously installed at this port.
Current Setup	Identifies the device that is currently installed at the port (if applicable).
(Device Not Found)	A message identifying the conflict at the identified port.
Changed	Indicates that the device previously installed at the port that is identified has been removed or changed to another device.
Not supported - Must remove device before connection	Indicates that the device currently installed at the port that is identified has a firmware revision that is not compatible with the drive. The drive must be flash updated to be able to use this device or the device must be removed from the port before a connection can be made.
Not functioning - Must remove device before connection	Indicates that the device currently installed at the port that is identified is not functioning. The device must be removed from the port before a connection can be made.
Invalid Duplicate - Must remove device before connection	Indicates that the device currently installed at the port that is identified is already installed at another port for the device to which you are attempting to connect and the device cannot support the number of devices installed. The duplicate device must be removed from the port before a connection can be made.
Requires Configuration	Indicates that the device installed at the port that is identified requires configuration before a connection can be made.
Accept All	Accepts all configuration changes and continues the device connection process.

Drive does not Start from Start or Run Inputs wired to the terminal block.

Cause(s)	Indication	Corrective Action
Drive is Faulted	Flashing red status light	Clear fault. - Press Stop - Cycle power - "Clear Faults" on the HIM Diagnostic menu.
Incorrect input wiring. See Installation Instructions, publication 750-IN001, for wiring examples. - 2 wire control requires Run, Run Forward, Run Reverse or Jog input.	None	Wire inputs correctly.
- 3 wire control requires Start and Stop inputs.		
- Verify 24 Volt Common is connected to Digital		
Input Common.		

Drive does not Start from HIM.

Cause(s)	Indication	Corrective Action
Drive is configured for 2 wire level control.	None	Change P150 [Digital In Conf] to correct control function.
Another device has Manual control.	None	
Port does not have control.	None	Change P324 [Logic Mask] to enable correct port.

Drive does not respond to changes in speed command.

Cause(s)	Indication	Corrective Action
No value is coming from the source of the command.	LCD HIM Status Line indicates "At Speed" and output is 0 Hz .	1. If the source is an analog input, check wiring and use a meter to check for presence of signal. 2. Check P2 [Commanded SpdRef] for correct source. (See page 48)
Incorrect reference source has been programmed.	None	3. Check P545 [Spd Ref A Sel] for the source of the speed reference. (See page 110) 4. Reprogram P545 [Spd Ref A Sel] for correct source. (See page 110)
Incorrect Reference source is being selected via remote device or digital inputs.	None	5. Check P935 [Drive Status 1], page 154, bits 12 and 13 for unexpected source selections. 6. Check P220 [Digital In Sts], page 72 to see if inputs are selecting an alternate source. 7. Check configuration of P173... 175 [DI Speed Sel n] functions

Motor and/or drive does not accelerate to commanded speed.

Cause(s)	Indication	Corrective Action
Acceleration time is excessive.	None	Reprogram P535/536 [Accel Time X]. (See page 109)
Excess load or short acceleration times force the drive into current limit, slowing or stopping acceleration.	None	Check P935 [Drive Status 1], bit 27 to see if the drive is in Current Limit. (Seee page 154) Remove excess load or reprogram P535/536 [Accel Time n].(See page 109)
Speed command source or value is not as expected.	None	Check for the proper Speed Command using Steps $1 . . .7 ~ i n ~ " D r i v e ~ d o e s ~ n o t ~ r e s p o n d ~ t o ~ c h a n g e s ~ i n ~ s p e e d ~$ command."
Programming is preventing the drive output from exceeding limiting values.	None	Check P520 [Max Fwd Speed], P521 [Max Rev Speed] (See page 108) and P37 [Maximum Freq] (See

Motor operation is unstable.

Cause(s)	Indication	Corrective Action
Motor data was incorrectly entered or Autotune was not performed.	None	1. Correctly enter motor nameplate data. 2.
		Perform "Static Tune" or "Rotate Tune" Autotune procedure. See P70 [Autotune] on page 57

Drive does not reverse motor direction.

Cause(s)	Indication	Corrective Action
Digital input is not selected for reversing control.	None	Check that the DI Reversing function is correctly configured.
Digital input is incorrectly wired.	None	Check digital input wiring.
Direction mode parameter is incorrectly programmed.	None	Reprogram P308 [Direction Mode], page 81 for analog "Bipolar" or digital "Unipolar" control.
Motor wiring is improperly phased for reverse.	None	Switch two motor leads.
A bipolar analog speed command input is incorrectly wired or signal is absent.	None	1. Use meter to check that an analog input voltage is present. 2. Check bipolar analog signal wiring. Positive voltage commands forward direction. Negative voltage commands reverse direction.

A drive stop results in a Decel Inhibit fault.

Cause(s)	Indication	Corrective Action
The bus regulation feature is enabled	Decel Inhibit fault and is halting deceleration due to	1. To eliminate any "Adjust Freq" selection, reprogram parameters 372/373 [Bus Reg Moden]. excessive bus voltage. Excess bus voltage is normally due to excessive regenerated energy or unstable AC line input voltages.
LCD Status Line indicates "Faulted."	2. Disable bus regulation (parameters 372/373 [Bus Reg Mode n]) and add a dynamic brake.	
3. Correct AC input line instability or add an isolation transformer.		
operation.		4. Access P409 [Dec Inhibit Actn] to select desired fault action.

A datalink cannot be established.

Cause(s)	Indication	Corrective Action
Another device is communicating with	None	1. Verify that DeviceLogix is not running (Port 14, P53 the processor.
	2. Verify that a PLC is not communication with the drive. Disconnect communication cable or inhibit communication in PLC software.	

PowerFlex 755 Lifting/ Torque Proving

External Brake Resistor

ATTENTION: The drive does not offer protection for externally mounted brake
resistors. A risk of fire exists if external braking resistors are not protected.
External resistor packages must be self-protected from over temperature or a
circuit equivalent to the one shown here must be supplied.

Figure 4-External Brake Resistor Circuitry

This circuit is designed to remove input voltage to the drive if the line voltage is high and forces dynamic braking to operate continuously.

Technical Support Options

What You Need When You Call Tech Support

When you contact Technical Support, please be prepared to provide the following information:

- Order number
- Product catalog number and drives series number (if applicable)
- Product serial number
- Firmware revision level
- Fault code listed in P951 [Last Fault Code]
- Installed options and port assignments

Also be prepared with:

- A description of your application
- A detailed description of the problem
- A brief history of the drive installation
- First-time installation, product has not been running
- Established installation, product has been running

The data that is contained in the following parameters help in initial troubleshooting of a faulted drive. You can use this table to record the data provided in each parameter listed.

Parameter(s)	Name	Description	Parameter Data
956	Fault Frequency	Captures and displays the output speed of drive at time of last fault.	
957	Fault Amps	Captures and displays motor amps at time of last fault.	
958	Fault Bus Volts	Captures and displays the DC bus voltage of drive at time of last fault.	
954	Status1 at Fault	Captures and displays [Drive Status 1] bit pattern at time of last fault.	
955	Status2 at Fault	Captures and displays [Drive Status 2] bit pattern at time of last fault.	
962	AlarmA at Fault	Captures and displays [Alarm Status A] bit pattern at time of last fault.	
963	AlarmB at Fault	Captures and displays [Alarm Status B] bit pattern at time of last fault.	
951	Last Fault Code	A code that represents the fault that tripped the drive.	

Technical Support Wizards

When you are connected to a drive via DriveExplorer ${ }^{\text {m" }}$ or DriveExecutive ${ }^{\text {m" }}$, you can run a Tech Support wizard to gather information that helps diagnose problems with your drive and/or peripheral device. The wizard gathers information and saves the data as a text file. This file can be emailed to your remote technical support contact.

To run a Tech Support wizard in DriveExplorer, select Wizards from the Actions menu. In DriveExecutive, select Wizards from the Tools menu. Or, click the米 - button. Follow the prompts to complete the wizard.

IMPORTANT The Tech Support wizard cannot be accessed when the Control Bar is launched.

PowerFlex 753 Control Block Diagrams

The block diagrams in this appendix are applicable to firmware revision 11.002 and earlier only.

Flow diagrams on the following pages illustrate the PowerFlex 753 drive control algorithms.

Diagram	Page
Flux Vector Overview	361
VF, SV Overview	362
Speed/Position Feedback	363
Speed Control - Reference Overview	364
Speed Control - Reference (1)	365
Speed Control - Reference (2)	366
Speed Control - Reference (3)	367
Speed Control - Reference (4)	368
Speed Control - Reference (5)	369
Speed Control - Regulator (FV)	370
Position Control - Reference	371
Position Control - Regulator	372
Position Control - Aux Functions	373
Position Control - Homing	374
Torque Control - Overview (IM)	375
Torque Control - Overview (IPM)	376
Torque Control - Reference Scale \& Trim	377
Torque Control - Torque	378
Torque Control - Current (IM)	379
Torque Control - Current (IPM)	380
Process Control (1)	381
Process Control (2)	382
MOP Control	383
Embedded Inputs \& Outputs - Digital	384
Embedded Inputs \& Outputs - Analog	385
22-Series Option Inputs \& Outputs - Digital	386
22-Series Option Inputs \& Outputs - Analog	387
11-Series Inputs \& Outputs - Digital	388
11-Series Inputs \& Outputs - Analog	389
11-Series Inputs \& Outputs - ATEX	390
Control Logic	393
Inverter Overload IT	
Variable Boost Voltage Overview	(

Diagram Conventions and Definitions

* Notes, Important

(1) These diagrams are for reference only and may not accurately reflect all logical control signals; actual functionality is implied by the approximated diagrams. Accuracy of these diagrams is not guaranteed.

Figure 5 - Flux Vector Overview

Figure 6-VF, SV Overview

Figure 7 - Speed/Position Feedback

Figure 8-Speed Control - Reference Overview

Figure 9 - Speed Control - Reference (1)

Figure 10-Speed Control - Reference (2)

Figure 11 - Speed Control - Reference (3)

Figure 12 - Speed Control - Reference (4)

Figure 13 - Speed Control - Reference (5)

Figure 14-Speed Control - Regulator (FV)

Figure 15 - Position Control - Reference

Figure 16-Position Control - Regulator

Figure 17 - Position Control - Aux Functions

Figure 18-Position Control-Homing

Figure 19-Torque Control - Overview (IM)

Figure 21 - Torque Control - Reference Scale \& Trim

Figure 23 - Torque Control - Current (IM)

Figure 24 - Torque Control - Current (IPM)

Figure 27 - MOP Control

Figure 28 - Embedded Inputs \& Outputs - Digital

Figure 30-22-Series Option Inputs \& Outputs - Digital

Figure 31-22-Series Option Inputs \& Outputs - Analog

Figure 32-11-Series Inputs \& Outputs - Digital

Figure 33-11-Series Inputs \& Outputs - Analog

Figure 34-11-Series Inputs \& Outputs - ATEX

Figure 35-Control Logic

Figure 36 - Inverter Overload IT

Figure 37 - Variable Boost Voltage Overview

Notes:

PowerFlex 755 Control Block Diagrams

The block diagrams in this appendix are applicable to firmware revision 11.002 and earlier only.

Flow diagrams on the following pages illustrate the PowerFlex 755 drive control algorithms.

Diagram	Page
Flux Vector Overview	397
VF, SV Overview	398
Speed/Position Feedback	399
Speed Control - Reference Overview	400
Speed Control - Reference (1)	401
Speed Control - Reference (2)	402
Speed Control - Reference (3)	403
Speed Control - Reference (4)	404
Speed Control - Reference (5)	405
Speed Control - Regulator (FV)	406
Position Control - Reference	407
Position Control - Regulator	408
Position Control - Aux Functions	409
Position Control - Phase Locked Loop	410
Position Control - Position CAM	411
Position Control - Profiler/Indexer (1)	412
Position Control - Profiler/Indexer (2), Homing	413
Position Control / Auxiliary Functions - Roll Position Indicator	414
Position Control - Spindle Orientation	415
Position Control / Auxiliary Functions - Position Oriented Torque Boost	416
Torque Control - Overview (IM \& SPM)	417
Torque Control - Overview (IPM)	418
Torque Control - Reference Scale \& Trim	419
Torque Control - Torque	420
Torque Control - Current (IM \& SPM)	421
Torque Control - Current (IPM)	422
Torque Control - Inertia Adaption	423
Torque Control - Load Observer / Estimator	424
Process Control (1)	425
Process Control (2)	426
MOP Control	427
22-Series Inputs \& Outputs - Digital	428
22-Series Inputs \& Outputs - Analog	439
11-Series Inputs \& Outputs - Digital	
11-Series Inputs \& Outputs - Analog	(

Diagram	Page
11-Series Inputs \& Outputs - ATEX	432
Control Logic	433
Inverter Overload IT	434
Friction Compensation	435
Variable Boost Voltage Overview - Function Inputs/Outputs	436
Diagnostic Tools	437
High-Speed Trend Wizard	438

Diagram Conventions and Definitions

* Notes, Important

(1) These diagrams are for reference only and may not accurately reflect all logical control signals; actual functionality is implied by the approximated diagrams. Accuracy of these diagrams is not guaranteed.

Figure 38 - Flux Vector Overview

Figure 39 - VF, SV Overview

Figure 40 - Speed/Position Feedback

Figure 41 - Speed Control - Reference Overview

Figure 43 - Speed Control - Reference (2)

Figure 44 - Speed Control - Reference (3)

Figure 45 - Speed Control - Reference (4)

Figure 47 - Speed Control - Regulator (FV)

Figure 48 - Position Control - Reference

Figure 49 - Position Control - Regulator

Figure 50 - Position Control - Aux Functions

Figure 51 - Position Control - Phase Locked Loop

Figure 52 - Position Control - Position CAM

Figure 53 - Position Control - Profiler/Indexer (1)

Figure 54 - Position Control - Profiler/Indexer (2), Homing

Figure 55 - Position Control / Auxiliary Functions - Roll Position Indicator

Figure 56 - Position Control - Spindle Orientation

Figure 57 - Position Control / Auxiliary Functions - Position Oriented Torque Boost

Figure 58 - Torque Control - Overview (IM \& SPM)

Figure 60 - Torque Control - Reference Scale \& Trim

Figure 61 - Torque Control - Torque

Figure 62 - Torque Control - Current (IM \& SPM)

Figure 64 - Torque Control - Inertia Adaption

Figure 65 - Torque Control - Load Observer / Estimator

Figure 66 - Process Control (1)

Figure 67 - Process Control (2)

Figure 68 - MOP Control

Figure 69-22-Series Inputs \& Outputs - Digital

Figure 70-22-Series Inputs \& Outputs - Analog

Figure 71-11-Series Inputs \& Outputs - Digital

Figure 72-11-Series Inputs \& Outputs - Analog

Figure 73-11-Series Inputs \& Outputs - ATEX

Figure 74-Control Logic

Figure 75 - Inverter Overload IT

Figure 76-Friction Compensation

Figure 77 - Variable Boost Voltage Overview - Function Inputs/Outputs

Figure 78 - Diagnostic Tools

High-Speed Trend Wizard

Application Notes

Voltage Tolerance

Drive Rating	Nominal Line Voltage	Nominal Motor Voltage	Drive Full Power Range	Drive Operating Range
380... 400	380	380	380... 528	342... 528
	400	400	400... 528	
	480	460	460... 528	
Drive Full Power Range =		Nominal Motor Voltage to Drive Rated Voltage 10%. Rated current is available across the entire Drive Full Power Range		
Drive Operating Range $=$		Lowest Nominal Motor Voltage - 10% to Drive Rated Voltage 10%. Drive Output is linearly derated when Actual Line Voltage is less than the Nominal Motor Voltage		

Example:

Calculate the maximum power of a $5 \mathrm{Hp}, 460 \mathrm{~V}$ motor that is connected to a 480 V rated drive supplied with 342 V Actual Line Voltage input.

- Actual Line Voltage $/$ Nominal Motor Voltage $=74.3 \%$
- $74.3 \% \times 5 \mathrm{Hp}=3.7 \mathrm{Hp}$
- $74.3 \% \times 60 \mathrm{~Hz}=44.6 \mathrm{~Hz}$

At 342 V Actual Line Voltage, the maximum power the $5 \mathrm{Hp}, 460 \mathrm{~V}$ motor can produce is 3.7 Hp at 44.6 Hz .

PowerFlex 755 Lifting/ Torque Proving

TorqProve ${ }^{m \mathrm{~m}}$ is a PowerFlex ${ }^{\circ} 755$ drive feature that is intended for applications where proper coordination between motor control and a mechanical brake is required. Before releasing a mechanical brake, the drive checks motor output phase continuity and verifies proper motor control (torque proving). The drive also verifies that the mechanical brake has control of the load before the releasing drive control (brake proving). After the drive sets the brake, motor movement is monitored to ensure the brake can hold the load.

ATTENTION: Loss of control in suspended load applications can cause personal injury and/or equipment damage. The drive or a mechanical brake must always control the loads. Parameters 1100... 1113 are designed for lifting/torque prove applications. It is the responsibility of the engineer and/or end user to configure drive parameters, test any lifting functionality and meet safety requirements in accordance with all applicable codes and standards.

TorqProve can be operated with an encoder or encoderless. See "Attention" on page 356 before the use of TorqProve with no encoder.

TorqProve functionality with an encoder includes:

- Torque Proving (includes flux up and last torque measurement)
- Brake Proving
- Brake Slip (feature slowly lowers load if brake slips/fails)
- Float Capability (ability to hold full torque at zero speed)
- Micro-Positioning
- Fast Stop
- Speed Deviation Fault, Output Phase Loss Fault, Encoder Loss Fault.

Encoderless TorqProve functionality includes:

- Torque Proving (includes flux up and last torque measurement)
- Micro-Positioning
- Fast Stop
- Speed Deviation Fault, Output Phase Loss Fault.

IMPORTANT Brake Slip detection and Float capability (ability to hold load at zero speed) are not available in encoderless TorqProve.

Figure 79 - Torque Proving Flow Diagram

(1) For torque proving to function properly, wire a mechanical brake to a relay output on a digital I/0 option module. On the I/0 module, set P10 [R00 Sel] to Port 0, P1103 [Trq Prove Status] Bit 4 "Brake Set" and set P6 [Dig Out Invert] Bit 0 "Relay Out 0" $=1$.

Tuning the Motor for Torque Prove Applications

It is possible to use the Start-Up routine to tune the motor (See page 15). However, it is recommended to disconnect the motor from the hoist/crane equipment during the routine.

ATTENTION: To guard against personal injury and/or equipment damage due to an unexpected brake release, verify the digital output that is used for brake connections and/or programming. The PowerFlex 755 drive does not control the mechanical brake until TorqProve is enabled. If the brake is connected to a digital output, it could be released. If necessary, disconnect the digital output until wiring/programming can be completed and verified.

Crane Set up with Encoder Feedback

These setup instructions assume the following.

- Drive and motor size have been carefully selected
- External brake resistor has been properly sized
- The drive is at factory defaults.

If not, unplug the output relay terminal block and issue a reset to factory defaults for the HOST and all PORTS. Plug terminal block back in.

- Programming is done via DriveExecutive ${ }^{\text {rw }}$ or DriveExplorer ${ }^{\text {rw }}$
- Crane control is done via Run forward / Run Reverse inputs
- Mechanical brake control is wired to Output Relay 0
- The drive is equipped with an incremental (20-750-ENC-1) or dual incremental encoder board (20-750-DENC-1)
- The encoder is mounted on the back of the motor (not behind the gearbox)
- Encoder specification: Quadrature differential (A, A-, B, B-), Line driver output, Minimum 1000PPR 5 V , or 12 V signals (12 V preferred)

ATTENTION: Loss of control in suspended load applications can cause personal injury and/or equipment damage. The drive or a mechanical brake must always control the loads. Parameters $1100 \ldots 1113$ are designed for lifting/torque prove applications. It is the responsibility of the engineer and/or end user to configure drive parameters, test any lifting functionality and meet safety requirements in accordance with all applicable codes and standards.

Set Up the Drive

1. Adjust parameter settings and enter nameplate data.

Parameter	Setting
Brake Details	
P370 [Stop Mode A]	1 "Ramp"
P372 [Bus Reg Mode A]	2 "Dyn Brake" (Dynamic Braking)
P382 [DB Resistor Type]	1 "External"
P383 [DB Ext Ohms]	Total Ohm value of external resistor.
P384 [DB Ext Watts]	Total real watt rating of external resistor.
P385 [DB ExtPulseWatts]	Maximum value for properly sized resistor.
P426 [Regen Power Lmt]	-800 \% (Minimum Value)
Motor Nameplate Data	
P25 [Motor NP Volts]	Motor nameplate voltage.
P26 [Motor NP Amps]	Motor nameplate current.
P27 [Motor NP Hertz]	Motor nameplate frequency.
P28 [Motor NP RPM]	Motor nameplate speed.
P29 [Mtr NP Pwr Units]	0 "HP" or 1 "kW"
P30 [Motor NP Power]	Motor nameplate power rating.
P31 [Motor Poles]	Number of motor poles.
Motor Control	
P35 [Motor Ctrl Mode]	3 "Induction FV"
Maximum Frequency	
P37 [Maximum Freq]	Motor nameplate frequency.
Drive Duty Rating	
P306 [Duty Rating]	1 "Heavy Duty"
Overload Hertz	
P414 [Mtr OL Hertz]	0.00 (Ensures that no current derating is applied.)
Autotune Torque	
P71 [Autotune Torque]	100.00 \% (Used during rotate tuning and inertia tuning.)
Protection	
P420 [Drive 0L Mode]	1 "Reduce PWM"
P422 [Current Limit 1]	200 \% of P26 [Motor NP Amps]
P444 [0utPhaseLossActn]	3 "FltCoastStop"

Motor Tune Routines

Static Tune

This routine measures the motor characteristics with the brake set (brake closed).

Rotate Tune

This routine gives better results if connected equipment allows. This routine requires the mechanical brake to open and the motor be allowed to run at minimum of 70% of nominal speed.

Inertia Tune

This routine measures the time to accelerate the system to the nominal speed.

Static Tune

During a Static Tune, the mechanical brake remains set.

1. Enter Static Tune parameter settings.

Drive Parameter	Setting
P70 [Autotune]	2"Static Tune"
I/0 Module Parameter (Port X)	Setting
P10 [R00 Sel]	0.00 "Disabled"

2. To open the Control Bar, click the Controls icon
3. Press the Start button on the Control Bar.

When the Static Tune routine is complete, P70 [Autotune] changes to 0 "Ready."

Verify Drive Direction

1. Perform a Direction Test to verify proper direction of crane.

I/0 Module Parameter (Port \boldsymbol{n})	Setting
P164 [DI Run Forward]	Port Number, P1 [Dig In Sts], Bit n (Run Fwd Input)
P165 [DI Run Reverse]	Port Number, P1 [Dig In Sts], Bit n (Run Rev Input)

IMPORTANT The crane can be started via the crane control unit.

Drive Parameter	Setting
P545 [Spd Ref A Sel]	Port 0, P571 [Preset Speed 1]
P571 [Preset Speed 1]	15 Hz (Set to low speed for direction test.)
P535 [Accel Time 1]	2.00 Secs
P537 [Decel Time 1]	2.00 Secs
I/0 Module Parameter (Port X)	Setting
P10 [R00 Sel]	Port 0, P935 [Drive Status 1], Bit 16 "Running"

IMPORTANT The mechanical brake opens when the drive is running.
2. Run crane with the crane control unit and verify that the direction is correct.

If crane direction is not correct, change motor direction.

Drive Parameter	Setting
P40 [Mtr Options Cfg]	Bit 4"Mtr Lead Rev" = 1 (Reversed)

Run crane with the crane control unit and verify that the direction is now correct.
Move crane hook to a position that allows sufficient travel in both directions.

Verify Encoder Direction

1. If a Dual Incremental-Encoder option module (20-750-DENC-1) is used, and only one encoder is connected, disable the encoder loss fault of the unused channel.

Drive Parameter	Setting
P132 [Aux Vel Fdbk Sel]	Encoder Port Number, Enc 0 FB (Selects Channel 0)
Encoder Module Parameter (Port X)	Setting
P13 [Enc 1 FB Lss Cfg]	0
P2 [Enc 0 PPR]	Real pulses" (Disables Channel 1)

2. Run the crane upwards or downwards and monitor the sign (+ or -) of the output frequency on the HIM display or via software. Compare this sign to the sign of P134 [Aux Vel Feedback]. Both signals must have the same sign (both positive or both negative).

If signals do not match, change the encoder direction setting.

Encoder Module Parameter (Port X)	Setting
P1 [Enc 0 Cfg]	Bit 5 "Direction" $=1$ (Invert)

3. Run the crane upwards or downwards and check if the sign of both speeds matches.

Drive Parameter	Setting
P125 [Pri Vel Fdbk Sel]	Encoder Port Number, P1 [Dig In Sts]

The encoder direction now matches the motor direction.

Rotate Tune

During a Rotate Tune routine, the motor runs for 20 seconds in the commanded direction. In Flux vector control, the Rotate Tune routine can be executed in a no load or lightly loaded condition such as the motor connected to a gearbox, cable drum, or cable and hook.

> | IMPORTANT | Ensure that the Rotate Tune routine can be stopped if an end travel condition is |
| :--- | :--- |
| | likely to occur. |

If the motor is connected to a load, determine whether there is enough travel distance for the Rotate Tune sequence to complete. If necessary, run the crane hook to top or bottom for more travel distance in the opposite direction.

If the Rotate Tune routine fails due to a motor load, rerun the Static Tune routine and skip this routine.

1. Enter Rotate Tune parameter settings.

Drive Parameter	Setting
P70 [Autotune]	3"Rotate Tune"
P520 [Max Fwd Speed]	Forward speed limit that is used during Autotune. 70% P27 [Motor NP Hertz] minimum.
P521 [Max Rev Speed]	Reverse speed limit that is used during Autotune. 70% P27 [Motor NP Hertz] minimum.
Encoder Module Parameter (Port X)	Setting
P10 [R00 Sel]	Port 0, P935 [Drive Status 1], Bit 1"Active"

2. Press the Start button on the Control Bar.

When the Rotate Tune routine is complete, P70 [Autotune] changes to 0 "Ready."

Check tuning results in P73 [IR Voltage Drop], P74 Ixo Voltage Drop], and P75 [Flux Current Ref].

Inertia Tune

The Inertia Tune routine measures the time to accelerate the system (with load) by using P71 [Autotune Torque] to the nominal speed. The test speed can be limited by reducing P520 [Max Fwd Speed] and P521 [Max Rev Speed]. The fastest test is achieved with P71 [Autotune Torque] set to a high value and P520 [Max Fwd Speed] and P521 [Max Rev Speed] set to a low value.

Because loads vary in crane applications, the result of an Inertia Tune is more or less irrelevant as it is for one condition only.

Step 8 outlines manually setting tuning values.

IMPORTANT Ensure that the Inertia Tune routine can be stopped if an end travel condition is likely to occur.

1. Enter Inertia Tune parameter settings.

Drive Parameter	Setting
P70 [Autotune]	4"Inertia Tune"

2. Press the Start button on the Control Bar.

When the Rotate Tune routine is complete, P70 [Autotune] changes to 0 "Ready."

Check tuning results in P76 [Total Inertia].
When using an encoder, the drive and motor can hold zero speed with full load even with an opened mechanical brake.
3. Set minimum speed.

Drive Parameter	Setting
P522 [Min Fwd Speed]	0.00
P523 [Min Rev Speed]	0.00

4. Set maximum speed limits.

Drive Parameter	Setting
P520 [Max Fwd Speed]	Forward Speed limit that is used during normal operation. Not more than the motor nominal frequency.
P521 [Max Rev Speed]	Reverse speed limit that is used during normal operation. Not more than the motor nominal frequency.

5. Set digital input functions.

Speed Select Inputs

Drive Parameter	Setting
P173...175 [DI Speed Sel $n]$	I/O Port Number, P1 [Dig In Sts], Bit n

Clear Fault Input

Drive Parameter	Setting
P156 [DI Clear Fault]	I/O Port Number, P1 [Dig In Sts], Bit n

6. Set speed reference.

Program preset speeds according to Speed Select inputs that are used.

| $\begin{array}{l}\text { Input Status (1 }=\text { Input Actuated) } \\ \text { DI Speed Sel 2 }\end{array}$ | | DI Speed Sel 1 |
| :--- | :--- | :--- | :--- |$)$ DI Speed Sel 0 $\quad l$| Auto Reference |
| :--- |
| Source |

I/0 Module Parameter (Port X)	Setting
P10 [R00 Sel]	Port 0, P935 [Drive Status 1], Bit 16"Running"

7. Run crane with crane control unit.

Verify speed references by checking P930 [Speed Ref Source].
8. Set speed loop tuning.

Drive Parameter	Setting
P636 [Speed Reg BW]	$20 \mathrm{R} / \mathrm{S}$
	Defines the reactivity of the speed regulator. This parameter is used to calculate Kp and Ki gains.
P76 [Total Inertia]	1.5 Secs This value can be increased or decreased depending on Speed regulator response.

P645[Speed Reg Kp] = P636[Speed Reg BW] x P76[Total Inertia] $=$ BW x J (Inertia)

Torque Prove

Carefully perform the following steps in the order presented.

1. Enter Torque Prove parameter settings.

I/0 Module Parameter (Port X)	Setting
P10 [R00 Sel]	0.00 (Disabled)
P6 [Dig Out Invert]	Bit 0 "Relay 0ut 0" = 1 (Output Inverted)
P10 [R00 Sel]	Port 0, P1103 [Trq Prove Status], Bit 4"Brake Set" =
Drive Parameter	Setting
P1100 [Trq Prove Cfg]	Bit 0"TP Enable" =1

Once Torque Prove is activated, the drive is in alarm state.
2. Select the source of position feedback.

Drive Parameter	Setting
P135 [Psn Fdbk Sel]	Encoder Port Number, P4 [Enc 0 FB]

3. Set the time to decrease motor torque during Brake Slip test.

Drive Parameter	Setting
P1104 [Trq Lmt SlewRate]	10.000 Secs (Default)

4. Set speed deviation.

Drive Parameter	Setting
P1105 [Speed Dev Band]	Start with default Hz or RPM.

Increase this setting if the drive faults on F20 [TorqPrv Spd Band].
5. Set speed deviation level.

Drive Parameter	Setting
P1106 [SpdBand Intgrtr]	0.060 Secs (Default)

Increase this setting if the drive faults on F20 [TorqPrv Spd Band].
6. Set brake release time.

Drive Parameter	Setting
P1107 [Brk Release Time]	0.100 Secs (Default)

Increase or decrease this setting depending on the time that is required to open the brake.
7. Set brake set time.

Drive Parameter	Setting
P1108 [Brk Set Time]	0.100 Secs (Default)

Increase or decrease this setting depending on the time that is required to close the brake.
8. Set allowable brake slip.

Drive Parameter	Setting
P1109 [Brk Alarm Travel]	1.00 (Default)

Sets the number of motor revolutions the motor is allowed to lower the load when a brake slip has been detected.
9. Set brake slip definition.

Drive Parameter	Setting
P1110 [Brk Slip Count]	250.00 (Default)

Sets the number of encoder counts to define a brake slippage condition. Counts $=$ Encoder PPR x 4
10. Set brake float tolerance.

Drive Parameter	Setting
P1111 [Float Tolerance]	Use default Hz or RPM.

Sets the level at which the float timer starts counting.
11. Set brake float time.

Drive Parameter	Setting
P1113 [ZeroSpdFloatTime]	5.000 Secs (Default)

Sets the time to maintain zero speed with brake open when the run command has been released.

Setup Complete

The drive is now set up and Torque Prove for the mechanical brake control is activated. The load can now be applied.

DriveObserver ${ }^{\text {m" }}$ can be used to optimize the speed loop tuning. Use a 30 second time scaling on the X -axis
12. Use DriveObserver to configure the following traces.

Drive Parameter	Setting
P3 [Mtr Vel Fdbk]	Scaled to minimum and maximum speed limits.
P594 [Ramped Spd Ref]	Scaled to minimum and maximum speed limits.
P7 [0utput Current]	Scaled to current limit value.
P11 [DC Bus Volts]	Default scaling.
P5 [Torque Cur Fdbk] (Optional)	Default scaling.

Run the crane up and down under full load. If necessary, adjust acceleration and deceleration rates.

Troubleshooting

The following faults commonly occur during drive commissioning.
F4 "Undervoltage"

- If the mains supply is still present, reduce the undervoltage level at P461 [UnderVltg Level].

F5 "Overvoltage"

- Monitor the DC Bus voltage while operating the crane. When lowering the load, limit the DC bus voltage to 750 V DC.
- Verify that the external resistor is correctly connected / wired
- Verify that the parameter settings as stated in Point 1.
- Monitor bit 20 DB active of P935 [Drive Status 1]. This bit comes on when dynamic braking is active.

F20 "TrqProve Spd Band" (Speed deviation fault)

- This fault is only active when TorqProve is enabled.
- Speed loop tuning not correct. Increase P636 [Speed Reg BW] or P76 [Total Inertia]. If values are too high, the regulator becomes unstable.
- Verify P3 [Mtr Vel Fdbk] follows P594 [Ramped Spd Ref] as best as possible.
- Drive is going into current limit. Drive is undersized or acceleration / deceleration are set too fast.
- Brake is not opening. Check for faulty brake rectifier.

For more fault information, see Chapter 6 .

Crane Setup - Encoderless

These setup instructions assume the following.

- Drive and motor size have been carefully selected
- External brake resistor has been properly sized
- The drive is at factory defaults.

If not, unplug the output relay terminal block and issue a reset to factory defaults for the HOST and all PORTS. Plug terminal block back in.

- Programming is done via DriveExecutive or DriveExplorer
- Crane control is done via Run forward / Run Reverse inputs
- Mechanical brake control is wired to Output Relay 0

ATTENTION: Loss of control in suspended load applications can cause personal injury and/or equipment damage. The drive or a mechanical brake must always control the loads. Parameters $1100 \ldots 1113$ are designed for lifting/torque prove applications. It is the responsibility of the engineer and/or end user to configure drive parameters, test any lifting functionality and meet safety requirements in accordance with all applicable codes and standards.

Set Up the Drive

1. Adjust parameter settings and enter nameplate data.

Parameter	Setting
Brake Details	
P370 [Stop Mode A]	1 "Ramp"
P372 [Bus Reg Mode A]	2"Dyn Brake" (Dynamic Braking)
P382 [DB Resistor Type]	1 "External"
P383 [DB Ext Ohms]	Total Ohm value of external resistor.
P384 [DB Ext Watts]	Total real watt rating of external resistor.
P385 [DB ExtPulseWatts]	Maximum value for properly sized resistor.
P426 [Regen Power Lmt]	-800 \% (Minimum Value)
Motor Nameplate Data	
P25 [Motor NP Volts]	Motor nameplate voltage.
P26 [Motor NP Amps]	Motor nameplate current.
P27 [Motor NP Hertz]	Motor nameplate frequency.
P28 [Motor NP RPM]	Motor nameplate speed.
P29 [Mtr NP Pwr Units]	0 "HP" or 1"kW"
P30 [Motor NP Power]	Motor nameplate power rating.
P31 [Motor Poles]	Number of motor poles.
Motor Control	
P35 [Motor Ctrl Mode]	3 "Induction FV"
Motor Slip	
P621 [Slip RPM at FLA]	Synchronous Speed - P28 [Motor NP RPM] Example: 6 pole - 980 RPM motor Synchronous Speed $=($ NP frequency $\times 60$ Secs $) /$ pole pairs ($50 \mathrm{~Hz} \times 60$ Secs) $/ 3=1000$ RPM Slip = Synchronous Speed - Motor NP RPM $=1000-980=20$ RPM (enter 20 in P621)
Drive Duty Rating	
P306 [Duty Rating]	1 "Heavy Duty"
Overload Hertz	
P414 [Mtr 0L Hertz]	0.00 (Ensures that no current derating is applied.)
Autotune Torque	
P71 [Autotune Torque]	100.00 \% (Used during rotate tuning and inertia tuning.)
Protection	
P420 [Drive 0L Mode]	1 "Reduce PWM"
P422 [Current Limit 1]	200% of P26 [Motor NP Amps]
P444 [OutPhaseLossActn]	3 "FltCoastStop"

Motor Tune Routines

Static Tune

This routine measures motor characteristics with the brake set (brake closed).

Rotate Tune

This routine gives better results if connected equipment allows. This routine requires the mechanical brake to open and the motor be allowed to run at minimum of 70% of nominal speed.

Inertia Tune

This routine measures the time to accelerate the system to the nominal speed.

Static Tune

During a Static Tune, the mechanical brake remains set.

1. Enter Static Tune parameter settings.

Drive Parameter	Setting
P70 [Autotune]	2"Static Tune"
I/0 Module Parameter (Port X)	Setting
P10 [R00 Sel]	0.00 "Disabled"

2. To open the Control Bar, click the Controls icon
3. Press the Start button on the Control Bar.

When the Static Tune routine is complete, P70 [Autotune] changes to 0 "Ready."

Verify Drive Direction

1. Perform a Direction Test to verify proper direction of crane.

I/0 Module Parameter (Port \boldsymbol{n})	Setting	
P164 [DI Run Forward]	Port Number, P1 [Dig In Sts], Bitn (Run Fwd Input)	
P165 [DI Run Reverse]	Port Number, P1 [Dig In Sts], Bit n (Run Rev Input)	
IMPORTANT \quad The crane can be started via the crane control unit.		
Drive Parameter	Setting	
P545 [Spd Ref A Sel]	Port 0, P571 [Preset Speed 1]	
P571 [Preset Speed 1]	15 Hz (Set to low speed for direction test.)	
P535 [Accel Time 1]	2.00 Secs	
P537 [Decel Time 1]	2.00 Secs	
I/0 Module Parameter (Port X)	Setting	
P10 [R00 Sel]	Port 0, P935 [Drive Status 1], Bit 16 "Running"	

IMPORTANT The mechanical brake opens when the drive is running.
2. Run crane with the crane control unit and verify that the direction is correct.

If crane direction is not correct, change motor direction.

Drive Parameter	Setting
P40 [Mtr Options Cfg]	Bit 4"Mtr Lead Rev" = 1 (Reversed)

Run crane with the crane control unit and verify that the direction is now correct.

Move crane hook to a position that allows sufficient travel in both directions.

Rotate Tune

During a Rotate Tune routine, the motor runs for 20 seconds in the commanded direction. The Rotate Tune routine must be executed in a no load or lightly loaded condition such as the motor connected to a gearbox, cable drum, or cable and hook.

> | IMPORTANT | $\begin{array}{l}\text { Ensure that the Rotate Tune routine can be stopped if an end travel condition is } \\ \text { likely to occur. }\end{array}$ |
| :--- | :--- |

If the motor is connected to a load, determine whether there is enough travel distance for the Rotate Tune sequence to complete. If necessary, run the crane hook to top or bottom for more travel distance in the opposite direction.

If the Rotate Tune routine fails due to motor load, rerun the Static Tune routine and skip this routine.

1. Enter Rotate Tune parameter settings.

Drive Parameter	Setting
P70 [Autotune]	3 "Rotate Tune"
P520 [Max Fwd Speed]	Forward speed limit that is used during Autotune.
	70% P27 [Motor NP Hertz] minimum.
P521 [Max Rev Speed]	Reverse speed limit that is used during Autotune.
	70% P27 [Motor NP Hertz] minimum.
Encoder Module Parameter (Port X)	Setting
P10 [R00 Sel]	Port 0, P935 [Drive Status 1], Bit 1 "Active"

2. Press the Start button on the Control Bar.

When the Rotate Tune routine is complete, P 70 [Autotune] changes to 0 "Ready."

Check tuning results in P73 [IR Voltage Drop], P74 Ixo Voltage Drop], and P75 [Flux Current Ref].

Inertia Tune

The Inertia Tune routine measures the time to accelerate the system (with load) by using P71 [Autotune Torque] to the nominal speed. The test speed can be limited by reducing P520 [Max Fwd Speed] and P521 [Max Rev Speed]. The fastest test is achieved with P71 [Autotune Torque] set to a high value and P520 [Max Fwd Speed] and P521 [Max Rev Speed] set to a low value.

Because loads vary in crane applications, the result of an Inertia Tune is more or less irrelevant as it is for one condition only.

Step 8 outlines manually setting tuning values.

IMPORTANT Ensure that the Inertia Tune routine can be stopped if an end travel condition is likely to occur.

1. Enter Inertia Tune parameter settings.

Drive Parameter	Setting
P70 [Autotune]	4"Inertia Tune"

2. Press the Start button on the Control Bar.

When the Rotate Tune routine is complete, P70 [Autotune] changes to 0 "Ready."

Check tuning results in P76 [Total Inertia].
3. Set minimum speed.

Drive Parameter	Setting
P522 [Min Fwd Speed]	$2 \times$ Slip Frequency of Motor. (From motor nameplate.)
P523 [Min Rev Speed]	2x Slip Frequency of Motor. (From motor nameplate.)

4. Set maximum speed limits.

Drive Parameter	Setting
P520 [Max Fwd Speed]	Forward speed limit that is used during normal operation. Not more than the motor nominal frequency.
P521 [Max Rev Speed]	Reverse speed limit that is used during normal operation. Not more than the motor nominal frequency.

5. Set digital input functions.

Speed Select Inputs

Drive Parameter	Setting
P173...175 [DI Speed Sel $n]$	$1 / 0$ Port Number, P1 [Dig In Sts], Bit n

Clear Fault Input

Drive Parameter	Setting
P156 [DI Clear Fault]	I/O Port Number, P1 [Dig In Sts], Bit n

6. Set speed reference.

Program preset speeds according to Speed Select inputs that are used.

Input Status ($=$ Input Actuated)			Auto Reference Source
DI Speed Sel 2	DI Speed Sel 1	DI Speed Sel 0	
0	0	0	Reference A
0	0	1	Reference A
0	1	0	Reference B
0	1	1	Preset Speed 3
1	0	0	Preset Speed 4
1	0	1	Preset Speed 5
1	1	0	Preset Speed 6
1	1	1	Preset Speed 7

I/0 Module Parameter (Port X)	Setting
P10 [R00 Sel]	Port 0, P935 [Drive Status 1], Bit 16 "Running"

7. Run crane with crane control unit.

Verify speed references by checking P930 [Speed Ref Source].
8. Set speed loop tuning.

Drive Parameter	Setting
P636 [Speed Reg BW]	$20 \mathrm{R} / \mathrm{S}$
	Defines the reactivity of the speed regulator. This parameter is used to calculate Kp and Ki gains.
P76 [Total Inertia]	1.5 Secs This value can be increased or decreased depending on Speed regulator response.

P645 [Speed Reg Kp] = P636 [Speed Reg BW] x P76 [Total Inertia] = BW x J (Inertia)

Torque Prove

Carefully perform the following steps in the order presented.

1. Enter Torque Prove parameter settings.

I/0 Module Parameter (Port X)	Setting
P10 [R00 Sel]	0.00 (Disabled)
P6 [Dig Out Invert]	Bit 0 "Relay Out 0" = 1 (Output Inverted)
P10 [R00 Sel]	Port 0, P1103 [Trq Prove Status], Bit 4"Brake Set" = 1
Drive Parameter	Setting
P1100 [Trq Prove Cfg]	Bit 0 "TP Enable" $=1$ Bit 1 "Encoderless" $=1$ Bit 5 "BrkSlipEncls" $=1$

IMPORTANT After Torque Prove is activated, the drive is in an alarm state as described on page 356 . Carefully read the Attention statement and acknowledge it by setting the required parameter.
2. Set speed deviation.

Drive Parameter	Setting
P1105 [Speed Dev Band]	10 Hz

This setting can be lowered once the system has been tuned. The lower this value, the faster the protection.
3. Set speed deviation level.

Drive Parameter	Setting
P1106 [SpdBand Intgrtr]	0.200 Secs (Default)

This setting can be lowered once the system has been tuned. The lower this value, the faster the protection.
4. Set brake float tolerance.

Drive Parameter	Setting
P1111 [Float Tolerance]	$2 . .3$ times Slip Frequency of Motor.

Sets the level where the mechanical brake sets in encoderless mode.

Setup Complete

The drive is now set up and Torque Prove for the mechanical brake control is activated. The load can now be applied.

DriveObserver can be used to optimize the speed loop tuning. Use a 30 second time scaling on the X -axis
5. Use DriveObserver to configure the following traces.

Drive Parameter	Setting
P3 [Mtr Vel Fdbk]	Scaled to minimum and maximum speed limits.
P594 [Ramped Spd Ref]	Scaled to minimum and maximum speed limits.
P7 [Output Current]	Scaled to current limit value.
P11 [DC Bus Volts]	Default scaling.
P5 [Torque Cur Fdbk] (Optional)	Default scaling.

Run the crane up and down under full load. Adjust acceleration and deceleration rates if necessary.

Troubleshooting

The following faults commonly occur during drive commissioning.

F4 "Undervoltage"

- If the mains supply is still present, reduce the undervoltage level at P461 [UnderVltg Level].

F5 "Overvoltage"

- Monitor the DC Bus voltage while operating the crane. When lowering the load, limit the DC bus voltage to 750 V DC.
- Verify that the external resistor is correctly connected / wired
- Verify that the parameter settings as stated in Point 1.
- Monitor bit 20 DB active of P935 [Drive Status 1]. This bit comes on when dynamic braking is active.

F20 "TrqProve Spd Band" (Speed deviation fault)

- This fault is only active when TorqProve is enabled.
- Speed loop tuning not correct. Increase P636 [Speed Reg BW] or P76 [Total Inertia]. If values are too high, the regulator becomes unstable.
- Verifty that P3 [Mtr Vel Fdbk] follows P594 [Ramped Spd Ref] as best as possible.
- Drive is going into current limit. Drive is undersized or acceleration / deceleration are set too fast.
- Brake is not opening. Check for faulty brake rectifier.

For more fault information, see Chapter 6 .

Pump Off Function

Overview

The Pump Off function is used to change the speed of or stop the pump jack automatically, based on torque feedback from the motor. This function is useful for maximizing well production and reducing mechanical wear.

Configure P1187 [Pump Off Config] in one of two ways to detect a Pump Off.

- Down Stroke Torque method: Setting 0 "Automatic" or 1 "Position" The pump jack down stroke torque is based on a detected waveform.
- Cycle Torque method: Setting 2 "Cycle"

The pump jack down stroke torque is based on a full pump stroke cycle.

Setup

To use the Pump Off feature, the drive must operate in flux vector (FV) control mode. This mode requires that you enter motor nameplate data and complete a motor autotune routine. Gearbox ratio and sheave size data are also required.

Pump off control can be set to use a torque baseline, which is created when the drive is first run or from a fixed set point. The fixed set point is useful if the drive cannot detect a signature waveform due to well conditions. The drive does not create a set point that is based on what could be a pump off condition.

The down stroke torque can change position on some wells due to slippage in the system. In these cases, the peaks and valleys of the torque waveform move enough that the position reconnect does not work properly. This slippage can be seen on the position test point in that the position continues to reset early. To work on these pumps, the torque waveform over one cycle is averaged.

Gather Motor and Pump Data

Complete the table with the motor nameplate and pump data listed.

Enter Motor Data

Enter the motor data from above and adjust parameter settings.

Parameter	Setting		
Parameter Access Level	2 "Expert"		
P301 [Access Level]			
Motor Nameplate Data	Motor nameplate voltage.		
P25 [Motor NP Volts]	Motor nameplate current.		
P26 [Motor NP Amps]	Motor nameplate frequency.		
P27 [Motor NP Hertz]	Motor nameplate speed.		
P28 [Motor NP RPM]	0 "HP" or 1 "kW"		
P29 [Mtr NP Pwr Units]	Motor nameplate power rating.		
P30 [Motor NP Power]	Number of motor poles.		
P31 [Motor Poles]			
Motor Control	"Induction FV"		
P35 [Motor Ctrl Mode]			

Run Motor Tune Routine

The drive can be tuned to the motor. Autotune routines can be accessed directly or through the Start Up menu.

When tuning, it is preferred that the motor is uncoupled from the pump jack and a Rotate Tune routine be performed. If this action is not possible, perform a Static Tune routine.

ATTENTION: Rotation of the motor in an undesired direction can occur during this procedure. To guard against possible injury and/or equipment damage, it is recommended ti disconnect the motor from the load before proceeding.

Access Autotune Directly

1. Verify that the motor is turning in the forward direction by jogging the motor. Face the motor shaft and verify clockwise rotation. If necessary, correct the direction of rotation by using one of the following methods.
a. Swap any two motor leads. This method is recommended to help avoid confusion later.
b. Change the motor direction by configuring drive firmware.

Drive Parameter	Setting
P40 [Mtr Options Cfg]	Bit 4"Mtr Lead Rev" $=1$ (Reversed)

2. Once direction is established, enter the Rotate Tune parameter setting.

Drive Parameter	Setting
P70 [Autotune]	3"Rotate Tune"

3. Press Start and allow the drive to complete the Autotune routine.

When complete, the motor can now be coupled to the pump jack.

Access Autotune Through Start Up Menu

1. On the Human Interface Module (HIM), press the (Folders) key to navigate to the Start Up tab.
2. Select General Startup and answer the questions when prompted.

When complete, the motor can be coupled to the pump jack.

Enter Pump Data

Enter pump data and adjust parameter settings.

Parameter	Setting
Pump Jack	Diameter in inches.
P1178 [Motor Sheave]	1 "Pump Jack"
P1179 [OilWell Pump Cfg]	Percent of P1182 [Gearbox Rating]
P1181 [Gearbox Limit]	Nameplate gearbox rating.
P1182 [Gearbox Rating]	Nameplate gear ratio.
P1183 [Gearbox Ratio]	Diameter in inches.
P1184 [Gearbox Sheave]	
Pump 0ff	0 "Automatic" (Default)
P1187 [Pump Off Config]	Select preferred action.
P1189 [Pump Off Action]	0 "Disable" (Default)
P1190 [Pump Off Control]	

Enter Desired Bus Regulation Data

The following parameter settings assume that a dynamic brake resistor is used.

Parameter	Setting
Brake Features	
P372 [Bus Reg Mode A]	2 "Dyn Brake" ${ }^{(1)}$
P382 [DB Resistor Type]	1 "External"
P383 [DB Ext Ohms]	Based on performance preference.
P384 [DB Ext Watts]	Based on performance preference.
P385 [DB ExtPulseWatts]	Based on performance preference.
Motor Overload	
P409 [Dec Inhibit Actn]	0 "Ignore"
Load Limits	
P426 [Regen Power Lmt]	Set to match the value that is calculated for P671 [Neg Torque Limit], see below this table.

(1) If no dynamic braking resistor is used, set P372 [Bus Reg Mode A] to 1 "Adjust Freq" (Default). Speed is sacrificed for bus regulation and P524 [Overspeed Limit] must be adjusted.

The following positive and negative torque limits are calculated on powerup and entered by the drive.

- P670 [Pos Torque Limit] is calculated using the motor parameters.
- P671 [Neg Torque Limit] is calculated using the dynamic-brake resistor ohmic value and rated torque of the motor. If a dynamic brake resistor is not used, the default negative torque limit is used.

Change P426 [Regen Power Lmt] to match the value in P671 [Neg Torque Limit] to maximize dynamic brake performance.

Store Pump Cycle Torque

1. Verify the well is full.
2. Enter a command speed.
3. Start the Pump Jack from the HIM.
4. Set P1192 [Pump Cycle Store] to option 1 "Enable."

If the Pump Off feature detects a pump jack torque-signature waveform, the waveform is stored and the parameter resets to 0 "Disabled."

If this parameter does not reset to 0 "Disabled," set P1187 [Pump Off Config] to option 2 "Cycle." In Cycle mode, the entire cycle torque is used as the down-stroke torque used in the original pump off detection. There is no need to set the top of stroke in this mode.

Initialize Pump Stroke Position

1. Set P1193 [Set Top ofStroke] to option 1 "Enable."

Use a Human Interface Module (HIM) to avoid any communication delays.
2. Press enter when you visually see the Horsehead at the top position. This action sets the stroke position to the stored pump cycle torque.
3. Stop the drive.
4. Configure DriveObserver with the following parameters.

- P5 [Torque Cur Fdbk]
- P972 [Testpoint Lval]
- P1198 [Pct Cycle Torque]
- P1200 [Pct Drop Torque]
- P1201 [Stroke Pos Count]

Figure 80 - DriveObserver Settings

The value of P970 [Testpoint Sel 1] is referenced from P972 [Testpoint Lval 1].
5. Set P970 [Testpoint Sel 1] to a cycle count of 2043.

Initialize the Pump Off Feature

1. Set P1190 [Pump Off Control] to option 1 "Baseline Set."
2. With the well full, start the drive.

You can see waveforms similar to the waveforms in Figure 80. Monitor the Pump Jack and verify the Pump Off Action.

Fine-Tuning

P1195 [Pump Off Level], P1196 [Pump Off Speed], and P1197 [Pump Off Time] all contribute to the productivity of the well and must be adjusted. For more information read the parameter descriptions in Chapter 3.

Occasionally the position starts to drift relative to the torque signature. If drift occurs, set P1188 [Pump Off Setup] Bit 1 "Pos Offset" to 1. See Figure 81 for an example of what this drift would look like.

Figure 81 - Correcting Drift

Notice how the position has drifted relative to the torque. This drift causes the incorrect part of the waveform to be averaged as the down stroke torque and results in a false pump off condition. The drift can be corrected by setting the position offset bits properly.

Sleep Mode

If P1189 [Pump Off Action] is set to 1 "Always Stop," 2 "Stop After 1," or 3 "Stop After 2," the Sleep Wake function must be configured. Set the following parameters.

Parameter	Setting
Start Features	1"Direct" (Enabled)
P350 [Sleep Wake Mode]	1207 (Entered through the Numeric Edit tab.)
P351 [SleepWake RefSel]	Desired restart time (64800 seconds maximum).
P355 [Wake Time]	

Pump Off Control Outlines

Automatic/Position Baseline Set

The following steps are a general outline of how the initial Pump Off control is configured in the PowerFlex 753. The default configuration uses the down stroke torque with P1187 [Pump Off Config] set to 0 "Automatic" or 1 "Position" and P1190 [Pump Off Control] set to 1 "Baseline Set."

Set Base Speed Command

A commanded speed setting is chosen based on well characteristics, which produces the desired pump performance, most of the time. Pump off control is then configured to maintain acceptable pump performance when conditions temporarily change.

1. Pump off control requires the drive to be "At Speed." Check P935 [Drive Status 1] Bit 8 to verify this operating condition.
2. When P935 [Drive Status 1] Bit 8 "At Speed" = 1, the internal pump jack at speed bit is set and the current speed command is saved.
3. The next ten down stroke torques are sampled and summed.
4. The average of the down stroke torques is saved as the baseline for the current speed.
5. P1191 [Pump Off Status] Bit 6 "Pump Stable" $=1$.

When Bit $6=0$, the drive is averaging a new baseline torque.
6. The pump jack is running under normal conditions.
7. While running under normal conditions, every fifth stroke is compared against the baseline to check for a pump off condition. The stroke count can be monitored in test point TP 2043.

Change in Cycle Torque

If the cycle torque sample is less than or greater than the fixed setpoint by the percentage set in P1195 [Pump Off Level], the following occurs:

- P1191 [Pump Off Status] Bit 5 "PumpOff Alarm" $=1$
- The drive waits for a second sample

If the second sample is also less than or greater than the fixed setpoint by the percentage set in P1195 [Pump Off Level], a Pump Off condition is detected.

Run At Reduced Speed

When a Pump Off condition exists, and P1189 [Pump Off Action] is set to 0 "Change Speed," the percentage set in P1196 [Pump Off Speed] lowers the commanded speed.

$$
\text { Reduced Speed = Commanded Speed }-(\text { Commanded Speed x P1 196) }
$$

8. When the reduced speed is reached, P 935 [Drive Status 1] Bit 8 "At Speed" $=1$, the next ten down stroke torques are sampled and summed.
9. The average of the down stroke torques is saved as the baseline for the new speed. P1191 [Pump Off Status] Bit 6 "Pump Stable" is reset.
10. The pump jack runs at the reduced speed for the length of time set in P1197 [Pump Off Time] then the pump jack resumes pumping at the base speed command. (Step 6 in this sequence.)

If P1189 [Pump Off Action] is set to 3 "Stop After 2," go to Step 11.
Whenever the operator changes the base speed command, the process starts over at Step 1 in this sequence. This action does not apply to speed changes that are triggered by P1189 [Pump Off Action] when a pump off condition is detected.
11. While running at the first reduced Pump Off Speed, every fifth stroke is compared to the new baseline for a pump off condition.

If the down-stroke torque samples remain stable during the time set in P1197 [Pump Off Time], the following occurs:

- Commanded speed returns to the original base speed
- Down stroke torque samples are compared against the original baseline. (Step 6 in this sequence.)

If two down stroke torque samples are less than or greater than the new baseline by the percentage set in P1195 [Pump Off Level], the following occurs:

- The Pump Off condition persists
- The percentage set in P1196 [Pump Off Speed] lowers the commanded speed a second time.

12. When the second reduced speed is reached, P935 [Drive Status 1] Bit 8 "At Speed" $=1$, the next ten down stroke torques are sampled and summed.
13. The average of the down stroke torques is saved as the baseline for the second new speed. P1191 [Pump Off Status] Bit 6 "Pump Stable" is reset.
14. The pump jack runs at the second reduced speed for the length of time set in P1197 [Pump Off Time] and resumes pumping at the base speed command. (Step 6 in this sequence.)
15. While running at the second reduced Pump Off Speed, every fifth stroke is compared to the second new baseline for a persistent pump off condition.

If the down-stroke torque samples remain stable during the time set in P1197 [Pump Off Time], the following occurs:

- The commanded speed returns to the original base speed
- The down stroke torque samples are compared against the original baseline. (Step 6 in this sequence.)

If two down stroke samples are less than or greater than the second new baseline by the percentage set in P1195 [Pump Off Level], the following occurs:

- The Pump Off condition persists
- The drive stops for the length of time set in P353 [Sleep Time]

16. When P353 [Sleep Time] expires, the pump jack restarts and runs under normal conditions. (Step 6 in this sequence.)

When P1189 [Pump Off Action] is set to 2 "Stop After 1," the drive stops for the length of time set in P353 [Sleep Time] after one reduction of speed. (Step 11 in this sequence.)

When P1189 [Pump Off Action] is set to 1 "Always Stop," the drive stops for the length of time set in P353 [Sleep Time] at the first detection of a Pump Off condition. When P353 [Sleep Time] expires, the pump jack restarts and runs under normal conditions. (Step 6 in this sequence.)

When P1 192 [Pump Cycle Store] does not change back to 0 "disable," the drive has not been able to detect a pump-jack torque signature waveform to use as a baseline. A fixed set point is required to run the well. See the next section.

Cycle Torque Data Fixed Setpoint

The following is a general outline of how the initial Pump Off control is configured in the PowerFlex 753. This configuration uses cycle torque data with P1187 [Pump Off Config] set to 2 "Cycle" and P1190 [Pump Off Control] set to 2 "Fixed Setpt."

1. Pump off control requires the drive to be "At Speed." Check P935 [Drive Status 1] Bit 8 to verify this operating condition.
2. When P935 [Drive Status 1] Bit 8 "At Speed" = 1, the internal pump jack at speed bit is set and the current speed command is saved. The At Speed bit is no longer scrutinized until the speed command is changed or the drive is stopped.

The next three strokes are used to allow the pump to settle out.
3. P1191 [Pump Off Status] Bit 6 "Pump Stable" = 1 .
4. The pump jack is running under normal conditions.
5. While running under normal conditions, every fifth stroke is compared against the baseline to check for a pump off condition.

Change in Down Stroke Torque

If the down-stroke torque sample is less than or greater than the baseline by the percentage set in P1 195 [Pump Off Level], the following occurs:

- P1191 [Pump Off Status] Bit 5 "PumpOff Alarm" $=1$
- The drive waits for a second sample

If the second sample is also less than or greater than the baseline by the percentage set in P1195 [Pump Off Level], a Pump Off condition is detected.

Execute Pump Off Action

When a Pump Off condition exists, the drive follows the setting of P1189 [Pump Off Action]. The process starts over at Step 1 in this sequence and five strokes occur to allow the pump to settle out.

Whenever the operator changes the base speed command, the process starts over at Step 1 in this sequence.

When P1187 [Pump Off Config] is set to 2 "Cycle," the full stroke torque is used for pump off detection. A separate position counter is enabled, which uses the gear ratio and speed feedback to create a position. The gear ratio must be set correctly for this action to work.

- The position increments every 2 ms based on output frequency. The torque is added to a buffer and a counter increments.
- When the position counter reaches 10,000 , the counter is reset to 0 . The torque buffer is divided by the counter to create the average torque for the cycle.
- This torque is the full cycle torque and is then used as the down stroke torque was used in baseline set detection.

Table 24 - PowerFlex 753 Pump Off Test Points

Test Point	Description
TP 2031	Motor Torque in Pump Off
TP 2032	Top 0f Stroke in Pump Off
TP 2033	POSITION1 in Pump Off
TP 2034	POSITION2 in Pump 0ff
TP 2035	POSITION3 in Pump 0ff
TP 2036	POSITION4 in Pump Off
TP 2037	POSITION5 in Pump Off
TP 2038	Active Position in Pump Off
TP 2039	Position State in Pump 0ff
TP 2040	Heavily filter torque for position detection in Pump 0ff
TP 2041	PumpJack control state in Pump 0ff

Test Point	Description
TP 2042	Avg Torque used for control state in Pump 0ff
TP 2043	Cycle count in Pump Off
TP 2044	Alarm count in Pump Off
TP 2045	Peak Torque in Pump Off
TP 2046	Offset Position in Pump Off
TP 2047	Simulator Torque Ref
TP 2048	Minimum Torque Position
TP 2049	Active Pump Off level
TP 2050	Down Stroke Torque Integrator
TP 2051	Full Stroke Position for cycle mode
TP 2052	Adjustment to Position indicator

Table 25 - Parameter List

No.	Display Name
$\underline{1187}$	Pump 0ff Config
$\underline{1188}$	Pump 0ff Setup
$\underline{1189}$	Pump 0ff Action
$\underline{1190}$	Pump 0ff Control
$\underline{1191}$	Pump 0ff Status
$\underline{1192}$	Pump Cycle Store
$\underline{1193}$	Set Top ofStroke
$\underline{1194}$	Torque Setpoint
$\underline{1195}$	Pump 0ff Level
$\underline{1196}$	Pump 0ff Speed
$\underline{1197}$	Pump 0ff Time
$\underline{1199}$	Pct Cycle Torque
$\underline{1200}$	Pct Lift Torque
$\underline{1201}$	Stt Drop Torque
$\underline{1202}$	Stroke Per Count Min
$\underline{1203}$	Pump 0ff Count
$\underline{1204}$	Pump0ffSleepCnt
$\underline{1205}$	Day Stroke Count

Predictive Maintenance with Logix

The PowerFlex 753 and 755 drives contain algorithms for Predictive Maintenance that are used to improve the "up-time" of machines, processes, and facilities. These algorithms monitor the lifespan of certain components. They can be used to alert personnel when the components are nearing the end of their lifespan so the components can be replaced before they fail.

There are algorithms for drive fans, relay contacts on digital outputs, motor bearings, motor lubrication, machine bearings, and machine lubrication. See the Predictive Maintenance group in the Protection folder starting on page 102 for more information.

Predictive Maintenance for Wall Mount Drives (Frames 1...7)

Predictive maintenance for wall mount drives is straightforward. Each predictive maintenance item has five key parameters: Total Life, Elapsed Life, Remaining Life, Event Level, and Event Action.

- [Total Life] is the total expected life of the component
- [Elapsed Life] is the amount of life that has been expended
- [Remaining Life] is the Total Life minus Elapsed Life
- [Event Level] is the amount of Elapsed Time (in percent of Total Life) when you want the drive to warn the user of an impending failure
- [Event Action] is the action set to take place when the drive reaches the Event Level. It can be set to the following options: Ignore, Alarm, Fault Minor, Fault Coast Stop, Fault Ramp Stop, or Fault Current Limit Stop.

The alarm and fault actions stop the drive or prevent it from starting. If using a controller and a network interface such as EtherNet/IP, the logic and notification can be handled at the controller level. Configure the [Event Action] parameter to "Ignore" and use the controller to monitor the [Remaining Life] parameter. When the [Remaining Life] parameter reaches the [Event Level] parameter value, the controller sends a message that alerts the user on the HMI (example, PanelView" ${ }^{\text {m" }}$ or FactoryTalk ${ }^{\circ}$ View).

On wall mount drives, write explicit messages that read the [Remaining Life] parameter. Write the logic that compares the [Remaining Life] parameter to the [Event Level] parameter. The logic triggers a message when the [Event Level] parameter is reached.

Predictive Maintenance for Floor Mount Drives (Frames 8...10)

There can be multiple power structures in parallel on floor mount drives; and therefore, multiple sets of fans, which make the predictive maintenance more complicated than on wall mount drives.

To minimize the number of parameters, the parallel inverters, converters, and precharge units do not have separate [Total Life] and [Remaining Life] parameters. You must calculate the individual [Remaining Life] values in the controller.

A frame 10 drive has three power structures, and three sets of cabinet fans, heatsink fans, and internal stirring fans.

These parameters are available for the cabinet fans.
Table 26-Cabinet Fan Parameters

Node	Parameter No.	Parameter Name	Description
0	482	CBFan TotalLife	Displays the expected lifespan for a cabinet fan.
0	483	CBFan ElpsdLife	Displays the greatest expended life of a cabinet fan.
0	484	CBFan RemainLife	Displays the difference between P482 [CBFan TotalLife] and P483 [CBFan ElpsdLife].
11	138	C1 CBFanElpsdLife	Displays the expended life of the fans on cabinet 1.
11	238	C2 CBFanElpsdLife	Displays the expended life of the fans on cabinet 2.
11	338	C3 CBFanElpsdLife	Displays the expended life of the fans on cabinet 3.

You must calculate the [Remaining Life] parameter values for the cabinet fans in each power structure. This calculation is required anytime the [Elapsed Life] parameter of one power structure differs from another. This difference can occur when one power structure has been replaced or serviced separately from the others.

Example Code

This example code calculates the [Remaining Life] value of the cabinet fan for the first power structure. For frames 9 and 10, use similar logic for the other cabinet fans. Use similar logic to calculate the [Remaining Life] of the heatsink fans and the internal stirring fans.

1. Use a timer instruction to set a sensible time interval for reading the data. See Figure 82.

Figure 82 - Timer Instruction

2. Use a message instruction to retrieve the Total Life value. See Figure 83.

Figure 83 - MSG Instruction

3. Configure the message instructions.
a. Click the Configuration tab. See Figure 84.

Figure 84 - Message Configuration Screen - Configuration Tab

b. In the Message Type field, click the down arrow to select CIP Generic.
c. In the Service Type field, click the down arrow to select Get Attribute Single.
d. In the Class field, enter 93 (hex); use the EtherNet/IP DPI Parameter Object.
e. Set the Instance to 482 . This field defines the parameter that you want to obtain.
f. Set the Attribute to 9 . This field defines that you want to retrieve the parameter value.
g. Click the Communication tab. See Figure 85.

Figure 85 - Message Configuration Screen - Communications Tab

h. In the Path field, enter the drive name to configure the communication path of the message instruction to that drive.
In this case, the drive name in the Logix I/O tree is "_DriveName."
i. The value for Total Life returns in the double integer (DINT) data format.
The raw data $=$ Hours $\times 100$. Divide by 100 to get the Total Life in hours. The CPT block (see Figure 86) performs this division.

Figure 86 - Predictive Main Group Parameters (Port 0)

Port 0: Predictive Main Group Parameters				
\#	Parameter Name	Value	Units	Internal Value
469	PredMaint Sts	0000000000000000		0
470	PredMaintAmbTemp	50.00	DegC	0x42480000
471	PredMaint Rst En	Disable	\pm	0
472	PredMaint Reset	Ready	\checkmark	0
481	CbFanDerate	1.00		0x3F800000
482	CbFan TotalLife	17962.50	Hrs	1796250
483	CbFan ElpsdLife	0.00	Hrs	0
484	CbFan RemainLife	17962.50	Hrs	1796250
485	CbFan EventLevel	80.000	\%	0x42A00000
486	CbFan EventActn	Ignore	\checkmark	0
488	HSFan Derate	1.00		0x3F800000
489	HSFan Totallife	23949.00	His	2394900
490	HSFan ElpsdLife	0.33	Hrs	33
491	HSFan RemainLife	23948.67	Hrs	2394867
492	HSFan EventLevel	80.000	\%	0x42A00000
493	HSFan EventActn	Ignore	\pm	0
495	InFan Derate	1.00		0x3F800000
496	InFan Totallife	30238.50	Hrs	3023850
497	InFan ElpsdLife	4612.96	Hrs	461296
498	InFan RemainLife	25625.54	Hrs	2562554
499	InFan EventLevel	80.000	\%	0x42A00000
500	InFan EventActn	Ignore	\checkmark	0

4. Use a message instruction to retrieve the [Elapsed Life] value for the cabinet fan from converter 1. [Elapsed Life] data returns with a floating point (Real) data format. See Figure 87.

Figure 87 - Message Instruction for Elapsed Life Parameter

5. Configure the message instructions.
a. Click the Configuration tab. See Figure 88.

Figure 88 - Message Configuration Screen - Configuration Tab

b. In the Message Type field, click the down arrow to select CIP Generic.
c. In the Service Type field, click the down arrow to select Get Attribute Single.
d. In the Class field, enter 93 (hex); use the EtherNet/IP DPI Parameter Object.
e. Set the Instance to 27786 . This field defines the parameter that you want to obtain.
The Instance is calculated by adding an offset of 27648 (dec) (as determined by the PowerFlex 750 Ethernet Communications Manual) to the converter 1 [C1 CBFanElpsdLife] parameter number (P138). 27648 (offset) 138 (parameter number) $=27786$
f. Set the Attribute to 9 . This field defines that you want to retrieve the parameter value.
g. Click the Communication tab. See Figure 89.

Figure 89 - Message Configuration Screen - Communication Tab

h. In the Path field, enter the drive name to configure the communication path of the message instruction to that drive.
In this case, the drive name in the Logix I/O tree is "_DriveName."
i. The [Elapsed Life] data returns with a floating point (Real) data format. The raw data is already in hours. See Figure 90.

Figure 90 - Predictive Main Group Parameters (Port 11)

Port 11: Predictive Main Custom Group Parameters				
$\#$	Parameter Name	Value	Units	
137	C1 PredMainReset	Ready		
138	C1 CbFanElpsdLif	0.000	Hrs	

6. To calculate the [Remaining Life] parameter, use a Compute (CPT) instruction with a subtraction expression. See Figure 91.

Figure 91 - Compute (CPT) Instructions

Notes:

Using DeviceLogix

DeviceLogix ${ }^{\text {mic }}$ (DLX) is an embedded component that is located in Port 14 of PowerFlex ${ }^{\circ} 750$-Series drives. It is used to control outputs and manage status information locally within the drive. It can function stand-alone or complimentary to supervisory control.

IMPORTANT The Human Interface Module (HIM) CopyCat function does not work with the following firmware versions.

- Powerflex 753 firmware version 1.005
- PowerFlex 755 firmware versions 1.009 or 1.010 .

DeviceLogix programming for PowerFlex 750-Series drives is accomplished
 the following versions of drive software:

Drive Software Tool	PowerFlex 755 v1.xx	PowerFlex 753 v1.xx, v5.xx PowerFlex 755 v2.xx. ..v5.xx	PowerFlex 753 v6.xx...v7.xx PowerFlex 755 v6.xx...v7.xx
DriveExplorer ${ }^{\text {™ }}$	v6.01 (and higher)	v6.02 (and higher)	v6.04 (and higher)
DriveTools ${ }^{\text {TM }}$ SP / DriveExecutive ${ }^{\text {TM }}$	v5.01 (and higher)	v5.02 (and higher)	v5.05 (and higher)
DeviceLogix 5000 Drive Add-On Profiles	v2.01 (and higher)	v2.02 (and higher)	v4.02 (and higher)
Connected Components Workbench	v1.02 (and higher)	v1.02 (and higher)	v1.02 (and higher)

Only the drive software tools that are listed here can be used to program the DeviceLogix component in PowerFlex 750-Series drives. Other DeviceLogix Editors, such as RSNetWorx" for DeviceNet, cannot be used.

IMPORTANT	DeviceLogix projects that are created with PowerFlex 755 firmware versions projects 1.009 or 1.010 do not bot work woned and adjusted in an editor (for oxample DriveExplorer or DriveExecutive) before being downloaded to the drive.

Note the following feature differences between the drive firmware releases:

	PowerFlex 755 v1.xx	PowerFlex 753 v1.xx PowerFlex 755 v2.xx
DeviceLogix Library	Version 3	Version 4
Maximum number of function blocks	90	225
Program update time per number of blocks used	5 ms (fixed): $1 \ldots .45$ blocks	5 ms (fixed): $1 \ldots . .45$ blocks
	10 ms (fixed): $46 \ldots 90$ blocks	10 ms (fixed): $46 \ldots .90$ blocks
		15 ms (fixed): $91 \ldots .135$ blocks
		20 ms (fixed): $136 \ldots .180$ blocks
		25 ms (fixed): $181 \ldots .225$ blocks

Version 3 of the DeviceLogix library introduced the following new features:

- Analog instructions (compute, math, compare, and so forth)
- Multiple I/O enable line object support
- Cut and Paste capability
- Screen format retention
- Online Help / Bit tool tip

Version 4 of the DeviceLogix library added the following new features:

- Macro Block instruction - the user programs a custom-function block element that contains other function blocks to perform specific tasks
- PID instruction

Version 5 of the DeviceLogix library added the following new features:

- User-defined tags for function block and ladder logic
- MOV and RESET ladder instructions
- Multiple Boolean outputs and inputs for selected instructions
- Function Block diagram I/O selection improvements
- Improved process-order assignment algorithm

Note: PowerFlex 755 v1.xxx drives can be flash updated to v2.xxx to take advantage of the new features in the Version 4 release of the DeviceLogix library and the increased number of function blocks.

The PowerFlex 750-Series DeviceLogix can provide basic logic capability for applications that can allow a $5 \ldots 25 \mathrm{~ms}$ scan time depending on program size, plus the time it takes to update the I/O. It can be used in both networked and standalone environments. It can also operate autonomous of the drive. For example, it can continue executing if the drive is faulted, or disconnected from AC input power (requires PowerFlex 750 -Series 24 V DC auxiliary power supply option, catalog number 20-750-APS).

There is no data retention in DeviceLogix during a power cycle. Timer and counter-accumulators, calculation results, latched bits, and so forth, are cleared.

Parameters

Function Block Elements
都
${ }^{(1)}$ Bit and Analog I/O do not count against the Function Block total. All other elements count, with each instance equal to one Function Block.

The DeviceLogix Editor provides a graphical interface, within which you can configure Function Blocks and provide local control in the drive. DeviceLogix Editor navigation and programming basics is not covered in this manual. See the DeviceLogix System User Manual, publication RA-UM003 for more information.

Macro Blocks

\square
You can create up to three Macro Blocks, and each can be used 10 times. The selections are empty until you create a Macro Block. You can also create the icon text that is associated with each Macro Block.

Bit and Analog I/O Points

The DeviceLogix controller in Port 14 uses (48) bit inputs, (48) bit outputs, (24) analog inputs, and (17) analog outputs to interact with the other ports in the drive (both drive and peripheral parameters).

Bit Inputs ㅁ

Available bit inputs to the DeviceLogix program include:

Bit Inputs	Description
(16) Hardware Boolean Inputs - DIP1 to DIP 16	These inputs correlate with DeviceLogix Port 14 parameters P33 [DLX (32) Network Boolean Inputs Ready, Active, Alarm, Faulted, and so to P48 [DLX DIP 16] forth. These inputs correlate with the DeviceLogix Logic Status word for the
drive. See page 237 for details on the Logic Status word bits.	

Bit inputs are used to connect to real-world input devices (push buttons, photoeyes, and so forth) that are wired to an I/O option module in the drive, monitor drive status, or to read a bit in a bit-enumerated parameter.

Bit Outputs

Available bit outputs from the DeviceLogix program include:

Bit Outputs	Description
(16) Hardware Boolean Outputs - DOP1 to DOP 16	These outputs correlate with the bits in DeviceLogix Port 14 parameter P51 [DLX DigOut Sts2]
(32) Network Boolean Outputs - Stop, Start, Jog1, Clear Faults, and so forth.	These outputs correlate with the DeviceLogix Logic Command word for the drive. See page 237 for details on the Logic Command word bits. These bits can also be monitored in DeviceLogix Port 14 parameter P50 [DLX DigOut Sts].

Bit Outputs are used to connect to real-world output devices (pilot lights, relays, and so forth) that are wired to an I/O option module in the drive, to control the drive directly via Logic Command bits, or to write a bit in a bit-enumerated parameter.

Analog Inputs

Available analog inputs to the DeviceLogix program include:

Analog Inputs	Description
(12) Hardware Analog Inputs	Scratchpad registers for DLX program input use.
- DLX Real InSP1 to DLX Real InSP8 (Real)	
- DLX DINT InSP1 to DLX DINT InSP4 (DINT)	
(17) Network Analog Inputs	The Common Feedback correlates with the - Common Feedback (Real) - DLX In 01 to DLX In 14 (Real) - DLX In 15 to DLX In 16 (DINT)
with DeviceLogix Port 14 parameters P17 [DLX In	
01] to P32 [DLX In 16]	

Analog Inputs are typically used to connect to real-world input devices (sensor, potentiometer, and so forth) that are wired to an I/O option module in the drive, monitor drive Feedback, read the Real-Time Clock, or to read a drive / peripheral parameter.

Note: Hardware Analog Inputs are available in the PowerFlex 753 and v2.xxx (and higher) PowerFlex 755 drives.

Analog Outputs

Available analog outputs from the DeviceLogix program include:

Analog Outputs	Description
(12) Hardware Analog Outputs	Scratchpad registers for DLX program output use.
- DLX Real OutSP1 to DLX Real OutSP8 (Real)	
- DLX DINT OutSP1 to DLX DINT OutSP4 (DINT)	
(17) Network Analog Outputs	The Reference Command correlates with the - Reference Command (Real) - DLX Out 01 to DLX Out 14 (Real) - DLX Out 15 to DLX Out 16 (DINT)

Analog Outputs are typically used to connect to real-world output devices (meter panel, valve, and so forth) that are wired to an I/O option module in the drive, control the Reference to the drive, or to write a drive / peripheral parameter.

Note: Hardware Analog Outputs are available in the PowerFlex 753 and $\mathrm{v} 2 . \mathrm{xxx}$ (and higher) PowerFlex 755 drives.

Tips

Data Types

The DeviceLogix Analog In/Out parameters support different data types. For example, P17 [DLX In 01] is a Real whereas P32 [DLX In 16] is a DINT. Be sure to assign a DLX In / Out to a parameter that has the same data type.

Function Block elements also support different data types. Click the Properties
Button..$=$ in the upper right-hand corner of each element to display the Function Block properties. The Function Data Type field displays the supported data types. If Real DLX Ins are used with a Function Block element configured for DINT (typical default), the fraction is truncated.

PowerFlex 755 v1.xxx Firmware Datalinks and internal DeviceLogix scratchpad registers (P54...P81)

Each DLX In and DLX Out is a Datalink and cannot be directly mapped to each other or another Datalink, such as a Datalink in the Port 13 Embedded EtherNet/IP. Use the DeviceLogix internal scratchpad registers to pass data between the Datalinks.

Example 1 - Reading data from the network

A value from the network is input to DLX Real SP 1.

N:P.P.\#	Name	Value
$[11: 13.1]$	DL From Net 01	Port 14: DLX Real SP1

DLX In 01 reads DLX Real SP1 and can now be used as an Analog Input in the DeviceLogix program.

N:P.P.\#	Name	Value
$[11: 14.17]$	DLX In 01	Port 14: DLX Real SP1

DLX Real SP1 is the intermediary register that allows the two Datalinks to work together.

Example 2-Writing data to the network

The DeviceLogix program controls an Analog Output value in DLX Out 01, which is written to DLX Real SP2.

N:P.P.\#	Name	Value
$[11: 14.1]$	DLXOut 01	Port 14: DLXReal SP2

The DLX Real SP2 value is output to the network.

N:P.P\#	Name	Value
$[11: 13.17]$	DL To Net 01	Port 14: DLXReal SP2

DLX Real SP2 is the intermediary register that allows the two Datalinks to work together.

PowerFlex 753 (all) and PowerFlex 755 v2.xxx (and higher) Datalinks and internal DeviceLogix scratchpad registers (P82...P105)

Each DLX In and DLX Out is a Datalink and cannot be directly mapped to each other or another Datalink, such as a Datalink in the Port 13 Embedded EtherNet/IP. Although the same method used with PowerFlex 755 v1.xxx firmware can be employed, there is a more efficient method that does not require a DeviceLogix Datalink to be used.

Example 1 - Reading data from the network
A value from the network is input to DLX Real InSP1.

Drive	Datalink	Value
753	Port 0 P895 [Data In A1]	Port 14: DLX Real InSP1
755	Port 13 P1 [DL From Net 01]	

DLX Real InSP1 can now be used as a Hardware Analog Input and used directly with a Function Block (a DeviceLogix Datalink is not required).

Example 2 - Writing data to the network

The DeviceLogix program controls an Analog Output value, which is written to DLX Real OutSP1.

Drive	Datalink	Value
753	Port 0 P905 [Data Out A1]	Port 14: DLX Real 0utSP1
755	Port 13 P17 [DL To Net 01]	

DLX Real OutSP1 can now be used as a Hardware Analog Output and used directly with a Function Block (a DeviceLogix Datalink is not required).

Program Examples

Example 1: Selector Switch Operation

This example demonstrates how a selector switch operation similar to the feature in the PowerFlex 700S can be achieved through the embedded DeviceLogix in the PowerFlex 750 -Series drive. A selector switch is simulated in the drive by using a combination of inputs to produce multiple outputs. Digital inputs in the drive are used to output configurable multiple preset speeds ($75 \mathrm{~Hz}, 85 \mathrm{~Hz}, 95$ Hz , and 105 Hz) to P571 [Preset Speed 1]. It is assumed that the 750 -Series drive has an I/O module that is installed in Port 4.

The following truth table represents the inputs and outputs for a 4 position selector switch.

Inputs		Outputs	
Input 1	Input 2	Binary Output	Selector Switch Output
0	0	0	Output A
0	1	1	Output B
1	0	2	Output C
1	1	3	Output D

The Logic Map offers a high-level explanation of how these outputs are achieved.

Figure 92 - Two Input Four Position Selector Switch Logic Map

Discrete Inputs in the Drive are used for Inputs 1 and Input 2 . Output A, B, C, and D is linked to DeviceLogix Scratchpad Registers. The scratchpad feature allows further flexibility to modify the values of these outputs.

The resulting output can be linked to a parameter and be used to support drive applications, such as configuring multiple preset speeds and point-to-point positioning. In this example, it controls Preset Speed 1.

Parameter Configuration

The following parameters are configured for this example:

Port Parameter No.	Parameter	Value	Description
14.1	DLX Out 01	Port 0: Preset Speed 1	
14.33	DLX DIP 1	Port 4: Dig In Status.Input 1	Digital input 1 from Selector Switch
14.34	DLX DIP 2	Port 4: Dig In Status.Input 2	Digital input 2 from Selector Switch
14.17	DLX In 01	Port 14: DLX Real SP1	Output A
14.18	DLX In 02	Port 14: DLX Real SP2	Output B
14.19	DLX In 03	Port 14: DLX Real SP3	Output C
14.20	DLX In 04	Port 14: DLX Real SP4	Output D
14.54	DLX Real SP1	75.00	Output A Preset Speed
14.55	DLX Real SP2	85.00	Output B Preset Speed
14.56	DLX Real SP3	95.00	Output C Preset Speed
14.57	DLX Real SP4	105.00	Output D Preset Speed
0.571	Preset Speed 1	varies	Output from Seleccor Switch

Functional Block Programming

The Selector Switch Operation example consists of 14 blocks that are shown in the following figure.

Example 2: Scale Block Operation

This example demonstrates how a scale block operation similar to the feature in the PowerFlex 700VC can be achieved through the embedded DeviceLogix in the PowerFlex 750-Series drive. A Scale Block scales a parameter value and the input of the block is linked to a parameter that is desired to be scaled. The scale block also has both input and output high limits and low limit parameters.

Figure 93 - Scale Block High-Level View

Scale In Hi determines the high value for the input to the scale block.
Scale Out Hi determines the corresponding high value for the output of the scale block.

Scale In Low determines the low value for the input to the scale block.
Scale Out Lo determines the corresponding low value for the output of the scale block.

Scale Out Value of the block is then available for user to link to any parameter that accepts links.

Parameter Configuration

The following DeviceLogix parameters are configured for this example:

Port Parameter No.	Parameter	Value	Description
14.1	DLX Out 01	*Set to the Scale Output write source *	A floating point output that can be controlled by the DeviceLogix program
14.17	DLX In 01	*Set to the Scale Input value read source	A floating point input that can be read by the DeviceLogix program.
14.18	DLX In 02	Port 14: DLX Real SP2	Scale In Low
14.19	DLX In 03	Port 14: DLX Real SP3	Scale In High
14.20	DLX In 04	Port 14: DLX Real SP4	Scale Out Low
14.21	DLX In 05	Port 14: DLX Real SP5	Scale Out High
14.55	DLX Real SP2	0.0	Scale In Low value
14.56	DLX Real SP3	1800.00	Scale In High value
14.57	DLX Real SP4	0.000	Scale Out Low value
14.58	DLX Real SP5	10.00	Scale Out High value

Functional Block Programming

The Scale Block Operation example consists of 12 blocks that are shown in the following figure.

Example 3: Diverter Operation

This example demonstrates basic control logic to operate a diverter in a conveyor system. The diverter directs parts from an upstream conveyor to one of two downstream conveyors. It alternately sends ' x ' parts down each downstream conveyor.

The application consists of the following discrete I/O:

Type	Name	Description
Inputs	Part Present Sensor	Identifies that a part is present
Outputs	Diverter Actuator	Controls the diverter actuator to direct the flow of parts

Example logic requirements:

- If Part Present Sensor is ON, then increment the parts counter
- If the parts-counter preset is reached, reset the counter and alternately set or reset the Diverter Actuator

Parameter Configuration

The following parameters are configured for this example:

Port Parameter No.	Parameter	Value	Description
4.20	T00 Select	Port 14: DLX Dig0ut Sts2.DLX DOPSts0	Output on I/0 module in Port 4
14.33	DLX DIP 1	Port 4: Dig In Status.Input 1	Part Present Sensor input (//0 module in Port 4)
14.51	DLX Dig0ut Sts2		Diverter Actuator output

Functional Block Programming

This example consists of four blocks that are shown in the following figure.

Example 4: Wet Well Operation

This example demonstrates how basic control logic can be used for simple applications. It is assumed that the PowerFlex 755 has an I/O module installed in Port 4.

Figure 94 - Wet Well

The application consists of the following discrete I/O:

Type	Name	Description
Inputs	Fault Reset pushbutton	Used to reset any faults or alarms
	Critical High-Level sensor	Indicates a critically high level. It is normally a backup to the High-Level sensor and is also used to detect if the High-Level sensor is faulty. When ON, the drive operates at an even higher output frequency in case it is due to a high inflow.
	High-Level sensor	Indicates the well is at a high level and it is time to start pumping (normal operation). The drive operates at a 'normal' rate unless the Critical High Level was reached.
0utputs	Low-Level sensor	When OFF, it is used to indicate that the well is empty (as long as the High and Critical High-Level sensors are also OFF). The drive stops operating (end of pumping cycle).
	Sensor Fault pilot light	Indicates that there is a problem with either the High-Level or Low- Level sensors
	Too Much Time Alarm pilot light	If the drive operates for more than the normal amount of time it takes to empty the well, there can be increased inflow or perhaps the Low-Level sensor is stuck ON. An alarm indication is made and the drive continues to operate.
	Critical High-Fault flashing light / alarm horn	Indicates a critically high level that requires immediate attention.

Example logic requirements:

- If Critical High-Level or High-Level sensor is ON, then start the drive.
- If Critical High-Level sensor is ON, then switch to higher rate (90 Hz) for the rest of the pumping cycle. Else run at the normal rate $(60 \mathrm{~Hz})$
- Run until all three level sensors are OFF
- Pump should run at least ' x ' minutes at a minimum. If the Low-Level sensor fails, this prevents the High-Level sensor from cycling the pump On/Off too quickly.
- Annunciate a Sensor Fault condition
- The Low-Level sensor should never be OFF when either the High Level or Critical High-Level sensors are ON
- The High-Level sensor should never be OFF when the Critical HighLevel sensor is ON
- The Critical High-Level sensor should never be ON when either the High-Level or Low-Level sensors are OFF
- Annunciate a Critical High-Level condition
- The Critical High-Level output should never be ON
- Annunciate if pumping cycle time is longer than normal ('y' minutes)
- Monitor the amount of time a pump cycle takes by timing how long the drive is operating.
- If greater than ' y ' minutes, energize the Too Much Time Alarm output
- Reset alarms / faults with a Reset pushbutton input

Parameter Configuration

The following parameters are configured for this example.
The following DeviceLogix parameters are configured for this example:

Port Parameter No.	Parameter	Value	Description
0.520	Max Fwd Speed	90.00	
0.545	Speed Ref A Sel	Port 0: Preset Speed 1	
0.571	Preset Speed 1	60.00	Normal pumping rate (60 Hz)
0.573	Preset Speed 3	90.00	High speed pumping rate (90 Hz)
4.10	R00 Select	Port 14: DLX DigOut Sts2.DLX D0PSts0	Sensor Fault output
4.20	T00 Select	Port 14: DLX Dig0ut Sts2.DLX DOPSts1	Critical High-Level Fault output
4.30	T01 Select	Port 14: DLX DigOut Sts2.DLX DOPSts2	Too Much Time Alarm output
14.33	DLX DIP 1	Port 4: Dig In Status.Input 1	Critical High-Level Sensor input
14.34	DLX DIP 2	Port 4: Dig In Status.Input 2	High-Level Sensor input
14.35	DLX DIP 3	Port 4: Dig In Status.Input 3	Low-Level Sensor input
14.36	DLX DIP 4	Port 4: Dig In Status.Input 4	Alarm / Fault Reset pushbutton input

Functional Block Programming

This example consists of 16 blocks that are shown in the following figure.
Figure 95 - Control Circuit

Figure 96 - Fault/Alarm Circuit

Example 5: Utilizing the Real-Time Clock

This example demonstrates how to utilize the PowerFlex 750-Series drive RealTime Clock in a DeviceLogix program.

Example logic requirements:

- Run the drive Monday through Friday between 7:45 a.m. and 5:15 p.m

Parameter Configuration

The following parameters are configured for this example:

Port Parameter No.	Parameter	Value	Description
0.545	Speed Ref A Sel	Port 0: Preset Speed 1	
0.571	Preset Speed 1	60.00	Operating speed of drive

Functional Block Programming
This example consists of 15 blocks that are shown in the following figure.

Permanent Magnet Motors

Compatible Allen-Bradley Servo Motors

Table 27 contains a list of specifications for Allen-Bradley servo motors compatible with PowerFlex 750-Series drives. This information is provided to help configure PowerFlex 750-Series drives with the appropriate servo motor data. For information regarding compatibility and configuration of any AllenBradley servo motors (including RDB Series Direct Drive Motors) and thirdparty PM motors that are not listed here, contact Allen-Bradley Drives Technical Support.

When using a PowerFlex 755 drive to control a permanent magnet motor, the motor feedback device must have a resolution so that the number of pulses per revolution (PPR) is an exponent of two.

For example: 512, 1024, 2048, 4096, 8192...524288, 1048576...

Table 27 - Motor Name Plate and Rating Specifications

Model Number	Motor NP Volts (line to line V rms)	Motor NP Amps (A rms)	Motor NP Hertz (Hz)	Motor NP RPM (oper. rpm)	Motor NP Power (kW)	Motor Poles	Current peak (A rms)	System Cont. Stall Torque ($\mathrm{N} \cdot \mathrm{m}$)	Motor Max RPM (rpm)
MPM-A1151M	240	4.2	333.3	5000	0.90	8	21.6	2.18	6000
MPM-A1152F	240	5.9	266.7	4000	1.40	8	31.7	4.74	5000
MPM-A1302F	240	7.4	266.7	4000	1.65	8	35.6	5.99	4500
MPM-A1304F	240	8.1	233.3	3500	2.20	8	34.2	9.30	4000
MPM-A1651F	240	14.5	200.0	3000	2.50	8	52.2	10.70	5000
MPM-A1652F	240	18.1	233.3	3500	4.03	8	73.0	13.50	4000
MPM-A1653F	240	23.2	200.0	3000	5.10	8	84.3	18.60	4000
MPM-A2152F	240	33.7	133.3	2000	5.20	8	89.0	27.00	4000
MPM-A2153F	240	32.8	133.3	2000	5.80	8	85.2	34.00	4600
MPM-A2154C	240	24.8	116.7	1750	6.50	8	89.8	55.00	2000
MPM-A2154E	240	29.6	133.3	2000	7.00	8	90.7	44.00	2650
MPM-B1151F	480	1.5	266.7	4000	0.75	8	7.0	2.18	5000
MPM-B1151T	480	3.1	333.3	5000	0.90	8	14.5	2.18	7000
MPM-B1152C	480	2.3	166.7	2500	1.20	8	8.8	2.18	3000
MPM-B1152F	480	2.9	266.7	4000	1.40	8	15.5	4.74	5200
MPM-B1152T	480	5.2	266.7	4000	1.40	8	26.8	4.74	7000
MPM-B1153E	480	2.7	200.0	3000	1.40	8	15.3	6.55	3500
MPM-B1153F	480	3.2	266.7	4000	1.45	8	22.6	6.55	5500
MPM-B1153T	480	5.5	266.7	4000	1.45	8	39.2	6.55	7000
MPM-B1302F	480	3.4	266.7	4000	1.65	8	15.6	5.99	4500
MPM-B1302M	480	5.0	266.7	4000	1.65	8	22.6	5.99	6000
MPM-B1302T	480	6.6	266.7	4000	1.65	8	30.7	5.99	7000
MPM-B1304C	480	3.4	183.3	2750	2.00	8	15.8	10.20	2750
MPM-B1304E	480	4.1	166.7	2500	2.20	8	24.2	10.20	4000
MPM-B1304M	480	7.3	233.3	3500	2.20	8	42.9	10.20	6000
MPM-B1651C	480	4.7	200.0	3000	2.50	8	20.6	10.70	3500
MPM-B1651F	480	8.2	200.0	3000	2.50	8	36.0	10.70	5000
MPM-B1651M	480	10.9	200.0	3000	2.50	8	40.2	10.70	5000
MPM-B1652C	480	7.0	166.7	2500	3.80	8	23.8	16.00	2500
MPM-B1652E	480	8.0	233.3	3500	4.30	8	42.8	19.40	3500
MPM-B1652F	480	11.0	233.3	3500	4.30	8	59.5	19.40	4500
MPM-B1653C	480	10.5	133.3	2000	4.60	8	41.9	26.80	2500
MPM-B1653E	480	10.2	200.0	3000	5.10	8	51.6	26.80	3500
MPM-B1653F	480	13.2	200.0	3000	5.10	8	66.7	26.80	4000
MPM-B2152C	480	12.3	133.3	2000	5.60	8	39.2	36.70	2500
MPM-B2152F	480	18.7	166.7	2500	5.90	8	69.3	33.00	4500
MPM-B2152M	480	21.0	166.7	2500	5.90	8	54.0	30.00	5000
MPM-B2153B	480	12.7	116.7	1750	6.80	8	42.4	48.00	2000
MPM-B2153E	480	19.3	133.3	2000	7.20	8	69.7	48.00	3000
MPM-B2153F	480	22.1	133.3	2000	7.20	8	69.6	45.00	3800
MPM-B2154B	480	13.9	116.7	1750	6.90	8	69.3	62.80	2000
MPM-B2154E	480	18.3	133.3	2000	7.50	8	69.5	56.00	3000
MPM-B2154F	480	19.8	133.3	2000	7.50	8	59.3	56.00	3300
MPL-A310P	230	3.4	294.0	4410	0.73	8	9.9,	1.58	5000
MPL-A310F	230	2.1	185.3	2780	0.46	8	6.6	1.58	3000
MPL-A320P	230	6.4	271.3	4070	1.30	8	20.9	3.05	5000
MPL-A320H	230	4.6	208.7	3130	1.00	8	13.6	3.05	3500

Model Number	Motor NP Volts (line to line V rms)	Motor NP Amps (Arms)	Motor NP Hertz (Hz)	Motor NP RPM (oper. rpm)	Motor NP Power (kW)	Motor Poles	Current peak (A rms)	System Cont. Stall Torque ($\mathrm{N} \cdot \mathrm{m}$)	Motor Max RPM (rpm)
MPG-A110-091	230	17.0	184.0	1840	1.60	12	33.2	8.30	3500
MPG-B010-031	460	1.6	162.7	2440	0.34	8	4.4	1.33	6450
MPG-B010-091	460	0.7	357.3	5360	0.23	8	1.5	0.41	6450
MPG-B025-031	460	4.0	219.0	2190	0.92	12	11.3	4.02	4838
MPG-8025-091	460	1.9	175.0	1750	0.54	12	5.2	2.95	5900
MPG-8050-031	460	16.3	92.0	920	1.20	12	32.5	12.40	2510
MPG-8050-091	460	3.4	290.0	2900	0.79	12	9.9	2.60	4560
MPG-B110-031	460	12.9	112.0	1120	2.00	12	31.1	17.00	2420
MPG-B110-091	460	10.6	184.0	1840	1.60	12	20.5	8.30	3500
1326AB-B410G	460	2.5	118.0	3540	1.00	4	7.4	2.70	5000
1326AB-B410J	460	3.5	165.0	4950	1.40	4	10.4	2.70	7250
1326AB-B420E	460	2.8	70.0	2100	1.10	4	8.5	5.00	3000
1326AB-B42OH	460	5.5	137.3	4120	2.20	4	15.6	5.10	6000
1326AB-B430E	460	3.9	67.7	2030	1.40	4	11.7	6.60	3000
1326AB-B430G	460	5.6	114.3	3430	2.30	4	16.8	6.40	5000
1326AB-B515E	460	6.1	70.3	2110	2.30	4	18.3	10.40	3000
1326AB-B515G	460	9.5	88.7	2660	2.90	4	28.5	10.40	5000
1326AB-B520E	460	6.7	71.0	2130	2.90	4	20.1	13.00	3000
1326AB-B520F	460	8.8	70.3	2110	2.90	4	26.4	13.10	3500
1326AB-B530E	460	9.5	74.3	2230	4.20	4	28.5	18.00	3000
1326AB-B720E	460	17.5	70.0	2100	6.80	4	52.5	30.90	3500
1326AB-B720F	460	27.5	117.0	3510	11.70	4	66.5	31.80	5000
1326AB-B730E	460	22.8	78.3	2350	9.60	4	66.5	39.00	3350
1326AB-B740C	460	20.9	52.3	1570	8.70	4	62.7	53.00	2200
1326AB-B740E	460	32.0	79.7	2390	12.70	4	66.5	50.80	3400
1326AS-B310H	460	0.8	204.5	4090	0.30	6	2.4	0.70	6200
1326AS-B330H	460	2.1	204.5	4090	0.90	6	6.0	2.10	6500
1326AS-B420G	460	2.6	179.0	3580	1.20	6	7.8	3.20	5250
1326AS-B440G	460	5.4	149.0	2980	2.00	6	16.2	6.40	5250
1326AS-B460F	460	6.2	148.5	2970	2.80	6	18.6	9.00	4300
1326AS-B630F	460	7.8	142.7	2140	2.40	8	18.5	10.70	4500
1326AS-B660E	460	11.8	100.7	1510	3.40	8	29.8	21.50	3000
1326AS-B690E	460	19.0	87.3	1310	5.00	8	41.3	36.40	3000
1326AS-B840E	460	21.2	79.3	1190	4.70	8	39.5	37.60	3000
1326AS-B860C	460	17.6	77.3	1160	6.00	8	44.4	49.30	2000
1326AH-B330F	460	2.1	0.0	3000	0.75	-	9.0	-	3000
1326AH-B440F	460	3.3	0.0	2500	1.22	-	13.8	-	2500
1326AH-B540F	460	11.1	0.0	2500	2.60	-	47.2	-	2500
3050R-7	390	66.0	50.0	500	30.00	12	132.0	-	500
11050R-7	390	218.0	50.0	500	110.00	12	436.0	-	500

Integrated Motion on EtherNet/IP Application

IMPORTANT Not all drive functions are accessible when used in an Integrated Motion on EtherNet/IP application.

Introduction

The Integrated Motion on EtherNet/IP application is a feature with v2.xxx and higher firmware PowerFlex ${ }^{\circ} 755$ drives. It provides a common user experience as Kinetix 6500 drives when used with Logix controllers (v19 and higher) on an EtherNet/IP network.

- Same motion profile in RSLogix 5000° provides a common configuration experience. The PowerFlex 755 drive uses the Motion Properties/Axis Properties and the same motion attributes as the Kinetix ${ }^{\circ} 6500$ servo drive.
- Same RSLogix 5000° motion instructions provide a common programming experience. An extra motion instruction, MDS - Motion Drive Start, has also been added to allow a ramped start with "Flying Start" capability (ability to start into a rotating motor).

Two options are available for integrating PowerFlex 755 drives with Logix controllers:

1. "Standard Drive" using Drive Add-on Profiles (AOPs) - RSLogix 5000 software v16 and higher.
2. "Integrated Motion Drive" using Integrated Motion on EtherNet/IP technology - RSLogix 5000 software v19 and higher.

When to consider using Integrated Motion on EtherNet/IP with PowerFlex 755 drives:

- Applications having both servos and drives - convenient to be able to configure/program servos and drives the same way.
- Drive applications that could benefit from motion instructions - servo performance is not needed, but it is advantageous to use the RSLogix 5000 motion instruction set to save development time.

[^1]Special considerations when using PowerFlex 755 drives in Integrated Motion on EtherNet/IP mode:

- A PowerFlex 755 drive does not have the performance of a Kinetix servo and is not intended to be a replacement.

PowerFlex 755 Update	Time
Course Update Period (network)	$3 \mathrm{~ms} \mathrm{min}$. (6 ms min. when used with a permanent magnet motor without feedback)
Torque loop	256 us
Velocity loop	1024 us
Position loop	1024 us

- When a PowerFlex 755 is used in Integrated Motion on EtherNet/IP mode, the Logix controller and RSLogix 5000 are the exclusive owners of the drive (same as Kinetix). A HIM or other drive software tools, such as DriveExplorer" ${ }^{\text {rum }}$ and DriveTools ${ }^{\text {m" }}$ SP, cannot be used to control the drive or change configuration settings. These tools can only be used for monitoring.
- The following peripherals can be installed, see Feedback Configuration Options on page 503 for valid ports and supported combinations:
- HIM (20-HIM-A6 / -C6S) - monitor only
- Universal Feedback Encoder Option (20-750-UFB-1)
- Incremental Encoder Option (20-750-ENC-1)
- Dual Incremental Encoder Option (20-750-DENC-1)
- Safe Torque Off Module (20-750-S)
- Safe Speed Monitor Module (20-750-S1)
- 24 V Aux Control Power Supply (20-750-APS)

Other peripherals such as 20-750 I/O modules are supported with firmware revision 12.001 and later.

- Not all drive functions are available when used in an Integrated Motion on EtherNet/IP application. See the Parameter / Instance Attribute Mapping tables in this appendix to view which drive parameters correlate to motion attributes. If a parameter is not listed, it is not accessible and its function is not available. Examples of functions that are not available include:
- DeviceLogix ${ }^{\text {m" }}$
- Pump Jack and Pump Off
- Position Jump and Traverse

ATTENTION: A Kinetix drive automatically reads the permanent magnet motor/encoder configuration data. Conversely, permanent magnet motor/ encoder configuration data must be manually entered/tuned when using a PowerFlex 755 drive. If incorrect data is entered, unintended motion could occur when a Motion Servo On (MSO) instruction is executed.

Feedback Configuration Options

The following feedback module combinations are supported．

Option	Supported Module	Catalog Number	Valid Ports
Two Feedback Options	Single Incremental Encoder	$20-750-$ ENC－1	$4 \ldots 8$
	Dual Incremental Encoder	$20-750-$ DENC－1	$4 \ldots 8$
	Universal Feedback	$20-750-$ UFB－1	$4 \ldots 6$
	Single Incremental Encoder	$20-750-$－ENC－1	4 and 5
	Dual Incremental Encoder	$20-750-$ DENC－1	4 and 5
	Universal Feedback	$20-750-$ UFB－1	4 and 5
	Safe Torque 0ff	$20-750-$ S	6
Two Feedback Options and One Safe Speed Monitor Option	Single Incremental Encoder	$20-750-$ ENC－1	4 and 5
	Dual Incremental Encoder	$20-750-$ DENC－1	4 and 5
	Universal Feedback	$20-750-$ UFB－1	4 and 5
	Safe Speed Monitor	$20-750-$－S1	6

（1）The Safe Speed Monitor option module must be used with the 20－750－DENC－1 Dual Incremental Encoder module or the 20－750－ UFB－1 Universal Feedback module．

An invalid hardware configuration results in a Module Fault：（Code 16\＃0010） Mode or state of module does not allow object to perform requested service．

```
@-g I/O Configuration
    @ 1756 Backplane, 1756-A7
        - 9 [0] 1756-EN2T CIP_Motion_Controller
        G}\mathrm{ 呂䃄 Ethernet
                ] 1756-EN2T CIP_Motion_Controller
                mb Powerflex 755-EENET-CM PF755
        囫 [2] 1756-L63 acid_test
```

Associated Axes pt		
Description		

Considerations for Using Position Feedback Devices on the PowerFlex 755 in the Integrated Motion on EtherNet／IP Context

The PowerFlex 755 drive connects to position feedback devices（encoders）by using one or more feedback option modules that are installed in the control pod．

There are currently three supported types of feedback modules：
－Single Incremental Encoder（20－750－ENC－1）
－Dual Incremental Encoder（20－750－DENC－1）
－Universal Feedback（20－750－UFB－1）
IMPORTANT Single and dual incremental feedback options，20－750－ENC－1 and 20－750－ DENC－1，cannot use registration inputs．Use the Universal Feedback option 20－750－UFB－1 if registration homing inputs are required．

The 20-750-DENC-1 and 20-750-UFB-1 modules contain two "hardware feedback channels", which means up to two encoders can be connected to each module. The 20-750-ENC-1 only contains one hardware feedback channel.

An Integrated Motion on EtherNet/IP Axis can have up to two feedback devices that are associated with it. When two devices are in use, they are defined as the "Motor Feedback Device" and the "Load Feedback Device." These two devices are also referred to as "Integrated Motion on EtherNet/IP Feedback 1" and "Integrated Motion on EtherNet/IP Feedback 2," respectively.

Each Integrated Motion on EtherNet/IP feedback device has an associated Integrated Motion on EtherNet/IP feedback type. The feedback type describes the type of encoder that can be used as that feedback device.

When configuring a drive using RSLogix 5000 and Integrated Motion on EtherNet/IP, the Associated Axes page of the drive Module Properties dialog is used to associate each feedback device with a feedback hardware channel on the drive.

Before using the Associated Axes page, each feedback module present in the drive must be defined on the Module Definition dialog box. The Module Definition dialog box is accessed from the General tab of the Module Properties dialog box for the drive.

After each feedback module has been defined, a drive hardware feedback channel must be selected for each feedback device. A list defines each available channel by the control-pod port number of the feedback module and the channel within that port. A sequential alphabetic character is used to identify each available feedback channel for a module. For example, if a feedback module contains two channels, they are identified as "Channel A" and "Channel B."

The correct wiring for an encoder in this system depends on three things:

- The type of feedback module
- The type of encoder
- Which hardware feedback channel is used to connect the encoder (A or B)

If there is only one way to wire an encoder to a feedback module, then either hardware Channel A or Channel B can be selected for the feedback module.

If there are two ways to wire an encoder to a feedback module, "Channel A" is used for one set of terminals, and "Channel B" is used for the other set of terminals.

Table 28 identifies the allowed Integrated Motion on EtherNet/IP Feedback types and the correct encoder connection terminals when the feedback module is a
20-750-ENC-1.
Table 28 - Single Incremental-encoder Feedback Type and Connections

Integrated Motion on EtherNet/IP Feedback Type	20-750-ENC-1: Channel A Terminals
Not Specified (0)	N/A
Digital AqB (1)	$\mathrm{A}(\mathrm{NOT}), \mathrm{A}, \mathrm{B}(\mathrm{NOT}), \mathrm{B}, \mathrm{Z}(\mathrm{NOT}), Z$

Table 29 shows the allowed Integrated Motion on EtherNet/IP Feedback types and the correct encoder connection terminals when the feedback module is a 20-750-DENC-1.

Table 29-Dual Incremental-encoder Feedback Type and Connections

Integrated Motion on EtherNet/ IP Feedback Type	20-750-DENC-1: Channel A Terminals	20-750-DENC-1: Channel B Terminals
Not Specified (0)	N/A	N/A
Digital AqB (1)	Encoder 0: A (NOT), A, B (NOT), B, Z (NOT), Z	Encoder 1: A (NOT), A, B (NOT), B, Z (NOT), Z

Table 30 lists the allowed Integrated Motion on EtherNet/IP Feedback types and the correct encoder connection terminals when the feedback module is a Universal Feedback module, 20-750-UFB-1. It also identifies how the two "Device Select" parameters on the 20-750-UFB-1 module are configured in each case.

When a 20-750-UFB-1 module is used in an Integrated Motion on EtherNet/IP system, the "FB0" parameters are always used for configuration and status of Channel A and the "FB1" parameters are always used for configuration and status of Channel B.

Table 30 identifies that, for some Integrated Motion on EtherNet/IP Feedback Types, there are two possible connection schemes using RSLogix 5000. If Channel A is selected, one scheme is used. If Channel B is selected, the other scheme is used. Conversely, for the other Integrated Motion on EtherNet/IP Feedback Types, there is only one possible connection scheme.

The "Digital AqB" Feedback Type is a special case. If only one of the channels on a particular 20-750-UFB-1 module is configured to "Digital AqB", then the A, B, and Z terminals are used, regardless of whether this type is assigned to Channel A or Channel B. If both channels are configured to "Digital AqB", then Channel A uses the A, B, Z terminals, and Channel B uses the terminals that are labeled "Sine" and "Cosine". In this case, they are expected to carry normal AqB encoder signals. These two cases are included in the table.

Configuration of both 20-750-UFB-1 module channels to use the same terminals is considered a configuration error and does not allow proper operation of the system.

Table 30 Universal Feedback Type and Connections

Integrated Motion on EtherNet/IP Feedback Type	$\begin{aligned} & \hline \text { Channel A (FBO) } \\ & \text { Device Sel } \end{aligned}$	Channel B (FB1) Device Sel (if different)	Channel A Terminals	Channel B Terminals
Not Specified	None (0)		N/A	
Digital AqB Note: This row only applies if both channels of the UFB Are Not simultaneously configured to Feedback Type = "Digital AqB"	Inc A B Z (12)		$-A, A,-B, B,-Z, Z$	
Digital AqB Note: This row only applies if both channels of the UFB Are configured to Feedback Type = "Digital AqB"	$\operatorname{Inc} A$ B Z (12)	Inc SC (13)	$-A, A,-B, B,-Z, Z$	Sine (-), Sine (+), Cosine (-), Cosine (+) Note: No Z (marker) input available.
Sine/Cosine	SinCos Only (11)		Sine (-), Sine (+), Cosine (-), Cosine (+)	
Hiperface	Hiperface SC (2)		$\begin{aligned} & \text { Sine }(-), \text {, Sine }(+), ~ C o s i n e ~ \\ & +(-), \text {, Cosine }(+),-X d, \end{aligned}$	
EnDat 2.1	EnDat SC (1)		$\begin{aligned} & \text { Sine (-), Sine (+), Cosine (-), Cosine (+), -Xc, } \\ & +X c,-X d,+X d \end{aligned}$	
EnDat 2.2	EnDat FD ChX (5)	EnDat FD ChY (6)	$-X_{c},+X_{c},-X_{\text {d }},+X_{d}$	$-Y_{c}+Y_{c},-Y_{d},+Y_{d}$
SSI (Rotary)	SSISC (4)		$\begin{aligned} & \text { Sine }(-) \text {, Sine }(+) \text {, Cosine }(-) \text {, Cosine }(+),-X_{c} \text {, } \\ & +X c,-X d,+X d \end{aligned}$	
SSI (Linear)	LinSSIChX (18)	LinSSI ChY (19)	$-\mathrm{Xc}_{\mathrm{c}},+\mathrm{Xc}_{\mathrm{c}},-\mathrm{Xd},+\mathrm{Xd}^{\text {d }}$	$-\mathrm{Yc}_{\mathrm{c}}+\mathrm{Y}_{\mathrm{c}},-\mathrm{Yd},+\mathrm{Yd}^{\prime}$
SSI (Full Rotary Digital)	SSI FD ChX	SSI FD ChY	$-X_{c},+X_{c},-X_{1},+X d$	$-\mathrm{Yc}_{\text {c }}+\mathrm{Yc}_{\mathrm{c}},-\mathrm{Yd},+\mathrm{Yd}^{\text {d }}$
Stahl SSI	LinStahl ChX (16)	LinStahl ChY (17)	$-X_{c},+X_{c},-X_{1},+X d$	$-\mathrm{Yc}_{\text {c }}+\mathrm{Yc}_{\mathrm{c}}$ - -Yd , $+\mathrm{Yd}_{\mathrm{d}}$

Although the 20-750-UFB-1 module ostensibly supports two feedback channels, there are many combinations of device types that do not work and result in an error state on the module if they are configured.

See the Feedback Options table located in the PowerFlex 750-Series AC Drives Technical Data, publication 750-TD001, for compatible and non-compatible combinations.

Non-compatible selections lead to a Configuration Conflict (Type 2 Alarm): Bit 20 "FB0FB1 Cflct" of parameter 1 [Module Status] is set.

Torque Prove and Brake Slip Detect

ATTENTION: Loss of control in suspended load applications can cause personal
injury and/or equipment damage. The drive or a mechanical brake must always
control the load. TorqProve'ד is designed for lifting/torque prove applications. It
is the responsibility of the engineer and/or end user to configure drive
parameters, test any lifting functionality and meet safety requirements in
accordance with all applicable codes and standards.

ATTENTION: When enabling the Torque Prove/Brake Slip detection, the axis application type must be Constant Speed, Tracking, or Custom with Velocity Integral enabled. Failure to do so results in unstable operation upon brake release, because torque pre-load is not applied.

ATTENTION: When being used as a positioning axis, the
AxisName:MechanicalBrakeReleaseStatus bit must be monitored, along with a timer configured to compensate for brake release time, before a motion command can be performed after the initial MSO instruction. Failure to monitor the mechanical brake release status along with a timer to prevent motion can cause the axis to try to drive through a brake that has not been released. This may cause a Speed Deviation error and fault the axis on a Torque Prove fault. Another option would be to use a digital input as brake open if such a contact exists.

IMPORTANT	The Stop Type Action cannot be set to Disable and Coast when using torque prove/ brake slip detection.

IMPORTANT Do not use the MSO, MAJ, and MAM commands when running a TorqProve application without encoder feedback. Start the axis with the MDS instruction and stop the axis the with MSF instruction.

IMPORTANT Not all drive functions are accessible when used in an Integrated Motion on EtherNet/IP application.

Encoder Feedback Operation

Velocity Mode using the Motion Drive Start (MDS) Instruction to Operate the Axis

1. The MDS instruction is initiated. The following actions occur:

- The axis is enabled.
- The output phase loss is checked.
- A torque command is preloaded from a previous move or from a customer-defined, preloaded value.
- The torque current feedback is verified and the brake is commanded to release.
- After the brake release time has expired, the axis velocity reference is released.

The axis is now under control velocity command.
2. The Motion Servo Off (MSF) instruction is initiated and the brake prove routine begins.
a. If the brake prove routine is successful, the power structure is disabled and the axis enters the Stopped state.
b. If the brake has slipped, the axis issues a brake slip alarm and remains active. The axis can be restarted and the load can be lowered to a safe location. When the brake no longer slips after an MSF instruction, the Brake Malfunction fault occurs and requires a power cycle to clear the fault.
c. If enabled, the Auto Sag routine issues a brake slip alarm and runs the Auto Sag routine.
The Auto Sag routine repeatedly attempts to set the brake and check for slippage. When the load no longer slips, the power structure is disabled and a Brake Malfunction fault occurs. A power cycle is required to clear the fault. The Auto Sag routine cannot be interrupted.

Velocity or Position Modes using a Motion Servo On (MSO) and Move Instructions to Control the Axis

1. The MSO instruction is initiated. The following actions occur:

- The axis is enabled.
- An output phase loss is checked.
- The torque command is preloaded from a previous move or from a customer-defined, preloaded value.
- The torque current feedback is verified and a brake release command is issued.
- Motion is enabled when the brake timer expires.

2. When the brake release timer has expired, motion can be allowed (for example, MAJ, MAM, and MAG).
3. Control the axis as desired for position or velocity.
4. An MSF instruction is initiated and the Brake Proving routine is started when desired.
a. If the brake prove routine is successful, the power structure is disabled and the axis enters the Stopped state.
b. If the brake has slipped, the axis issues a Brake Slip alarm and remains active. The axis can be restarted and the load lowered to a safe location. When the brake no longer slips after an MSF instruction, the Brake Malfunction fault occurs and requires a power cycle to clear the fault.
c. If enabled, the Auto Sag routine issues a Brake Slip alarm and runs the Auto Sag routine.
The Auto Sag routine repeatedly attempts to set the brake and check for slippage. When the load no longer slips, the power structure is disabled and a Brake Malfunction fault occurs. A power cycle is required to clear the fault. The Auto Sag routine cannot be interrupted.

Settings

Parameters to Configure Torque Prove, Brake Check, and Auto Sag

The following parameters are accessed via the Axis Properties -> Parameter List Category.

Table 31 - Axis Properties Parameters

Parameter Name	Description
AutoSagConfiguration	Enables the drive to control the load to a no slip condition by repeatedly attempting to set the brake and test for slip until the load no longer slips. If set to zero, the drive detects a brake slip and holds the load at zero speed.
AutoSagSlipIncrement	The distance in position/feedback units that the brake is allowed to slip before enabling the Auto Sag routine to control a brake slip event. An encoder is required to operate.
AutoSagStart	Enables the routine that monitors the encoder for brake slip when the power structure is disabled. If the brake slips more than the value of AutoSagSliplncrement, the power structure is enabled and the Auto Sag routine begins. The AutoSagConfiguration parameter must also be enabled. AutoSagStart is not used when encoderless operation is enabled.
BrakeProveRampTime	The time that is required to ramp the torque reference from 100 \% to zero during the brake slip test.
BrakeSlipTolerance	Sets the number of motor shaft revolutions allowed during the brake slippage test. Drive torque is reduced to check for brake slippage. When slippage occurs, the drive allows the number of motor shaft revolutions
before regaining control. BrakeSlipTolerance is not used when	
encoderless operation is enabled.	

Table 31 - Axis Properties Parameters

Parameter Name	Description
MechanicalBrakeReleaseDelay	Time that is required for the mechanical brake to disengage after the command is issued.
ProvingConfiguration	Enables the Torque Prove/Mechanical Brake control/Brake Slip check routine within the Axis Power Structure.
ZeroSpeed	Percentage of axis motor rated velocity before setting the brake for the brake slip routine in encoder feedback mode. In encoderless operation, it is the point at which the brake is commanded to disengage when accelerating from zero speed and the point at which the brake sets when decelerating toward zero speed.
ZeroSpeedTime	Time the axis must be at or below zero speed before the brake is set in encoder feedback operation.

IMPORTANT When a system is configured for operation and the program is downloaded to the processor, the Speed Deviation Band is set to 0 and can cause a speed deviation fault with TorqProve when a move is attempted. To correct this error, an Enhanced Attribute message must be sent to the drive to configure it. Send a 'Real' value from 10. . . 25% to Attribute 2724 decimal or AA4 Hex.

Encoderless Operation (Velocity or Frequency Sensorless Vector)

1. An MDS instruction is initiated (an MSO instruction is not allowed in encoderless operation).

- The axis is enabled.
- An output phase loss is checked.
- The velocity is increased until the value of ZeroSpeedTolerance is reached and the brake is released.
- The torque current feedback is verified and a brake release command is issued.
- After the brake release timer has expired, the axis velocity reference is released.

2. The axis is now under the control of a velocity command.

To stop the system, an MSF instruction must be initiated (a MAS instruction is not allowed in encoderless operation). The velocity ramps down until the value of ZeroSpeedTolerance is reached and the brake is set. Brake slip detection cannot be accomplished.

PowerFlex 755 Integrated
 Motion Using Firmware Revision 12.001 or Later

Add an I/O Module to a PowerFlex 755 Drive

You can add an I/O module to the drive Integrated Motion on EtherNet/IP connection when using PowerFlex 755 firmware revision 12.001 and later and Studio 5000 Logix Designer ${ }^{\circ}$ version 28.00 .02 or later. The I/O module must be installed in Port 7 in the control pod of a frame 2 or larger PowerFlex 755 drive.

Configure I/O Device Properties

Follow these basic steps to add and configure an I/O module for a PowerFlex 755 drive.

1. In the Module Definition dialog box for the drive, right-click and add an I/O module (new peripheral device) to Port 7.
The I/O module has already been added to the drive in this example.

2. In the Module Properties dialog box for the drive, on the Digital Inputs tab, select the appropriate digital input functions.

3. In the Module Properties dialog box for the drive, on the Digital Outputs tab, select the appropriate digital output functions.

Configure 20-bit or 24-bit Motor Feedback Device Resolution

You can configure 20-bit or 24-bit effective resolution for the following feedback devices:

- Hiperface
- Heidenhain SC
- SSI SC

Set the desired effective resolution on the Motor Feedback tab of the Axis Properties dialog box for the axis associated with the drive. This feature is available in PowerFlex 755 firmware revision 12.001 and later and Studio 5000 Logix Designer ${ }^{\circ}$ version 28.00 .02 or later.

Parameter / Instance Attribute Mapping

Table 32 provides the relationship between PowerFlex 755 drive parameters and the Integrated Motion on EtherNet/IP attributes. If a parameter is not listed, it is not accessible and its function is not available.

Table 32 - Parameter/Instance to Attribute Mapping

Drive		Integrated Motion
Parameter No.	Parameter Name	Integrated Motion on EtherNet/IP Instance
P1	Output Frequency	Output Frequency
P1	Output Frequency	Output Frequency, //0 Card
P5	Torque Cur Fdbk	Iq Current Feedback
P5	Torque Cur Fdbk	Torque Current Feedback, //0 Card
P6	Flux Cur Fdbk	Id Current Feedback
P7	Output Current	Output Current
P8	Output Voltage	Output Voltage
P9	Output Power	Output Power
P10	Output Powr Fctr	Output Power Factor, Sets Port 7
P11	DC Bus Volts	DC Bus Voltage
P12	DC Bus Memory	DC Bus Voltage - Nominal
P20	Rated Volts	Inverter Rated Output Voltage
P20	Rated Volts	Inverter Rated Output Voltage, Sets Port 7
P21	Rated Amps	Inverter Rated Output Current
P22	Rated kW	Inverter Rated Output Power
P25	Motor NP Volts	Motor Rated Voltage
P26	Motor NP Amps	Motor Rated Continuous Current
P27	Motor NP Hertz	Induction Motor Rated Frequency
P28	Motor NP RPM	Rotary Motor Rated Speed
P30	Motor NP Power	Motor Rated Output Power
P30	Motor NP Power	Motor Rated Output Power, Sets Port 7
P31	Motor Poles	Rotary Motor Poles
P36	Maximum Voltage	Maximum Voltage
P37	Maximum Freq	Maximum Frequency
P44	Flux Up Time	Flux Up Time
P50	Stability Filter	Stability Filter, //0 Card
P60	Start Acc Boost	Start Boost
P60	Start Acc Boost	Start Boost, I/0 Card
P61	Run Boost	Run Boost
P62	Break Voltage	Break Voltage
P63	Break Frequency	Break Frequency
P65	VHz Curve	Frequency Control Method
P73	IR Voltage Drop	Induction Motor Stator Resistance
P74	Ixo Voltage Drop	Induction Motor Stator Leakage Reactance
P75	Flux Current Ref	Induction Motor Flux Current
P76	Total Inertia	Kj
P81	PM PriEnc Offset	Commutation Offset
P82	PM AltEnc Offset	PM Motor Alternate Encoder Offset, I/0 Card
P86	PM CEMF Voltage	PM Motor Rotary Voltage Constant

Table 32 - Parameter/Instance to Attribute Mapping (Continued)

	Drive	Integrated Motion
Parameter No.	Parameter Name	Integrated Motion on EtherNet/IP Instance
P87	PM IR Voltage	PM Motor Resistance
P88	PM IXq Voltage	PM Motor Inductance
P89	PM IXd Voltage	PM Motor Inductance
P92	PM Vqs Reg Ki	PM Motor Vqs Regulator Integral Gain, //0 Card
P95	VCL Cur Reg BW	Kqp
P126	Pri Vel FdbkFltr	Feedback n Velocity Filter Taps
P155	DI Enable	Digital Input Configuration
P220	Digital In Sts	Digital Inputs
P305	Voltage Class	Bus Voltage Select
P306	Duty Rating	Duty Select
P309	SpdTrqPsn Mode A	Control Mode
P309	SpdTrqPsn Mode A	SLAT Configuration
P314	SLAT Err Stpt	SLAT Set Point
P315	SLAT Dwell Time	SLAT Time Delay
P370	Stop Mode A	Stopping Mode
P372	Bus Reg Mode A	Bus Regulator Action
P375	Bus Reg Level	Bus Regulator Reference
P382	DB Resistor Type	Shunt Regulator Resistor Type
P383	DB Ext Ohms	External Shunt Resistance
P384	DB Ext Watts	External Shunt Power
P385	DB ExtPulseWatts	External Shunt Pulse Power
P388	Flux Braking En	Flux Braking Enable
P394	DC Brake Level	DC Injection Brake Current
P395	DC Brake Time	DC Injection Brake Time
P412	Mtr OL Alarm LvI	Motor Thermal Overload User Limit
P413	Mtr OL Factor	Motor Overload Limit
P418	Mtr OL Counts	Motor Capacity
P420	Drive OL Mode	Inverter Overload Action
P422	Current Limit 1	Motor Rated Peak Current
P426	Regen Power Lmt	Regenerative Power Limit
P436	Shear Pin1 Level	Overtorque Limit
P437	Shear Pin 1 Time	Overtorque Limit Time
P442	Load Loss Level	Undertorque Limit
P443	Load Loss Time	Undertorque Limit Time
P445	Out PhaseLossLvl	Output Phase Loss Level
P450	Pwr Loss Mode A	Power Loss Action
P451	Pwr Loss A Level	Power Loss Threshold
P452	Pwr Loss A Time	Power Loss Time
P461	UnderVItg Level	Bus Undervoltage User Limit
P520	Max Fwd Speed	Velocity Limit - Positive
P521	Max Rev Speed	Velocity Limit - Negative
P524	Overspeed Limit	Motor Overspeed User Limit
P526	Skip Speed 1	Skip Speed 1

Table 32 - Parameter/Instance to Attribute Mapping (Continued)

Drive		Integrated Motion
Parameter No.	Parameter Name	Integrated Motion on EtherNet/IP Instance
P527	Skip Speed 2	Skip Speed 2
P528	Skip Speed 3	Skip Speed 3
P529	Skip Speed Band	Skip Speed Band
P535	Accel Time 1	Ramp Acceleration
P537	Decel Time 1	Ramp Deceleration
P540	S Curve Accel	Ramp Jerk Control
P541	S Curve Decel	Ramp Jerk Control
P546	Spd Ref A Stpt	Velocity Feedforward Command
P549	Spd Ref A Mult	Kvff
P597	Final Speed Ref	Velocity Reference
P601	Trim Ref A Stpt	Velocity Trim
P620	Droop RPM at FLA	Kdr
P621	Slip RPM at FLA	Induction Motor Rated Slip Speed
P635	Spd Options Ctrl	Velocity Integrator Control
P639	SReg FB FItr BW	Feedback n Velocity Filter Bandwidth
P641	Speed Error	Velocity Error
P643	SpdReg AntiBckup	Knff
P644	Spd Err Fltr BW	Velocity Low Pass Filter Bandwidth
P645	Speed Reg Kp	Kvp
P647	Speed Reg Ki	Kvi
P652	SReg Trq Preset	Velocity Integrator Preload
P654	Spd Reg Int Out	Velocity Integrator Output
P659	SReg OutFItr BW	Torque Lead Lag Filter Bandwidth
P660	SReg Output	Velocity Loop Output
P670	Pos Torque Limit	Torque Limit - Positive
P671	Neg Torque Limit	Torque Limit - Negative
P685	Selected Trq Ref	Torque Reference
P686	Torque Step	Torque Trim
P687	Notch Fltr Freq	Torque Notch Filter Frequency
P689	Filtered Trq Ref	Torque Reference - Filtered
P690	Limited Trq Ref	Torque Reference - Limited
P696	Inertia Acc Gain	Kaff
P697	Inertia Dec Gain	Kaff
P704	InAdp LdObs Mode	Load Observer Configuration
P705	Inertia Adapt BW	Feedback n Accel Filter Bandwidth
P706	InertiaAdaptGain	Kof
P707	Load Estimate	Load Observer Torque Estimate
P708	InertiaTrqAdd	Load Observer Acceleration Estimate
P708	InertiaTrqAdd	Total Inertia Estimate
P711	Load Observer BW	Kop
P721	Position Control	Position Integrator Control
P723	Psn Command	Position Reference
P756	Interp Psn Input	Controller Position Command - Float
P757	Interp Vel Input	Controller Velocity Command

Table 32 - Parameter/Instance to Attribute Mapping (Continued)

	Drive	Integrated Motion
Parameter No.	Parameter Name	Integrated Motion on EtherNet/IP Instance
P758	Interp Trq Input	Controller Torque Command
P759	Interp Psn Out	Fine Command Position
P760	Interp Vel Out	Fine Command Velocity
P761	Interp Trq Out	Torque Command
P821	Psn Offset 1	Position Trim
P830	PsnNtchFItrfreq	Position Notch Filter Frequency
P833	Psn Out FltrGain	Position Lead Lag Filter Gain
P834	Psn Out Fltr BW	Position Lead Lag Filter Bandwidth
P835	Psn Error	Position Error
P837	Psn Load Actual	Position Integral Feedback
P838	Psn Reg Ki	Kpi
P839	Psn Reg Kp	Kpp
P842	PsnReg IntgrlOut	Position Integrator Output
P843	PsnReg Spd Out	Position Loop Output
P847	Psn Fdbk	Position Feedback
P940	Drive OL Count	Inverter Capacity
(See See Motor Overload on page 517)		
P942	IGBT Temp C	Inverter Temperature
P944	Drive Temp C	Inverter Heatsink Temperature
P945	At Limit Status	At Limit Status
P1100, Bit 0	Trq Prv Cfg/TP Enable	Proving Configuration
P1100, Bit 6	Trq Prv Cfg/BrkSlipStart	Auto Sag Start
P1100, Bit 9	Trq Prv Cfg/BrkSlp SpdLmt	Auto Sag Config
P1104	Trq Lmt SlewRate	Brake Prove Ramp Time
P1107	Brk Release Time	Mechanical Brake Release Delay
P1108	Brk Set Time	Mechanical Brake Engage Delay
P1109	Brk Alarm Travel	Auto Sag Slip Increment
P1110	Brk Slip Count	Brake Slip Tolerance
P1111	Float Tolerance	Zero Speed
P1113	ZeroSpdFloatTime	Zero Speed Time
P1114	Brake Test Torq	Brake Test Torque

Motor Overload

There is a difference between how Kinetix handles an overload condition compared to the PowerFlex755 drive. Kinetix is motor capacity whereas PowerFlex 755 is motor overload.

The Motion attribute, Inverter Capacity, is a real-time estimate of the continuous rated motor thermal capacity that is used during operation, which is based on the motor thermal model. A value of 100% indicates that the motor is being used at 100% of rated capacity as determined by the continuous current rating of the motor.

The PowerFlex 755 parameter 940 [Drive OL Count] indicates power unit overload ($\mathrm{I}^{2} \mathrm{~T}$) in percentage. The value of this parameter remains at 0 until 100 \% of Rated Current is reached. At 100% of Rated Current, Overload measurement begins and the power unit overload fault occurs.

Positive and Negative Overtravel Input

When the PowerFlex 755 drive is in integrated motion mode, Logix allows configuration of the Positive or Negative Overtravel inputs on an I/O module in Port 7 of the drive. After the inputs are configured in the drive firmware, if the Positive or Negative Overtravel Input is activated, the drive firmware generates a Positive or Negative Overtravel fault. When the fault occurs the drive axis coasts to a stop. This fault action is not configurable.

Pre-charge OK Input

This feature extends the precharge input monitoring capability to the PowerFlex 755 drive in integrated motion. The event processing is as follows:

1. If the configured Pre-charge OK Input becomes inactive and the drive is in the Stopped state, the drive enters the precharge state.
2. If the configured Pre-charge OK input becomes inactive and the drive is in the Running state, the drive generates the Converter Pre-charge Input Deactivated exception and performs a Fault Coast Stop.

Brake Output

This feature provides for the configuration of the Brake Output functionality via a relay output to the PowerFlex 755 in integrated motion only.

Regeneration OK Input

This feature adds the Regeneration OK Input functionality to the PowerFlex 755 drive in integrated motion only.

When the drive detects the Regeneration OK Input transition to an 'inactive' state, the drive generates the Regeneration Power-supply Failure exception and coasts to a stop, if in motion. The exception cannot be configured and is assigned Stop Drive only.

Contactor Enable Output

A Contactor Enable Output can be configured in the PowerFlex 755 drive in integrated motion only. The operation of this output is tied to fault processing in the drive. The drive de-energizes the Contactor Enable Output when an exception causes the axis to go to the 'shut down' state.

Note: This configuration is only valid when an auxiliary power supply is used for control power with frames $1 . . .7$ drives or when a 24 auxiliary power supply is used on frames $8 \ldots 10$ drives.

Analog Input and Output

This feature requires the drive firmware to map analog inputs and outputs on configured I/O modules (installed in Port 7) for use in Studio 5000 Logix Designer ${ }^{\circ}$ by using the existing attributes. Access to the analog data is available by selecting the attributes in the Axis Properties - Drive Parameters tab of the axis.

The PowerFlex 755 drive has two Analog Outputs that are available for use.

Digital Input and Output

This feature requires the drive firmware to map digital inputs and outputs on configured I/O modules (installed in Port 7) for use in Studio 5000 Logix Designer ${ }^{\circ}$ by using existing attributes. Access to the digital data is available by selecting the attributes in the Axis Properties - Drive Parameters tab of the axis.

Motor Thermostat Input

Motor thermostat input functionality is provided through the motor thermostat input (PTC) on the 22-Series I/O modules (installed in Port 7) when in Integrated Motion on EtherNet/IP mode.

The functionality is the same as the motor thermostat functionality in parameter mode. When the PTC input resistance transitions from low to high at the design temperature, the drive issues a motor over temperature fault, 18 [Motor PTC Trip].

The functionality supports the current motor thermostat range for status trip and reset in parameter mode. However, this functionality is not suitable for AllenBradley ${ }^{\circ}$ MPL and MPM motors due to the varying hardware capacities and thermostat ranges of the Kinetix and 22-Series I/O modules.

SSI Rotary Full Digital Feedback

IMPORTANT See Knowledgebase, article 745654 , before using this functionality.

Integrated motion supports SSI Rotary Full Digital Feedback types. The drive also supports these feedback devices that are connected to the Universal Feedback module (20-750-UFB-1) in parameter mode. This feedback type can now be configured for use with the PowerFlex 755 drive in integrated motion. Configuration of the new feedback type is accessible from the Axis Properties Feedback tab.

24-bit Device Feedback Configuration

The PowerFlex 755 drive supports 24 -bit resolution configuration for the following feedback types in parameter mode:

- Sine/Cosine (rotary and linear)
- Hiperface (rotary only)
- EnDat Sine/Cosine (rotary only)
- EnDat Digital (rotary only)
- SSI SC (rotary only)

The feature allows these feedback types to be configured for 24-bit effective resolution in integration motion mode. The 24 -bit effective resolution configuration is accessible from the Axis Properties - Feedback tab.

Enhanced Attributes

Enhanced attributes are accessed via an MSG instruction in RSLogix 5000. These values are the same for all enhanced attribute writes. Only the Attribute number and Source Element changes.

IMPORTANT	Execute message commands each time the Integrated Motion on the EtherNet/ IP network connection is established. Message commands are necessary because the controller defaults all drive parameters when it establishes the Integrated Motion on the EtherNet/IP network connection.

- Message Type - Choose CIP Generic.
- Service Type or Service Code - Choose the source or enter the hex value for the service that is performed on the specified object. 10 (hex) for Set Attribute Single, or 0E (hex) for Get Attribute Single.
- Class - Enter the hex value for the type or class of object to which the service is sent. 42 (hex) for Motion Device Axis Object.
- Instance - Enter the instance of the object to which the service is sent. Always a 1 for drive instance.
- Attribute - Enter the hex value of the attribute of the object to which the service is sent.
- Source Element Pull-down Menu - Choose a local source tag that contains more service parameters and/or data that is sent with the set request. For a get request, this field appears dimmed.
- Source Length - Enter or choose the number of bytes of data from the source tag that is included with the set request. For a get request, this field appears dimmed.
- Destination Pull-down Menu - Choose a local destination tag to receive the result of a get request. For a set request, this field is appears dimmed.

Drive Parameter / Enhanced Attribute Mapping

Table 33 - PowerFlex 755 Drive Parameter Numeric Order

Drive		Integrated Motion			
Parameter No.	Parameter Name	Base 10	Base 16	Enhanced Attribute	Data Type
38	PWM Frequency	604	25C	PWM Frequency	Real
40, Bit 3	Mtr Option Cfg/Encls Trq Prov	2723	AA3	Encoderless Torque Prove	SINT
40, Bit 10	Mtr Options Cfg	2740	AB4	Motor Options Cfg, DB While Stop	SINT
64	SVC Boost Filter	3000	BB8	SVC Boost Filter	Real
80	PM Cfg	2600	A28	PM Test Cfg	INT
83	PM OfstTst Cur	3004	BBC	PM OfstTst Cur	Real
91	PM Vqs Reg Kp	3005	BBD	PM Vqs Reg Kp	Real
92	PM Vqs Reg Ki	3006	BBE	PM Vqs Reg Ki	Real
93	PM Dir Test Cur	3003	BBB	PM Dir Test Cur	Real
95	VCL Cur Reg BW	554	22A	kQP	Real
96	VCL Cur Reg Kp	2685	A7D	VCL Cur Reg Kp	Real
97	VCL Cur Reg Ki	2686	A7E	VCL Cur Reg Ki	Real
98	VEncdls FReg Kp	2687	A7F	VEncdls FReg Kp	Real
99	VEncdls FReg Ki	2688	A80	VEncdls FReg Ki	Real
100	Slip Reg Enable	2689	A81	Slip Reg Enable	Real
101	Slip Reg Ki	2602	A2A	Slip Reg Ki	Real
102	Slip Reg Kp	2603	A2B	Slip Reg Kp	Real
103	Flux Reg Enable	2690	A82	Flux Reg Enable	DINT
104	Flux Reg Ki	2691	A83	Flux Reg Ki	Real
105	Flux Reg Kp	2692	A84	Flux Reg Kp	Real
106	Trq Adapt Speed	2693	A85	Trq Adapt Speed	Real
107	Trq Adapt En	2694	A86	Trq Adapt En	DINT
108	Phase Delay Comp	2695	A87	Phase Delay Comp	Real
109	Trq Comp Mode	2696	A88	Trq Comp Mode	DINT
110	Trq Comp Mtring	2697	A89	Trq Comp Mtring	Real
111	Trq Comp Regen	2698	A8A	Trq Comp Regen	Real
112	Slip Adapt Iqs	2699	A8B	Slip Adapt Iqs	Real
113	SFAdapt SlewLmt	2700	A8C	SFAdapt SlewLmt	Real
114	SFAdapt SlewRate	2701	A8D	SFAdapt SlewRate	Real
115	SFAdapt CnvrgLvl	2702	A8E	SFAdapt CnvrgLvl	Real
116	SFAdapt CnvrgLmt	2703	A8F	SFAdapt CnvrgLmt	Real
321	Prchrg Control	2619	A3B	Prchrg Control	DINT
322	Prchrg Delay	2620	A3C	Prchrg Delay	Real
357	FS Gain	2604	A2C	FS Gain	Real
358	FS Ki	2605	A2D	FS Ki	Real
376	Bus Limit Kp	2606	A2E	Bus Limit Kp	Real
377	Bus Limit Kd	2607	A2F	Bus Limit Kd	Real
380	Bus Reg Ki	2608	A30	Bus Reg Ki	Real
381	Bus Reg Kp	2609	A31	Bus Reg Kp	Real
390	Flux Braking Ki	2610	A32	Flux Braking Ki	Real

Drive		Integrated Motion			
Parameter No.	Parameter Name	Base 10	Base 16	Enhanced Attribute	Data Type
391	Flux Braking Kp	2611	A33	Flux Braking Kp	Real
396	DC Brake Ki	2612	A34	DC Brake Ki	Real
397	DC Brake Kp	2613	A35	DC Brake Kp	Real
400	Fast Braking Ki	2614	A36	Fast Braking Ki	Real
401	Fast Braking Kp	2615	A37	Fast Braking Kp	Real
414	Mtr OL Hertz	3001	BB9	Motor Overload Hertz	Real
428	Current Limit Kd	2616	A38	Current Limit Kd	Real
429	Current Limit Ki	2617	A39	Current Limit Ki	Real
430	Current Limit Kp	2618	A3A	Current Limit Kp	Real
467	Ground Warn LvI	3002	BBA	Converter Ground Current User Limit	Real
469	PredMaint Sts	2625	A41	PredMaint Sts	INT
470	PredMaintAmbTemp	2626	A42	PredMaintAmbTemp	Real
471	PredMaint Rst En	2627	A43	PredMaint Rst En	DINT
472	PredMaint Reset	2628	A44	PredMaint Reset	DINT
488	HSFan Derate	2629	A45	HSFan Derate	Real
489	HSFan TotalLife	2630	A46	HSFan Totallife	DINT
490	HSFan ElpsdLife	2631	A47	HSFan ElpsdLife	DINT
491	HSFan RemainLife	2632	A48	HSFan RemainLife	DINT
492	HSFan EventLevel	2633	A49	HSFan EventLevel	Real
493	HSFan EventActn	2634	A4A	HSFan EventActn	DINT
494	HSFan ResetLog	2635	A4B	HSFan ResetLog	DINT
495	InFan Derate	2636	A4C	InFan Derate	Real
496	InFan Totallife	2637	A4D	InFan TotalLife	DINT
497	InFan Elpsdlife	2638	A4E	InFan Elpsdlife	DINT
498	InFan RemainLife	2639	A4F	InFan RemainLife	DINT
499	InFan EventLevel	2640	A50	InFan EventLevel	Real
500	InFan EventActn	2641	A51	InFan EventActn	DINT
501	InFan ResetLog	2642	A52	InFan ResetLog	DINT
502	MtrBrngTotalLife	2643	A53	MtrBrngTotalLife	DINT
503	MtrBrngElpsdLife	2644	A54	MtrBrngElpsdLife	DINT
504	MtrBrngRemainLif	2645	A55	MtrBrngRemainLif	DINT
505	MtrBrngEventLvI	2646	A56	MtrBrngEventLv/	Real
506	MtrBrngEventActn	2647	A57	MtrBrngEventActn	DINT
507	MtrBrng ResetLog	2648	A58	MtrBrng ResetLog	DINT
508	MtrlubeElpsdHrs	2649	A59	MtrlubeElpsdHrs	DINT
509	MtrLubeEventLvI	2650	A5A	MtrLubeEventLvl	Real
510	MtrLubeEventActn	2651	A5B	MtrLubeEventActn	DINT
511	MchBrngTotallife	2652	A5C	MchBrngTotallife	DINT
512	MchBrngElpsdLife	2653	A5D	MchBrngElpsdLife	DINT
513	MchBrngRemainLif	2654	A5E	MchBrngRemainLif	DINT
514	MchBrngEventLvl	2655	A5F	MchBrngEventLvl	Real
515	MchBrngEventActn	2656	A60	MchBrngEventActn	DINT
516	MchBrngResetLog	2657	A61	MchBrngResetLog	DINT
517	MchLubeElpsdHrs	5658	A62	MchLubeElpsdHrs	DINT

Drive		Integrated Motion			
Parameter No.	Parameter Name	Base 10	Base 16	Enhanced Attribute	Data Type
518	MchLube EventLvl	2659	A63	MchLube EventLvl	Real
519	MchLubeEventActn	2660	A64	MchLubeEventActn	DINT
642	Servo Lock Gain	2721	AA1	Servo Lock Gain	Real
665	Speed Comp Sel	2621	A3D	Speed Comp Sel	DINT
832	Psn Out Fltr Sel	2622	A3E	Psn Out Fltr Sel	DINT
833	Psn Out FlttGain	2623	A3F	Psn Out FltrGain	Real
834	Psn Out Fltr BW	2624	A40	Psn Out Fltr BW	Real
935	Drive Status 1	2741	AB5	Drive Status 1	DINT
970	Testpoint Sel 1	2661	A65	Testpoint Sel 1	DINT
971	Testpoint Fval 1	2662	A66	Testpoint Fval 1	Real
972	Testpoint Lval 1	2663	A67	Testpoint Lval 1	DINT
974	Testpoint Sel 2	2664	A68	Testpoint Sel 2	DINT
975	Testpoint Fval 2	2665	A69	Testpoint Fval 2	Real
976	Testpoint Lval 2	2666	A6A	Testpoint Lval 2	DINT
978	Testpoint Sel 3	2667	A6B	Testpoint Sel 3	DINT
979	Testpoint Fval 3	2668	A6C	Testpoint Fval 3	Real
980	Testpoint Lval 3	2669	A6D	Testpoint Lval 3	DINT
982	Testpoint Sel 4	2670	A6F	Testpoint Sel 4	DINT
983	Testpoint Fval 4	2671	A6F	Testpoint Fval 4	Real
984	Testpoint Lval 4	2672	A70	Testpoint Lval 4	DINT
1035	PkDtct Stpt Real	2673	A71	PkDtct Stpt Real	Real
1036	PkDtct Stpt DInt	2674	A72	PkDtct Stpt DInt	DINT
1037	PkDtct1 In Sel	2675	A73	PkDtct1 In Sel	DINT
1038	PkDtct1PresetSel	2676	A74	PkDtct1PresetSel	DINT
1039	Peak1 Cfg	2677	A75	Peak1 Cfg	INT
1040	Peak 1 Change	2678	A76	Peak 1 Change	INT
1041	PeakDetect1 Out	2679	A77	PeakDetect1 Out	Real
1042	PkDtct2 In Sel	2680	A78	PkDtct2 In Sel	DINT
1043	PkDtct2PresetSel	2681	A79	PkDtct2PresetSel	DINT
1044	Peak2 Cfg	2682	A7A	Peak2 Cfg	INT
1045	Peak 2 Change	2683	A7B	Peak 2 Change	INT
1046	PeakDetect2 Out	2684	A7C	PeakDetect2 Out	Real
1103	Trq Prove Status	2722	AA2	Trq Prove Status	INT
1105	Speed Dev Band	2724	AA4	Speed Dev Band	Real
1106	SpdBand Intgrtr	2725	AA5	SpdBand Intgrtr	Real
1535	VB Config	2704	A90	VB Config	INT
1536	VB Status	2705	A91	VB Status	INT
1537	VB Voltage	2706	A92	VB Voltage	Real
1538	VB Time	2707	A93	VB Time	Real
1539	VB Minimum	2708	A94	VB Minimum	Real
1540	VB Maximum	2709	A95	VB Maximum	Real
1541	VB Accel Rate	2710	A96	VB Accel Rate	Real
1542	VB Decel Rate	2711	A97	VB Decel Rate	Real
1543	VB Frequency	2712	A98	VB Frequency	Real

Drive		Integrated Motion			
Parameter No.	Parameter Name	Base 10	Base 16	Enhanced Attribute	Data Type
1544	VB Min Freq	2713	A99	VB Min Freq	Real
1545	VB Flux Thresh	2714	A9A	VB Flux Thresh	Real
1546	VB Flux Lag Freq	2715	A9B	VB Flux Lag Freq	Real
1547	VB Filt Flux Cur	2716	A9C	VB Filt Flux Cur	Real
1548	VB Current Rate	2717	A9D	VB Current Rate	Real
1549	VB Current Hyst	2718	A9E	VB Current Hyst	Real
1550	VB Cur Thresh	2719	A9F	VB Cur Thresh	Real
1551	VB Rate Lag Freq	2720	AAO	VB Rate Lag Freq	Real

Inverter Parameter / Enhanced Attribute Mapping

Table 34 - PowerFlex 755 Inverter Parameter Numeric Order

Drive		Integrated Motion			
Parameter No.	Parameter Name	Base 10	Base 16	Enhanced Attribute	Data Type
1	Sys Rated Amps	2855	B27	Sys Rated Amps	Real
2	Sys Rated Volts	2856	B28	Sys Rated Volts	Real
3	I1 Rated Amps	2857	B29	Ix1 Rated Amps	Real
4	I2 Rated Amps	2858	B2A	Ix2 Rated Amps	Real
5	I3 Rated Amps	2859	B2B	Ix3 Rated Amps	Real
10	Online Status	2862	B2E	Online Status	INT
12	Fault Status	2863	B2F	Fault Status	INT
13	Alarm Status	2864	B30	Alarm Status	INT
18	Ground Current	2865	B31	Ground Current	Real
20	Recfg Acknowledg	2866	B32	Recfg Acknowledg	DINT
21	Effctv I Rating	2867	B33	Effctv I Rating	Real
30	Testpoint Sel 1	2868	B34	Testpoint Sel 1	DINT
31	Testpoint Val 1	2869	B35	Testpoint Val 1	Real
32	Testpoint Sel 2	2870	B36	Testpoint Sel 2	DINT
33	Testpoint Val 2	2871	B37	Testpoint Val 2	Real

Converter Parameter / Enhanced Attribute Mapping

Table 35 - PowerFlex 755 Converter Parameter Numeric Order

Drive		Integrated Motion			
Parameter No.	Parameter Name	Base 10	Base 16	Enhanced Attribute	Data Type
1	Sys Rated Amps	2905	B59	Sys Rated Amps	Real
2	Sys Rated Volts	2906	B5A	Sys Rated Volts	Real
3	C1 Rated Amps	2907	B5B	CX1 Rated Amps	Real
4	C2 Rated Amps	2908	B5C	CX2 Rated Amps	Real
5	C3 Rated Amps	2909	B5D	CX3 Rated Amps	Real
10	Online Status	2912	B60	Online Status	INT
12	Fault Status	2913	B61	Fault Status	INT

Table 35 - PowerFlex 755 Converter Parameter Numeric Order (Continued)

Drive		Integrated Motion			
Parameter No.	Parameter Name	Base 10	Base 16	Enhanced Attribute	Data Type
13	Alarm Status	2914	B62	Alarm Status	INT
25	Gate Board Temp	2916	B64	Gate Board Temp	Real
30	Testpoint Sel 1	2917	B65	Testpoint Sel 1	DINT
31	Testpoint Val 1	2918	B66	Testpoint Val 1	Real
32	Testpoint Sel 2	2919	B67	Testpoint Sel 2	DINT
33	Testpoint Val 2	2920	B68	Testpoint Val 2	Real

Precharge Parameter / Enhanced Attribute Mapping

Table 36 - PowerFlex 755 Common Bus Precharge Parameter Numeric Order

Drive		Integrated Motion			
Parameter No.	Parameter Name	Base 10	Base 16	Enhanced Attribute	Data Type
1	Sys Rated Amps	2955	B8B	Sys Rated Amps	Real
2	Sys Rated Volts	2956	B8C	Sys Rated Volts	Real
3	P1 Rated Amps	2957	B8D	PX1 Rated Amps	Real
4	P2 Rated Amps	2958	B8E	PX2 Rated Amps	Real
5	P3 Rated Amps	2959	B8F	PX3 Rated Amps	Real
10	Online Status	2962	B92	Online Status	INT
12	Fault Status	2963	B93	Fault Status	INT
13	Alarm Status	2964	B94	Alarm Status	INT
18	Main DC Bus Volt	2965	B95	Main DC Bus Volt	Real
25	Gate Board Temp	2966	B96	Gate Board Temp	Real
30	Testpoint Sel 1	2967	B97	Testpoint Sel 1	DINT
31	Testpoint Val 1	2968	B98	Testpoint Val 1	Real
32	Testpoint Sel 2	2969	B99	Testpoint Sel 2	DINT
33	Testpoint Val 2	2970	B9A	Testpoint Val 2	Real

Encoder Parameter / Enhanced Attribute Mapping

Table 37 - Universal Feedback Encoder Module Output Parameter Numeric Order

Drive		Integrated Motion			
Parameter No.	Parameter Name	Base 10	Base 16	Enhanced Attribute	Data Type
80	Enc Out Sel	2800	AF0	Enc Out Sel	DINT
81	Enc Out Mode	2801	AF1	Enc Out Mode	DINT
82	Enc Out FD PPR	2802	AF2	Enc Out FD PPR	DINT
83	Enc Out Z Offset	2803	AF3	Enc Out Z Offset	DINT
84	Enc Out Z PPR	2804	AF4	Enc Out Z PPR	DINT
20, Bit 4	FBO SSI Cfg	2805	AF5	FBO SSI Cfg, Double Word Query	SINT
50, Bit 4	FB1 SSI Cfg	2806	AF6	FB1 SSI Cfg, Double Word Query	SINT

I/O Parameters

Table 38-I/O Parameter Numeric Order

Drive		Integrated Motion			
Parameter No.	Parameter Name	Base 10	Base 16	Enhanced Attribute	Data Type
70	Anlg Out Type	2820	B04	Anlg Out Type	DINT

Faults

Table shows the correlation between PowerFlex 755 faults and the respective faults that are returned to the Logix controller and RSLogix 5000 software. The returned fault numbers and text are common with the Kinetix 6500.

Note: A fault code/message that is displayed on a HIM does not match what is returned to the Logix controller and potentially displayed on an HMI or viewed in RSLogix 5000 software.
Table 39 - PowerFlex 755 Drive Fault Numeric Order

PowerFlex 755 Drive		Integrated Motion on EtherNet/IP		
Event No.	Fault Text	Code	Subcode	Fault Text
0	No Entry	0	0	No Faults
2	Auxiliary Input	63	0	External Exception Input
3	Power Loss	37	0	Bus Power Loss
4	UnderVoltage	34	0	Bus Undervoltage User Limit
5	OverVoltage	35	0	Bus Overvoltage Factory Limit
7	Motor Overload	7	0	Motor Thermal Overload Factory Limit
8	Heatsink OvrTemp	11	1	Inverter Overtemperature Factory Limit
9	Trnsistr OvrTemp	11	2	Inverter Overtemperature Factory Limit
12	HW OverCurrent	10	1	Inverter Overcurrent
13	Ground Fault	16	0	Converter Ground Current Factory Limit
14	Ground Warning	17	0	Converter Ground Current User Limit
15	Load Loss	57	0	Undertorque Limit
17	Input Phase Loss	23	0	Converter AC Single Phase Loss
20	TorgPrv Spd Band	18	1	Torque Prove Failure
21	Output PhaseLoss	63	21	Product Specific
24	Decel Inhibit	19	0	Decel Override
25	OverSpeed Limit	4	0	Motor Overspeed User Limit
26	Brake Slipped	18	2	Torque Prove Failure
33	AuRsts Exhausted	63	33	Product Specific
36	SW OverCurrent	10	2	Inverter Overcurrent
38	Phase U to Gnd	24	1	Converter AC Phase Short
39	Phase V to Gnd	24	2	Converter AC Phase Short
40	Phase W to Gnd	24	3	Converter AC Phase Short
41	Phase UV Short	24	4	Converter AC Phase Short
42	Phase VW Short	24	5	Converter AC Phase Short
43	Phase WU Short	24	6	Converter AC Phase Short
44	Phase UNegToGnd	24	7	Converter AC Phase Short
45	Phase VNegToGnd	24	8	Converter AC Phase Short
46	Phase WNegToGnd	24	9	Converter AC Phase Short
48	System Defaulted	63	33	Product Specific
49	Drive Powerup	1	0	Modul Reset
55	Ctrl Bd Overtemp	10	0	Control Module Overtemperature Factory Limit
61	Shear Pin 1	56	0	Overtorque Limit

Table 39 - PowerFlex 755 Drive Fault Numeric Order (Continued)

PowerFlex 755 Drive		Integrated Motion on EtherNet/IP		
Event No.	Fault Text	Code	Subcode	Fault Text
64	Drive OverLoad	13	0	Converter Pre-charge Overload User Limit
71	Port 1 Adapter	63	71	Product Specific
72	Port 2 Adapter	63	72	Product Specific
73	Port 3 Adapter	63	73	Product Specific
74	Port 4 Adapter	63	74	Product Specific
75	Port 5 Adapter	63	75	Product Specific
76	Port 6 Adapter	63	76	Product Specific
77	IR Volts Range	21	1	Motor Test Failure
78	FluxAmpsRef Rang	21	2	Motor Test Failure
79	Excessive Load	21	3	Motor Test Failure
80	AutoTune Aborted	21	4	Motor Test Failure
81	Port 1 DPI Loss	63	81	Product Specific
82	Port 2 DPI Loss	63	82	Product Specific
83	Port 3 DPI Loss	63	83	Product Specific
84	Port 4 DPI Loss	63	84	Product Specific
85	Port 5 DPI Loss	63	85	Product Specific
86	Port 6 DPI Loss	63	86	Product Specific
87	IXo VoltageRange	21	5	Motor Test Failure
91	Pri VelFdbk Loss	45	255	Feedback Data Loss Factory Limit
93	Hw Enable Check	63	93	Product Specific
94	Alt VelFdbk Loss	45	255	Feedback Data Loss Factory Limit
95	Aux VelFdbk Loss	45	255	Feedback Data Loss Factory Limit
96	PositionFdbkLoss	45	255	Feedback Data Loss Factory Limit
100	Parameter Chksum	3	0	Nonvolatile Memory Checksum Fault
104	Pwr Brd Checksum	15	1	Power Board
106	Incompat MCB-PB	15	3	Power Board
107	Replaced MCB-PB	22	1	Hardware Configuration
111	PwrBd Invalid ID	15	2	Power Board
112	PwrBd App MinVer	15	4	Power Board
113	Tracking DataErr	22	2	Hardware Configuration
117	PwrDn Data Chksm	17	16	Option Storage Checksum
124	App ID Changed	23	1	Firmware Change
125	Using Backup App	23	2	Firmware Change
134	Start On PowerUp	63	134	Product Specific
137	Ext Prchrg Err	23	2	Converter Pre-Charge Failure
138	Precharge Open	23	3	Converter Pre-Charge Failure
141	Autn Enc Angle	21	6	Motor Test Failure
142	Autn Spd Rstrct	21	7	Motor Test Failure
143	Autotune CurReg	21	8	Motor Test Failure
144	Autotune Inertia	21	9	Motor Test Failure
145	Autotune Travel	21	10	Motor Test Failure
169	PWM Freq Reduced	16	0	PWM Frequency Reduced

Table 39 - PowerFlex 755 Drive Fault Numeric Order (Continued)

PowerFlex 755 Drive		Integrated Motion on EtherNet/IP		
Event ${ }^{\text {No. }}$	Fault Text	Code	Subcode	Fault Text
170	CurLimit Reduced	17	0	Current Limit Reduced
177	Profiling Active	63	177	Product Specific
178	Homing Active	63	178	Product Specific
179	Home Not Set	63	179	Product Specific
203	Port 13 Adapter	63	203	Product Specific
204	Port 14 Adapter	63	204	Product Specific
205	DPI TransportErr	63	205	Product Specific
206	RTC Battery Fail	63	206	Product Specific
210	HW En Jumper Out	2	1	GuardConfigurationFault
211	Safety Brd Fault	9	0	GuardStoplnputFault
212	Safety Jmpr Out	2	2	GuardConfigurationFault
213	Safety Jumper In	2	3	GuardConfigurationFault
224	Port 4 Comm Loss	63	224	Product Specific
225	Port 5 Comm Loss	63	225	Product Specific
226	Port 6 Comm Loss	63	226	Product Specific
227	Port 7 Comm Loss	63	227	Product Specific
228	Port 8 Comm Loss	63	228	Product Specific
229	Port 9 Comm Loss	63	229	Product Specific
244	Port 4 ffg	16	4	Illegal Option Card
245	Port 5 Cfg	16	5	Illegal Option Card
246	Port 6 Cfg	16	6	Illegal Option Card
247	Port 7 Cfg	16	7	Illegal Option Card
248	Port 8 Cfg	16	8	Illegal Option Card
249	Port 9 Cfg	16	9	Illegal Option Card
264	Port 4 Checksum	17	4	Option Storage Checksum
265	Port 5 Checksum	17	5	Option Storage Checksum
266	Port 6 Checksum	17	6	Option Storage Checksum
267	Port 7 Checksum	17	7	Option Storage Checksum
268	Port 8 Checksum	17	8	Option Storage Checksum
269	Port 9 Checksum	17	9	Option Storage Checksum
280	Comm Loss Enet	1	0	Connection failure.
281	Enet Checksum	17	13	Option Storage Checksum
282	DLX Checksum	17	14	Option Storage Checksum
290	Prev Maint Reset	20	1	Preventative Maintenance
291	HSFan Life	20	2	Preventative Maintenance
292	InFan Life	20	3	Preventative Maintenance
293	MtrBrng Life	20	4	Preventative Maintenance
294	MtrBrng Lube	20	5	Preventative Maintenance
295	MachBrng Life	20	6	Preventative Maintenance
296	MachBrng Lube	20	7	Preventative Maintenance
307	Port7lnvalidCard	63	307	Product Specific
308	Port8InvalidCard	63	308	Product Specific
310	Regeneration OK	15	0	Regen Power Supply

Table 39 - PowerFlex 755 Drive Fault Numeric Order (Continued)

PowerFlex 755 Drive Event No.	Fault Text	Integrated Motion on EtherNet/IP Code		
315	Subcode	Fault Text		
318	OutCurShare PhU	4	0	Excessive Position Error
319	OutCurShare PhV	63	318	Product Specific
320	OutCurShare PhW	63	319	Product Specific
321	HS Temp Imbal	63	320	Product Specific
324	DC Bus Mismatch	63	321	Product Specific
325	Invalid Inv Cfg	63	324	Product Specific
326	Invalid Conv Cfg	63	325	Product Specific
331	Inv1 Comm Loss	63	326	Product Specific
341	Con1 Comm Loss	63	331	Product Specific

Encoderless Operation Errors on Configuration

When a system is configured for encoderless operation and the program is downloaded to the processor, the axis faults with a TorqProve configuration error (TP Encls Config alarm). To clear the configuration error, you must send an Enhanced Attribute message to the drive to configure it for encoderless operation by using a "SINT" tag value of 1 sent to Attribute 2723 Dec or AA3 Hex.

Also an Enhanced Attribute message to the drive to configure the brake speed deviation to zero must be used or a configuration error occurs. Send a 'Real' value of 0 to Attribute 2724 Dec or AA4 Hex to set the brake speed deviation to zero.

Additional Resources

The following documents contain more information on how to implement Integrated Motion on EtherNet/IP with PowerFlex 755 drives.

Integrated Motion on the Ethernet/IP Network User Manual Publication Number: MOTION-UM003

Integrated Motion on the Ethernet/IP Network Reference Manual Publication Number: MOTION-RM003

Logix5000 Controllers Design Considerations Reference Manual Publication Number: 1756-RM094

A

Accel Time n (No. 535, 536) 109
Access Level (No. 301) 80
Active Cur Lmt (No. 424) 96
Active Vel Fdbk (No. 131) 65
Actual Home Psn (No. 737) 134
Actv SpTqPs Mode (No. 313) 83
Adapter Parameters 17
Adj VItg AccTime (No. 1140) 179
Adj Vltg Command (No. 1139) 179
Adj VItg Config (No. 1131) 178
Adj VItg DecTime (No. 1141) 179
Adj VItg Presetn (No. 1142...1148) 179
Adj VItg Ref Hi (No. 1134) 178
Adj VItg Ref Lo (No. 1135) 178
Adj VItg RefMult (No. 1149) 179
Adj Vltg Scurve (No. 1150) 179
Adj VItg Select (No. 1133) 178
Adj VItg Trim Hi (No. 1137) 178
Adj Vltg Trim Lo (No. 1138) 178
Adj Vltg TrimPct (No. 1151) 179
Adj VItg TrimSel (No. 1136) 178
Adjustable Voltage Control 178 Invalid Reference 316
Adjustable Voltage Parameters 178
Advanced Parameter View 24
Alarm Information Parameters 164, 165, 166, 167
Alarm Status (No. 13)
Converter 217, 223 Inverter 213
Alarm Status A (No. 959) 163
Alarm Status B (No. 960) 164
AlarmA at Fault (No. 962) 166
AlarmB at Fault (No. 963) 166
Alarms
Drive 309
Drive Alarm Cross Reference 321
Dual Incremental Encoder 345 I/0 343
Safe Speed Monitor 343
Single Incremental Encoder 344 Types 301
Universal Feedback Alarm Descriptions 346
Alt Man Ref AnHi (No. 329) 85
Alt Man Ref AnLo (No. 330) 85
Alt Man Ref Sel (No. 328) 84
Alt Speed Reg BW (No. 648) 119
Alt Speed Reg Ki (No.650) 120
Alt Speed Reg Kp (No. 649) 120
Alt Vel Fdbk Sel (No. 128) 64
Alt Vel FdbkFItr (No. 129) 65
Alt Vel Feedback (No. 130) 65
AltSpdErr FItrBW (No. 651) 120
Analog Input Mode Status 75
Analog Inputs Parameters 75, 77

Analog Outputs Parameters 77, 78
Anlg In Loss Sts
No. 257 - Main Control Board 76
No. 47 - Option Module 247, 257
Anlg In Sqrt
No. 256 - Main Control Board 76
No. 46 - Option Module 247, 256
Anlg In Type
No. 255 - Main Control Board 75
No. 45 - Option Module 247, 256
Anlg InO Filt BW
No. 266 - Main Control Board 77
No. 56 - Option Module 248, 258
Anlg In0 Filt Gn
No. 265 - Main Control Board 77
No. 55 - Option Module 248, 257
Anlg $\ln 0 \mathrm{Hi}$
No. 261 - Main Control Board 76
No. 51 - Option Module 248, 257
Anlg $\ln 0$ Lo
No. 262 - Main Control Board 76
No. 52 - Option Module 248, 257
Anlg In0 LssActn
No. 263 - Main Control Board 76
No. 53 - Option Module 248, 257
Anlg InO Raw Val
No. 264 - Main Control Board 77
No. 54 - Option Module 248, 257
Anlg InO Value
No. 260 - Main Control Board 76
No. 50 - Option Module 248, 257
Anlg In1 Filt BW (No. 66) 258
Anlg In1 Filt Gn (No. 65) 258
Anlg $\ln 1 \mathrm{Hi}$ (No. 61) 258
Anlg $\ln 1 \mathbf{L o}$ (No. 62) 258
Anlg In1 LssActn (No.63) 258
Anlg In1 Raw Val (No. 64) 258
Anlg In1 Value (No. 60) 258
Anlg Out Abs
No. 271 - Main Control Board 77
No. 71 - Option Module 249, 259
Anlg Out Type
No. 270 - Main Control Board 77
No. 70 - Option Module 249, 259
Anlg Out0 Data
No. 277 - Main Control Board 77
No. 77 - Option Module 249, 259
Anlg Out0 DataHi
No. 278 - Main Control Board 77
No. 78 - Option Module 249, 259
Anlg Out0 DataLo
No. 279 - Main Control Board 78
No. 79 - Option Module 249, 259
Anlg Out0 Hi
No. 280 - Main Control Board 78
No. 80 - Option Module 249, 259
Anlg Out0 Lo
No. 281 - Main Control Board 78
No. 81 - Option Module 249, 259
Anlg Out0 Sel

No. 275 - Main Control Board 77
No. 75 - Option Module 249, 259
Anlg OutO Stpt
No. 276 - Main Control Board 77
No. 76 - Option Module 249, 259
Anlg OutO Val
No. 282 - Main Control Board 78
No. 82 - Option Module 250, 260
Anlg Out1 Data (No. 87) 260
Anlg Out1 DataHi (No. 88) 260
Anlg Out1 DataLo (No. 89) 260
Anlg Out1 Hi (No. 90) 260
Anlg Out1 Lo (No. 91) 260
Anlg Out1 Sel (No. 85) 260
Anlg Out1 Stpt (No. 86) 260
Anlg Out1 Val (No. 92) 260
Application Notes 439
Applications Parameters 171
At Limit Status (No. 945) 160
ATEX
Faults and Alarms 344
Auto Manual Control Parameters 84
Auto Mask (No. 325) 84
Auto Retry Fault (No. 347) 86
Auto Rstrt Delay (No.349) 86
Auto Rstrt Tries (No. 348) 86
Autotune (No. 70) 57
Autotune Parameters 57
Autotune Torque (No.71) 57
Aux Vel Fdbk Sel (No. 132) 65
Aux Vel FdbkFItr (No. 133) 65
Aux Vel Feedback (No. 134) 65

B

Basic Parameter View 22

Block Diagrams 359
Control Logic (753) 388
Control Logic (755) 430, 431, 432, 433
Diagnostic Tools 437
Flux Vector Overview (753) 361
Flux Vector Overview (755) 397
Friction Compensation 435, 436
High Speed Trend Wizard 438
Inputs and Outputs (753) 384
Inputs and Outputs (755) 428
Inverter Overload (753) 392, 393
Inverter Overload (755) 434
MOP Control (753) 383
MOP Control (755) 427
Position Control (753) 371
Position Control (755) 407
Process Control (753) 381
Process Control (755) 425
Speed and Position Feedback (753) 363
Speed and Position Feedback (755) 399
Speed Control (753) 364
Speed Control (755) 400
Torque Control (753) 375, 376

Torque Control (755) 417, 418
Boost
Limit Alarm 316
Position Oriented Torque 202
Start, Acceleration, and Run 56
Torque 201
B00TP (No. 36) 230
B00TP Server
IP Addressing 17
Brake Off Adj $n($ No. 402, 403 $) 94$
Brake Test Torq (No. 1114) 176
Braking
Flux Braking 93
Parameters 90
Break Frequency (No.63) 56
Break Voltage (No. 62) 56
Brk Alarm Travel (No. 1109) 175
Brk Release Time (No. 1107) 175
Brk Set Time (No. 1108) 175
Brk Slip Count (No. 1110) 176
Bus Limit ACR Ki (No. 378) 91
Bus Limit ACR Kp (No. 379) 91
Bus Limit Kd (No. 377) 91
Bus Limit Kp (No.376) 91
Bus Reg Ki (No. 380) 91
Bus Reg Kp (No.381) 91
Bus Reg Level (No. 375) 90
Bus Reg Lvl Cfg (No. 374) 90
Bus Reg Mode n (No. 372, 373) 90
Bus Utilization (No. 42) 53

C

C1 L31 Line Volt (No. 127) 222
C1 Testpt Val 1 (No. 141, 143) 222
Cascaded Config (No. 20) 291
CbFan Derate (No. 481) 102
CbFan ElpsdLife (No. 483) 102
CbFan EventActn (No. 486) 103
CbFan EventLevel (No. 485) 103
CbFan RemainLife (No.484) 103
CbFan TotalLife (No.482) 102
Clear FIt Owner (No. 923) 150
Cn AC Line Freq (No. 123, 223) 221
Cn Alarm Status1 (No. 107, 207) 220
Cn CbFanElpsdLif (No. 138, 238) 222
Cn DC Bus Volt (No.119, 219) 221
Cn Fault Status1 (No. 105, 205) 220
Cn Fault Status2 (No. 106, 206) 220
Cn GateBoardTemp (No. 122, 222) 221
C n Gnd Current (No. 118, 218) 221
C n Heatsink Temp (No. 120, 220) 221
Cn L1 Phase Curr (No. 115, 215) 221
Cn L12 Line Volt (No. 125, 225) 222
Cn L2 Phase Curr (No. 116, 216) 221

Cn L23 Line Volt (No. 126, 226) 222
Cn L3 Phase Curr (No. 117, 217) 221
Cn PredMainReset (No. 137, 237) 222
Cn Rated Amps (No. 3, 4) 217, 223
C n SCR Temp (No. 121, 221) 221
C n Testpt Sel n (No. 140, 142, 240, 242) 222
Cn Testpt Val 1 (No. 141, 143, 241, 243) 222
Comm Flt Action (No. 54) 232
Commanded SpdRef (No.2) 48
Commanded Trq (No.4) 48
Common Mode Type (No. 41) 52
Common Symptoms, Troubleshooting 353
Communication Control Parameters 145, 146
Communications
Parameters 145
Status Indicator LEDs 16
Condition Sts 1 (No. 937) 158
Config FIt Code (No. 70) 290
Configuration File Parameters 80
Control Configuration Parameters 81
Control Logic
Block Diagram (753) 388
Block Diagram (755) 430, 431, 432, 433
Controller, DriveLogix 10
Conventions, Manual 7
Converter Actn (No. 17) 218
Counts Per Unit (No. 1215) 186
CRC FIt Cfg (No. 964) 167
Cross Reference
Faults and Alarms 321
Current Limit Kd (No. 428) 96
Current Limit Ki (No. 429) 96
Current Limit Kp (No. 430) 97
Current Limit n (No. 422, 423) 96
Current Lmt Sel (No. 421) 96
Current Rate Lmt (No. 425) 96

D

Data In $\boldsymbol{n n}$ (No. 895...902) 148
Data Out nn (No. 905...912) 148
Day Stroke Count (No. 1205) 184
DB Ext Ohms (No. 383) 91
DB Ext Watts (No. 384) 91
DB ExtPulseWatts (No. 385) 92
DB Resistor Type (No. 382) 91
DC Brake (No. 393) 93
DC Brake Ki (No. 396) 94
DC Brake Kp (No. 397) 94
DC Brake Level (No. 394) 93
DC Brake Time (No. 395) 94
DC Brk Vd Fltr (No. 399) 94
DC Brk Vq Fltr (No. 398) 94
DC Bus Mem Reset (No.464) 100
DC Bus Memory (No. 12) 48

DC Bus Volts (No.11) 48
DC Offset Ctrl (No. 1154) 179
Dead Time Comp (No. 1153) 179
Dec Inhibit Actn (No. 409) 94
Decel Ref Speed (No. 50) 294
Decel Time $n(N o .537,538) 109$
Default Parameter Settings 307
Delayed Spd Ref (No. 139) 66, 68, 93, 111, 145, 179, 203, 204, 205
DeviceLogix 479
DI Abort Profile (No. 1220) 188
DI Abort Step (No. 1219) 187
DI Accel 2 (No. 179) 69
DI Aux Fault (No. 157) 67
DI BusReg Mode B (No. 186) 69
DI Clear Fault (No. 156) 67
DI Coast Stop (No. 160) 67
DI Cur Lmt Stop (No. 159) 67
DI Decel 2 (No. 180) 69
DI Enable (No. 155) 67
DI Fiber SyncEna (No. 1129) 178
DI Fiber TravDis (No. 1130) 178
DI Find Home (No. 732) 134
DI FloatMicroPsn (No. 1102) 175
DI Fwd Dec Limit (No. 197) 70
DI Fwd End Limit (No. 196) 70
DI Fwd Reverse (No. 162) 67
DI HOA Start (No. 176) 68
DI Hold Step (No. 1218) 187
DI Indx Step (No. 772) 137
DI Indx StepPrst (No. 774) 137
DI Indx StepRev (No. 773) 137
DI Jog 1 (No. 166) 68
DI Jog 1 Forward (No. 167) 68
DI Jog 1 Reverse (No. 168) 68
DI Jog 2 (No. 169) 68
DI Jog 2 Forward (No. 170) 68
DI Jog 2 Reverse (No. 171) 68
DI ManRef AnlgHi (No. 564) 111
DI ManRef AnIgLo (No. 565) 111
DI ManRef Sel (No. 563) 111
DI Manual Ctrl (No. 172) 68
DI MOP Dec (No. 178) 69
DI MOP Inc (No. 177) 69
DI NHdwr OvrTrvl (No. 201) 71
DI OL Home Limit (No. 734) 134
DI PCAM Start (No. 1474) 199
DI PHdwr OvrTrvl (No. 200) 71
DI PID Enable (No. 191) 70
DI PID Hold (No. 192) 70
DI PID Invert (No. 194) 70
DI PID Reset (No. 193) 70
DI Prchrg Seal (No. 190) 70
DI Precharge (No. 189) 69

DI PumpOff Disbl (No. 1206) 184
DI Pwr Loss (No. 188) 69
DI PwrLoss ModeB (No. 187) 69
DI Redefine Psn (No. 733) 134
DI Rev Dec Limit (No. 199) 71
DI Rev End Limit (No. 198) 71
DI Run (No. 163) 67
DI Run Forward (No. 164) 20, 67
DI Run Reverse (No. 165) 68
DI Speed Sel \boldsymbol{n} (No. 173...175) 68
DI SpTqPs Sel \boldsymbol{n} (No. 181, 182) 69
DI Start (No. 161) 67
DI Stop (No. 158) 67
DI Stop Mode B (No. 185) 69
DI StrtStep Selnn (No. 1222...1226) 188
DI Torque StptA (No. 195) 70
DI Vel Override (No. 1221) 188
Diagnostic Tools
Block Diagram 437
Diagnostics Parameters 152
Dig In Filt
No. 223 - Main Control Board 72
No. 3 - Option Module 242, 252
Dig In Filt Mask
No. 2 - Option Module 242, 252
No. 222 - Main Control Board 20, 72
Dig In Sts (No. 1) 242, 252
Dig Out Invert
No. 226 - Main Control Board 73
No. 6 - Option Module 243, 253
Dig Out Setpoint
No. 227 - Main Control Board 73
No. 7 - Option Module 243, 253
Dig Out Sts
No. 225 - Main Control Board 73
No. 5 - Option Module 242, 252
Digital In Cfg (No. 150) 67
Digital In Sts (No. 220) 72
Digital Input Functions Parameters 67, 68
Digital Outputs Parameters 73
Dir Owner (No. 922) 149
Direct Position Parameters 136
Direction Mode (No. 308) 81
Direction Mon (No.42) 293
Direction Tol (No. 43) 293
Displaying Parameters 308
DL From Net nn (No. 1...16) 230
DL To Net nn (No. 17...32) 230
DLs Fr Peer Act (No. 77) 234
DLs Fr Peer Cfg (No. 76) 234
DLs From Net Act (No.34) 230
DLs To Net Act (No. 35) 230
DLs To Peer Act (No. 88) 235
DLs To Peer Cfg (No. 87) 235
DLX Bool SPn (No. 78...81) 241

DLX DigIn Sts (No. 49) 239
DLX DigOut Sts (No. 50) 239
DLX DigOut Sts2 (No. 51) 240
DLX DINT InSPn (No. 98...101) 241
DLX DINT OutSPn (No. 102...105) 241
DLX DINT SPn (No. 70...77) 241
DLX DIP nn (No.33...48) 239
DLX In nn (No. 17...32) 239
DLX Operation (No. 53) 240
DLX Out nn (No. 1...16) 239
DLX Prog Cond (No. 52) 240
DLX Real InSPn (No. 82...89) 241
DLX Real OutSPn (No. 90...97) 241
DLX Real SPnn (No. 54...69) 241
DM Input (No. 58) 296
Door Out Mode (No. 74) 296
Door Out Type (No. 57) 296
DPI Datalinks Parameters 148
DPI Logic Rslt (No. 882) 146
DPI Ramp RsIt (No. 881) 146
DPI Ref Rslt (No. 880) 146
Drive Data Parameters 49
Drive Logic Rslt (No. 879) 146
Drive Memory Parameter 85
Drive OL Count (No. 940) 159
Drive OL Mode (No. 420) 96
Drive Ramp Rslt (No. 884) 146
Drive Ref Rslt (No. 883) 146
Drive State 303
Drive Status 1 (No. 935) 154
Drive Status 2 (No. 936) 157
Drive Temp C (No. 944) 159
Drive Temp Pct (No. 943) 159
DriveLogix Controller 10
Droop Compensation Parameters 116
Droop RPM at FLA (No. 620) 116
Dual Incremental Encoder
Faults and Alarms 345
Parameters 266
Duty Rating (No. 306) 81
Dynamic Braking
Parameters 91
Setup 90
Type Select 91

E

Econ AccDec Ki (No. 48) 53
Econ AccDec Kp (No. 49) 53
Econ At Ref Ki (No. 47) 53
Effctv I Rating (No. 21) 212
Elapsed kWH (No. 14) 49
Elapsed MWH (No. 13) 48
Elapsed Run Time (No. 15) 49
Electronic Gear Parameters 141

Elpsd Mtr kWHrs (No. 18) 49
Elpsd Mtr MWHrs (No. 16) 49
Elpsd Rgn kWHrs (No. 19) 49
Elpsd Rgn MWHrs (No. 17) 49
Enable SW Input (No. 54) 295
Enc 0 Cfg (No. 1) 266
Enc 0 Error Sts (No. 6) 267
Enc 0 FB (No. 4) 266
Enc 0 FB Lss Cfg (No. 3) 266
Enc O PhsLss Cnt (No.7) 267
Enc 0 PPR (No. 2) 266
Enc 0 QuadLssCnt (No. 8) 267
Enc O Sts (No. 5) 267
Enc 1 Cfg (No.11) 268
Enc 1 Error Sts (No. 16) 269
Enc 1 FB (No. 14) 268
Enc 1 FB Lss Cfg (No. 13) 268
Enc 1 PhsLss Cnt (No. 17) 269
Enc 1 PPR (No. 12) 268
Enc 1 QuadLssCnt (No.18) 269
Enc 1 Sts (No. 15) 269
Enc Out FD PPR (No. 82) 283
Enc Out Mode (No. 81) 283
Enc Out Sel (No. 80) 283
Enc Out Z Offset (No. 83) 283
Enc Out Z PPR (No. 84) 283
Encdrlss AngComp (No. 78) 58
Encdrlss VltComp (No. 79) 58
Encoder Cfg (No. 1) 263
Encoder Feedback (No.4) 263
Encoder PPR (No. 2) 263
Encoder Status (No.5) 264
Error Status (No. 6) 264
EtherNet/IP 17
Parameters 230
Expert Parameter View 30
Ext Ramped Ref (No. 700) 125

F

Fast Braking Ki (No. 400) 94
Fast Braking Kp (No. 401) 94
Fault Amps (No. 957) 163
Fault Bus Volts (No. 958) 163
Fault Frequency (No. 956) 163
Fault Information Parameters 161, 162
Fault Status
No. 12 - Converter 217, 223
No. 12 - Inverter 212
Fault Status (No. 67) 298
Fault Status A (No. 952) 161
Fault Status B (No. 953) 162
Faults
ATEX 344
Drive 309

Drive Fault Cross Reference 321
Dual Incremental Encoder 345 I/0 343
N-1 See Manaul 319
Rerate See Manual 319
Safe Speed Monitor 343
Single Incremental Encoder 344
Types 301
Universal Feedback Fault Descriptions 346
FBO Cfg (No. 8) 274
FBO Device Sel (No. 6) 272
FBO Identify (No.7) 273
FBO Inc Cfg (No. 16) 276
FBO Inc Sts (No. 17) 276
FBO IncAndSC PPR (No. 15) 275
FBO Lin CPR (No. 25) 277
FBO Lin Upd Rate (No. 26) 277
FBO LinStahl Sts (No. 27) 277
FBO Loss Cfg (No. 9) 274
FBO Position (No.5) 272
FBO SSI Cfg (No. 20) 276
FBO SSI Resol (No. 21) 277
FBO SSI Turns (No. 22) 277
FBO Sts (No. 10) 275
FB1 Cfg (No. 38) 280
FB1 Device Sel (No. 36) 278
FB1 Identify (No. 37) 279
FB1 Inc Cfg (No. 46) 281
FB1 Inc Sts (No. 47) 281
FB1 IncAndSC PPR (No. 45) 281
FB1 Lin CPR (No. 55) 282
FB1 Lin Upd Rate (No.56) 282
FB1 LinStahl Sts (No. 57) 282
FB1 Loss Cfg (No. 39) 280
FB1 Position (No. 35) 278
FB1 SSI Cfg (No. 50) 282
FB1 SSI Resol (No. 51) 282
FB1 SSI Turns (No. 52) 282
FB1 Sts (No. 40) 280
Fbk 1 Polarity (No. 30) 292
Fbk 1 Resolution (No. 31) 292
Fbk 1 Speed (No. 33) 292
Fbk 1 Type (No. 28) 292
Fbk 1 Units (No. 29) 292
Fbk 1 Volt Mon (No. 32) 292
Fbk 2 Polarity (No. 35) 292
Fbk 2 Resolution (No. 36) 292
Fbk 2 Speed (No. 38) 293
Fbk 2 Units (No. 34) 292
Fbk 2 Volt Mon (No. 37) 293
Fbk Mode (No. 27) 292
Fbk Pos Tol (No. 41) 293
Fbk Speed Ratio (No. 39) 293
Fbk Speed Tol (No. 40) 293
Fdbk Loss Cfg (No. 3) 263

Feedback \& I/O Parameters 64
Feedback Sources
Setting gains for Primary and Alternate sources 117
Fiber Control (No. 1120) 177
Fiber Functions Parameters 177, 178
Fiber Status (No. 1121) 177
File Group Parameter Organization 22
Filtered Spd Ref (No. 595) 114
Filtered SpdFdbk (No.640) 118
Filtered $\operatorname{Trq} \operatorname{Ref}$ (No.689) 124
Final Speed Ref (No. 597) 114
Find Home Ramp (No. 736) 134
Find Home Speed (No. 735) 134
Float Tolerance (No. 1111) 176
Flt Cfg DL $n n$ (No. 60...75) 234
Flt Cfg Logic (No. 58) 233
Flt Cfg Ref (No. 59) 233
Flux Braking 93
Flux Braking En (No. 388) 93
Flux Braking Ki (No. 390) 93
Flux Braking Kp (No. 391) 93
Flux Braking Lmt (No. 389) 93
Flux Cur Fdbk (No. 6) 48
Flux Current Ref (No.75) 57
Flux Down Ki (No. 45) 53
Flux Down Kp (No. 46) 53
Flux Reg Enable (No. 103) 61
Flux Reg Ki (No. 104) 61
Flux Reg Kp (No. 105) 61
Flux Up Enable (No. 43) 53
Flux Up Time (No. 44) 53
Flux Vector Overview
Block Diagram (753) 361
Block Diagram (755) 397
Flying Start 88
FlyingStart Mode (No. 356) 88
Fr Peer Addr n (No. 81...84) 235
Fr Peer Enable (No. 85) 235
Fr Peer Status (No. 86) 235
Fr Peer Timeout (No. 80) 234
FrctnComp Hyst (No. 1562) 128
FrctnComp Mode (No. 1560) 128
FrctnComp Out (No. 1567) 129
FrctnComp Rated (No. 1566) 129
FrctnComp Slip (No. 1565) 129
FrctnComp Stick (No. 1564) 128
FrctnComp Time (No. 1563) 128
FrctnComp Trig (No. 1561) 128
Friction Compensation
Block Diagram 435, 436
Parameters 128
FS Brl Lvl (No. 365) 89
FS Excitation Ki (No. 361) 89
FS Excitation Kp (No. 362) 89

FS Gain (No. 357) 88
FS Ki (No. 358) 88
FS Msrmnt CurLvl (No. 364) 89
FS Reconnect Dly (No. 363) 89
FS Speed Reg Ki (No. 359) 88
FS Speed Reg Kp (No. 360) 88
FS ZSpd Thresh (No. 367) 89

G

Gate Board Temp (No. 25) 218, 224
Gateway (fg n (No. 46...49) 231
Gearbox Limit (No. 1181) 181
Gearbox Rating (No. 1182) 181
Gearbox Ratio (No. 1183) 181
Gearbox Sheave (No. 1184) 181
General Precautions 8
Gnd Cur Flt Lvl (No. 16) 218
Ground Current (No. 18) 213
Ground Fault Parameters 101
Ground Warn Actn (No. 466) 101
Ground Warn LvI (No. 467) 101
Guard Status (No. 68) 299

H

Heatsink Temp (No. 23) 218
High Speed Trend Wizard
Block Diagram 438
Homing Cfg (No. 20) 270
Homing Control (No.731) 133
Homing Status (No. 730) 133
Host Parameters 42
HSFan Derate (No. 488) 103
HSFan ElpsdLife (No. 490) 103
HSFan EventActn (No. 493) 104
HSFan EventLevel (No. 492) 104
HSFan RemainLife (No.491) 104
HSFan ResetLog (No. 494) 104
HSFan TotalLife (No. 489) 103
Human Interface Module
In Integrated Motion Applications 308

I

I/O Modules Parameters 42, 43, 242
IA LdObs Delay (No. 709) 127
Id Comp Enbl (No. 1600) 207
Id Comp Mtrng n (No. 1601... 1611) 207-208
Id Comp Regen n (No. 1613...1623) 208-210
Id Lo FreqCur Kp (No. 431) 97
IdCompMtrng \boldsymbol{n} Iq (No. 1602...1612) 207-208
IdCompRegen \boldsymbol{n} Iq (No. 1614. . .1624) 209-210
Idle FIt Action (No. 55) 232
IGBT Temp C(No. 942) 159

IGBT Temp Pct (No. 941) 159
In Alarm Status (No. 107, 207) 214
In DC Bus Volt (No. 119, 219) 215
In Fault Status (No. 105, 205) 214
In Gnd Current (No. 118, 218) 215
In Heatsink Temp (No. 120, 220) 215
In HSFan Speed (No. 124, 224) 215
In HSFanElpsdLif (No. 128) 216
In IGBT Temp (No. 121, 221) 215
In InFan 1 Speed (No. 125, 225) 215
In InFan 2 Speed (No. 126, 226) 215
In InFanElpsdLif (No. 129, 229) 216
In Pos Psn Band (No. 726) 131
In Pos Psn Dwell (No. 727) 132
In PredMainReset (No. 127, 227) 216
In Rated Amps (No. 3, 4) 212
In Testpt Sel \boldsymbol{n} (No. 140, 142, 240, 242) 216
In Testpt Val \boldsymbol{n} (No. 141, 143, 241, 243) 216
In U Phase Curr (No. 115, 215) 215
In V Phase Curr (No. 116, 216) 215
In W Phase Curr (No. 117, 217) 215
InAdp LdObs Mode (No. 704) 126
Inert Comp LPFBW (No.698) 125
InertAdptFItrBW (No. 710) 127
Inertia Acc Gain (No. 696) 125
Inertia Adapt BW (No. 705) 126
Inertia Adaption Parameters 126
Inertia Comp Out (No. 699) 125
Inertia Compensation Parameters 125
Inertia CompMode (No.695) 125
Inertia Dec Gain (No. 697) 125
Inertia Test Lmt (No.77) 58
InertiaAdaptGain (No. 706) 126
InertiaTrqAdd (No. 708) 127
InFan Derate (No. 495) 104
InFan ElpsdLife (No. 497) 105
InFan EventActn (No. 500) 105
InFan EventLevel (No. 499) 105
InFan RemainLife (No. 498) 105
InFan ResetLog (No.501) 105
InFan TotalLife (No. 496) 104
InPhase Loss Lvl (No. 463) 100
InPhase LossActn (No. 462) 100
Inputs and Outputs
Block Diagram (753) 384
Block Diagram (755) 428
Integrated Motion
24-bit Device Feedback 519
Analog Input 518
Analog Output 518
Brake Output 517
Contactor Enable Output 518
Digital Input 518
Digital Output 518
Motor Overload 517

Motor Thermostat Input 518
Overtravel Input 517
Pre-charge Input 517
Regeneration OK Input 518
SSI Full Rotary 519
Torque Prove 507
Integrated Motion Applications
HIM Restrictions 308
Interp Control (No. 755) 135
Interp Psn Input (No. 756) 135
Interp Psn Out (No. 759) 135
Interp Trq Input (No. 758) 135
Interp Trq Out (No. 761) 135
Interp Vel Input (No. 757) 135
Interp Vel Out (No. 760) 135
Interpolator Parameters 135
Inverter Overload
Block Diagram (753) 392, 393
Block Diagram (755) 434
10 Diag Status (No. 69) 300
IP Addr Cfg n (No. 38...41) 231
IP Address Switches 17
IPM AltOffstComp (No. 1647) 60
IPM Bus Prot (No. 1629) 63
IPM Max Cur (No. 1640) 63
IPM Max Spd (No. 1641) 63
IPM PriOffstComp (No. 1646) 60
IPM TrqTrim HLim (No. 1644) 63
IPM TrqTrim Ki (No. 1643) 63
IPM TrqTrim Kp (No. 1642) 63
IPM TrqTrim LLim (No. 1645) 63
IPM_Ld_0_pct (No. 1635) 60
IPM_Ld_100_pct (No. 1636) 60
IPM_Lg_100_pct (No. 1633) 60
IPM_Lg_125_pct (No. 1634) 60
IPM_Lg_25_pct (No. 1630) 60
IPM_Lg_50_pct (No. 1631) 60
IPM_Lg_75_pct (No. 1632) 60
IPMVdFFwdLqlqWe (No. 1639) 63
IPMVqFFwdCemf (No. 1637) 63
IPMVqFFwdLdIdWe (No. 1638) 63
Iq Lo FreqCur Kp (No. 432) 97
IR Voltage Drop (No.73) 57
Ixo Voltage Drop (No. 74) 57

J
Jerk Gain (No.433) 97
Jog Acc Dec Time (No. 539) 109
Jog Owner (No. 921) 149
Jog Speed n (No. 556, 557) 110
Jumper J4 Analog Input Mode 75
Jumper Out Fault 317

L1 Phase Curr (No. 20) 218
L2 Phase Curr (No. 21) 218
L3 Phase Curr (No. 22) 218
Language (No. 302) 80
Last Fault Code (No. 951) 161
Last StartSource (No. 931) 152
Last Stop Source (No. 932) 152
Last StrtInhibit (No. 934) 153
LdPsn Fdbk Div (No. 826) 142
LdPsn Fdbk Mult (No. 825) 142
LEDs 16, 303
Lim Speed Input (No. 52) 295
Limited Spd Ref (No. 593) 114
Limited Trq Ref (No. 690) 124
LimSpd Mon Delay (No. 53) 295
Load Estimate (No. 707) 126
Load Limits Parameters 96
Load Loss Action (No. 441) 98
Load Loss Level (No. 442) 98
Load Loss Time (No. 443) 98
Load Observer BW (No. 711) 127
Load Position Parameters 142
Load Psn FdbkSel (No. 136) 66
Lock Mon Enable (No. 59) 296
Lock Mon Input (No. 60) 296
Lock State (No. 5) 289
Logic Mask (No. 324) 84
Logic Mask Act (No. 886) 147
Logic Src Cfg (No. 78) 234

M

Main DC Bus Volt (No. 18) 224
Manual Cmd Mask (No. 326) 84
Manual Conventions 7
Manual Owner (No. 924) 150
Manual Preload (No. 331) 85
Manual Ref Mask (No. 327) 84
Max Acc Stop Typ (No.66) 297
Max Accel Enable (No.64) 297
Max Fwd Speed (No. 520) 108
Max Rev Speed (No. 521) 108
Max Rod Speed (No. 1175) 181
Max Rod Torque (No. 1176) 181
Max Spd Stop Typ (No. 63) 297
Max Speed Enable (No. 61) 297
Max Stop Time (No. 47) 294
Max Traverse (No.1125) 177
Maximum Freq (No. 37) 51
Maximum Voltage (No. 36) 51
MchBrngElpsdLife (No. 512) 107
MchBrngEventActn (No. 515) 107
MchBrngEventLvl (No.514) 107
MchBrngRemainLif (No. 513) 107

MchBrngResetLog (No. 516) 107
MchBrngTotalLife (No.511) 107
MchLube EventLvl (No. 518) 107
MchLubeElpsdHrs (No. 517) 107
MchLubeEventActn (No. 519) 107
Metering Parameters 48
MicroPsnScalePct (No. 1112) 176
Min Adj Voltage (No. 1152) 179
Min Fwd Speed (No. 522) 108
Min Rev Speed (No. 523) 108
Min Rod Speed (No. 1177) 181
Minor FIt Cfg (No. 950) 161
Module Err Reset (No. 2) 272
Module Parameters 42
Module Sts
No. 1 - Universal Feedback Module 271
No. 21 - Dual Incremental Encoder 270
Monitor Parameters 48
MOP Control
Block Diagram (753) 383
Block Diagram (755) 427
MOP High Limit (No. 561) 111
MOP Init Select (No. 566) 111
MOP Init Stpt (No. 567) 111
MOP Low Limit (No. 562) 111
MOP Rate (No. 560) 111
MOP Reference (No. 558) 110
Motor Control Parameters 50, 51, 52
Motor Ctrl Mode (No. 35) 51
Motor Data Parameters 50
Motor NP Amps (No. 26) 50
Motor NP Hertz (No. 27) 50
Motor NP Power (No. 30) 50
Motor NP RPM (No. 28) 50
Motor NP Volts (No. 25) 50
Motor OL Actn (No. 410) 95
Motor Overload Parameters 95, 96
Motor Poles (No. 31) 50
Motor Power Lmt (No.427) 96
Motor Sheave (No. 1178) 181
Motor TCP Parameters 75
Msg Flt Action (No. 57) 233
Mtr NP Pwr Units (No. 29) 50
Mtr OL Alarm LvI (No. 412) 95
Mtr OL at Pwr Up (No. 411) 95
Mtr OL Counts (No. 418) 96
Mtr OL Factor (No. 413) 95
Mtr OL Hertz (No. 414) 95
Mtr OL Reset Lvi (No. 415) 95
Mtr OL Trip Time (No. 419) 96
Mtr Options Cfg (No. 40) 52
Mtr Vel Fdbk (No. 3) 48
MtrBrng ResetLog (No. 507) 106
MtrBrngElpsdLife (No. 503) 106

MtrBrngEventActn (No. 506) 106
MtrBrngEventLvl (No. 505) 106
MtrBrngRemainLif (No. 504) 106
MtrBrngTotalLife (No. 502) 106
MtrLubeElpsdHrs (No. 508) 106
MtrLubeEventActn (No.510) 106
MtrLubeEventLvl (No. 509) 106
MtrOL Reset Time (No. 416) 95

N

N-1 See Manual Fault 319
Neg Torque Limit (No. 671) 123
Net Addr Src (No. 37) 230
Net Rate Act (No. 51) 232
Net Rate Cfg (No. 50) 231
New Password (No. 13) 289
Notch Fltr Atten (No. 688) 124
Notch Fltr Freq (No. 687) 124

0

Oil Well 181
OilWell Pump Cfg (No. 1179) 181
Online Status
No. 10 - Converter 217, 223
No. 10 - Inverter 212
Open Loop Fdbk (No. 137) 66
Operating Mode (No. 6) 289
Option Modules
Parameter Organization 42
Out PhaseLossLvl (No.445) 98
OutPhaseLossActn (No. 444) 98
Output Current (No. 7) 48
Output Frequency (No. 1) 48
Output Power (No. 9) 48
Output Powr Fctr (No. 10) 48
Output Voltage (No. 8) 48
OverSpd Response (No. 24) 291
Overspeed Limit (No. 524) 108
Owners Parameters 149, 151

P

P Jump 178
P Jump (No. 1126) 178
Parameter
Not Displaying 308
Parameter Access Level
Explanation 21
Parameters
Advanced View 24
Basic View 22
Descriptions and Programming 19, 47, 211, 229
DeviceLogix 481
Drive Applications File 171

Drive Communication File 145
Drive Configuration File 80
Drive Diagnostics File 152
Drive Feedback \& I/0 File 64
Drive Monitor File 48
Drive Motor Control File 50 Drive Position Control File 130 Drive Protection File 95
Drive Speed Control File 108
Dual Incremental Encoder 266
EtherNet/IP 230
Expert View 30
How Organized 22
I/O Module 242
I/0 Modules 42, 43
Linear List 48
On Option Modules 42
Safe Speed Monitor Module 289
Setting to Factory Defaults 307
Single Incremental Encoder 263
Universal Feedback Module 271
Password (No.1) 289
Password Command (No. 17) 289
PCAM Aux EndPnt (No. 1439) 198
PCAM Aux Pt X n (No. 1441...1469) 198
PCAM Aux Pt Y n (No. 1442...1470) 198
PCAM Aux Types (No. 1440) 198
PCAM Control (No. 1390) 195
PCAM Main EndPnt (No. 1405) 196
PCAM Main Pt Xn (No. 1407...1437) 197
PCAM Main Pt Y n (No. 1408...1438) 197
PCAM Main Types (No. 1406) 197
PCAM Mode (No. 1391) 195
PCAM Psn Ofst (No. 1394) 195
PCAM Psn Out (No. 1473) 199
PCAM Psn Select (No. 1392) 195
PCAM Psn Stpt (No. 1393) 195
PCAM PsnOfst Eps (No. 1395) 196
PCAM Scale X (No. 1397) 196
PCAM ScaleY Sel (No. 1399) 196
PCAM ScaleYSetPt (No. 1400) 196
PCAM Slope Begin (No. 1403) 196
PCAM Slope End (No. 1404) 196
PCAM Span X (No. 1396) 196
PCAM Span Y (No. 1398) 196
PCAM Status (No. 1471) 199
PCAM Vel Out (No. 1472) 199
PCAM VelScaleSel (No. 1401) 196
PCAM VelScaleSP (No. 1402) 196
PCP Pump Sheave (No. 1180) 181
Pct Cycle Torque (No. 1198) 184
Pct Drop Torque (No. 1200) 184
Pct Lift Torque (No. 1199) 184
Peak 1 Change (No. 1040) 169
Peak 2 Change (No. 1045) 170
Peak Detection Parameters 168
Peak1 Cfg (No. 1039) 169

Peak2 Cfg (No. 1044) 170
PeakDetect1 Out (No. 1041) 169
PeakDetect2 Out (No. 1046) 170
Peer Flt Action (No. 56) 233
Permanent Magnet Motors 501
Compatiblity 497
Parameters 58
Phase Delay Comp (No. 108) 62
Phase Lock Loop Parameters 139
Phase Loss Count (No.7) 265
PID Cfg (No. 1065) 171
PID Control (No. 1066) 171
PID Deadband (No. 1083) 173
PID Deriv Time (No. 1088) 173
PID Error Meter (No. 1092) 173
PID FBLoss SpSel (No. 1075) 172
PID FBLoss TqSel (No. 1076) 172
PID Fdbk (No. 1077) 172
PID Fdbk AnlgHi (No. 1073) 172
PID Fdbk AnlgLo (No. 1074) 172
PID Fdbk Meter (No. 1091) 173
PID Fdbk Mult (No. 1078) 172
PID Fdbk Sel (No. 1072) 172
PID Int Time (No. 1087) 173
PID Lower Limit (No. 1082) 172
PID LP Filter BW (No. 1084) 173
PID Output Meter (No. 1093) 174
PID Output Mult (No. 1080) 172
PID Output Sel (No. 1079) 172
PID Preload (No. 1085) 173
PID Prop Gain (No. 1086) 173
PID Ref AnlgHi (No. 1068) 171
PID Ref AnlgLo (No. 1069) 171
PID Ref Meter (No. 1090) 173
PID Ref Mult (No. 1071) 171
PID Ref Sel (No. 1067) 171
PID Setpoint (No. 1070) 171
PID Status (No. 1089) 173
PID Upper Limit (No. 1081) 172
PkDtct Stpt DInt (No. 1036) 168
PkDtct Stpt Real (No. 1035) 168
PkDtct1 In Sel (No. 1037) 168
PkDtct1PresetSel (No. 1038) 168
PkDtct2 In Sel (No. 1042) 169
PkDtct2PresetSel (No. 1043) 169
PLL BW (No. 801) 140
PLL Control (No. 795) 139
PLL Enc Out (No. 809) 141
PLL Enc Out Adv (No. 810) 141
PLL EPR Input (No. 804) 140
PLL EPR Output (No. 811) 141
PLL Ext Spd Sel (No. 796) 139
PLL Ext Spd Stpt (No. 797) 140
PLL Ext SpdScale (No. 798) 140

PLL LPFilter BW (No. 802) 140
PLL Psn Out Fltr (No. 806) 141
PLL Psn Ref Sel (No. 799) 140
PLL Psn Stpt (No. 800) 140
PLL Rvis Input (No. 805) 140
PLL Rvls Output (No. 812) 141
PLL Speed Out (No. 807) 141
PLL Speed OutAdv (No. 808) 141
PLL Virt Enc RPM (No. 803) 140
PM AltEnc Offset (No.82) 59
PM CEMF Voltage (No. 86) 59
PM Cfg (No. 80) 58
PM Dir Test Cur (No. 93) 59
PM IR Voltage (No. 87) 59
PM IXd Voltage (No. 89) 59
PM IXq Voltage (No. 88) 59
PM IXqVoltage125 (No. 120) 60
PM OfstTst CRamp (No. 84) 59, 60
PM OfstTst Cur (No. 83) 59
PM OfstTst FRamp (No. 85) 49, 59, 63
PM PriEnc Offset (No. 81) 58
PM Vqs Reg Ki (No. 92) 59
PM Vqs Reg Kp (No. 91) 59
Pn 240VSplyVolts (No. 112, 212) 227
Pn Alarm Status1 (No. 107, 207) 226
Pn Board Status (No. 104, 204) 225
Pn CbFanElpsdLif (No. 138, 238) 227
Pn DC Bus Volts (No. 110, 210) 227
Pn Fault Status1 (No. 105, 205) 226
Pn Fault Status2 (No. 106, 206) 226
Pn GateBoardTemp (No. 122, 222) 227
Pn Main DC Volts (No. 111, 211) 227
Pn PredMainReset (No. 137, 237) 227
Pn Testpt Sel \boldsymbol{n} (No. 140, 142, 240, 242) 228
Pn Testpt Val n (No. 141, 143, 241, 243) 228
Point to Point Parameters 137
Port Mask Act (No. 885) 147
Port n Reference (No. 871...878) 146
Port Number (No. 33) 230
Port Verification 353
Pos Torque Limit (No. 670) 123
Position Control
Block Diagram (753) 371
Block Diagram (755) 407
Position Control (No. 721) 130
Position Control Parameters 130
Position Homing Parameters 133
Position Offset Parameters 142
Position Oriented Torque Boost 202
Block Diagram 416
Position Regulator Parameters 143
Position Watch Parameters 135
Power Cycling
IP Address Switches 17

Power Loss Actn (No. 449) 99
Power Loss Parameters 99, 100
PowerUp Delay (No. 346) 85
Prchrg Control (No. 321) 83
Prchrg Delay (No. 322) 83
Prchrg Err Cfg (No.323) 83
Precautions, General 8
Predictive Maintenace Parameters 102, 103, 104, 105
PredMaint Reset (No. 472) 102
PredMaint Rst En (No. 471) 102
PredMaint Sts (No. 469) 102
PredMaint Sts (No. 99) 250, 261
PredMaintAmbTemp (No. 470) 102
Preferences Parameters 80
PReg Neg Int Lmt (No. 841) 144
PReg Neg Spd Lmt (No. 845) 144
PReg Pos Int Lmt (No. 840) 144
PReg Pos Spd Lmt (No. 844) 144
Preset Speed n (No. 571...577) 111
Pri Vel Fdbk Sel (No. 125) 64
Pri Vel FdbkFItr (No. 126) 64
Pri Vel Feedback (No. 127) 64
Process Control
Block Diagram (753) 381
Block Diagram (755) 425
Process PID Parameters 171
Prof DI Invert (No. 1217) 187
Profile Command (No. 1213) 186
Profile Status (No. 1210) 185, 200, 201, 202, 205, 206, 207, 208, 209, 210
Profiling Parameters 185
ProfVel Override (No. 1216) 186
Protection File Parameters 95
Psn Actual (No. 836) 143
Psn Command (No. 723) 131
Psn Direct Ref (No. 767) 136
Psn Direct Stpt (No. 766) 136
Psn EGR Div (No. 817) 141
Psn EGR Mult (No. 816) 141
Psn Error (No. 835) 143
Psn Fdbk (No. 847) 145
Psn Fdbk Sel (No. 135) 65
Psn Gear Ratio (No. 848) 145
Psn Load Actual (No. 837) 144
Psn Offset 1 (No. 821) 142
Psn Offset 1 Sel (No. 820) 142
Psn Offset 2 (No. 823) 142
Psn Offset 2 Sel (No. 822) 142
Psn Offset Vel (No. 824) 142
Psn Out Fltr BW (No. 834) 143
Psn Out Fltr Sel (No. 832) 143
Psn Out FltrGain (No. 833) 143
Psn Ref EGR Out (No. 815) 141
Psn Ref Select (No. 765) 136

Psn Reg Droop (No. 846) 145
Psn Reg Ki (No. 838) 144
Psn Reg Kp (No. 839) 144
Psn Reg Status (No. 724) 131
Psn Selected Ref (No. 722) 131
PsnNtchFItrDepth (No. 831) 143
PsnNtchFltrFreq (No. 830) 143
PsnReg IntgrIOut (No. 842) 144
PsnReg Spd Out (No. 843) 144
PsnTrqBst Ctrl (No. 1515) 201
PsnTrqBst Ps Xn (No. 1520...1524) 202
PsnTrqBst RefSel (No. 1517) 202
PSnTrqBst Sts (No. 1516) 202
PsnTrqBst Trq Yn (No. 1525...1527) 202
PsnTrqBst TrqOut (No. 1528) 202
PsnTrqBst UNWCnt (No. 1519) 202
PsnTrqBstPsnOfst (No. 1518) 202
PsnWatchn Dtctln (No. 746, 749) 135
PsnWatchn Select (No. 745, 748) 135
PsnWatchn Stpt (No. 747, 750) 135
PTC Cfg (No. 250) 75
PTC Cfg (No. 40) 256
PTC Raw Value (No. 42) 256
PTC Status (No. 251) 75
PTC Sts (No. 41) 246, 256
PTP Accel Time (No. 781) 138
PTP Command (No. 784) 138
PTP Control (No. 770) 137
PTP Decel Time (No. 782) 138
PTP EGR Div (No. 790) 139
PTP EGR Mult (No. 789) 139
PTP Feedback (No. 777) 138
PTP Fwd Vel Lmt (No. 785) 138
PTP Index Preset (No. 779) 138
PTP Mode (No. 771) 137
PTP PsnRefStatus (No. 720) 130
PTP Ref Scale (No. 778) 138
PTP Ref Sel (No. 775) 138
PTP Reference (No. 776) 138
PTP Rev Vel Lmt (No. 786) 139
PTP S Curve (No. 787) 139
PTP Setpoint (No. 780) 138
PTP Speed FwdRef (No. 783) 138
PTP Vel Override (No. 788) 139
Pump Cycle Store (No. 1192) 183
Pump Jack Parameters 180
Pump Off Action (No. 1189) 182
Pump Off Config (No. 1187) 182
Pump Off Control (No. 1190) 182
Pump Off Count (No. 1203) 184
Pump Off Level (No. 1195) 183
Pump Off Parameters 182, 183
Pump Off Setup (No. 1188) 182
Pump Off Speed (No. 1196) 184

Pump Off Status (No. 1191) 183
Pump Off Time (No. 1197) 184
Pump OffSleepLvl (No. 1207) 184
PumpOff SleepCnt (No. 1204) 184
PWM Frequency (No. 38) 51
Pwr Loss Mode n (No. 450, 453) 99
Pwr Loss n Level (No. 451, 454) 99
Pwr Loss n Time (No. 452, 455) 99
PwrLoss RT ACRKi (No. 459) 99
PwrLoss RT ACRKp (No. 458) 99
PwrLoss RT BusKd (No. 457) 99
PwrLoss RT BusKp (No. 456) 99

Q

Quad Loss Count (No. 8) 265

R

Ramped Spd Ref (No. 594) 114
Rated Amps (No. 21) 49
Rated kW (No. 22) 49
Rated Volts (No. 20) 49
Recfg Acknowledg (No. 20) 213
Ref Select Owner (No. 925) 150
Ref Src Cfg (No. 79) 234
Regen Power Lmt (No. 426) 96
Registration Parameters 285
Regulator Parameters 61
Relay Output Parameters 79
Rerate See Manual Fault 319
Reset Defaults (No. 7) 289
Reset Meters (No. 336) 85
Reset Parameter Defaults 307
Reset Type (No. 22) 291
Rgsn Arm (No. 90) 283
Rgsn HmIn Filter (No. 93) 284
Rgsn In 0 Filter (No. 91) 284
Rgsn In 1 Filter (No. 92) 284
Rgsn Latchn Cfg (No. 100...127) 285
Rgsn Latchn Psn (No. 101...128) 288
Rgsn Latchn Time (No. 102...129) 288
Rgsn Sts (No. 94) 285
RO PredMaint Sts (No. 285) 79
ROO ElapsedLife
No. 103 - Option Module 250, 261
No. 289 - Main Control Board 79
ROO Level
No. 12 - Option Module 243, 253
No. 232 - Main Control Board 73
ROO Level CmpSts
No. 13 - Option Module 243, 253
No. 233 - Main Control Board 74
ROO Level Sel
No. 11 - Option Module 243, 253

No. 231 - Main Control Board 73
R00 LifeEvntActn
No. 106 - Option Module 251, 261
No. 292 - Main Control Board 79
ROO LifeEvntLvI
No. 105 - Option Module 250, 261
No. 291 - Main Control Board 79
ROO Load Amps
No. 101 - Option Module 250, 261
No. 287 - Main Control Board 79
ROO Load Type
No. 100 - Option Module 250, 261
No. 286 - Main Control Board 79
R00 Off Time
No. 15 - Option Module 244, 254
No. 235 - Main Control Board 74
R00 On Time
No. 14 - Option Module 244, 254
No. 234 - Main Control Board 74
ROO RemainLife
No. 104 - Option Module 250, 261
No. 290 - Main Control Board 79
ROO Sel
No. 10 - Option Module 243, 253
No. 230 - Main Control Board 73
R00 TotalLife
No. 102 - Option Module 250, 261
No. 288 - Main Control Board 79
R01 ElapsedLife (No. 113) 251, 262
R01 Level (No. 22) 244, 254
R01 Level CmpSts (No. 23) 244, 254
R01 Level Sel (No. 21) 244, 254
R01 LifeEvntActn (No. 116) 251, 262
R01 LifeEvntLvl (No. 115) 251, 262
R01 Load Amps (No. 111) 251, 262
R01 Load Type (No. 110) 251, 262
R01 Off Time (No. 25) 245, 255
R01 On Time (No. 24) 244, 254
R01 RemainLife (No. 114) 251, 262
R01 Sel (No. 20) 244, 254
R01 TotalLife (No. 112) 251, 262
Rod Speed (No. 1165) 180
Rod Speed Cmd (No. 1167) 180
Rod Torque (No. 1166) 180
Roll Position Indicator 200
Block Diagram 414, 415
Roll Psn Config (No. 1500) 200
Roll Psn Offset (No. 1505) 200
Roll Psn Preset (No. 1504) 200
Roll Psn Status (No. 1501) 200
RP EPR Input (No. 1506) 200
RP Psn Fdbk Sel (No. 1503) 200
RP Psn Fdbk Stpt (No. 1502) 200
RP Psn Output (No. 1511) 201
RP Rvis Input (No. 1507) 201
RP Rvls Output (No. 1508) 201
RP Unit Out (No. 1512) 201

RP Unit Scale (No. 1510) 201
RP Unwind (No. 1509) 201
Run Boost (No.61) 56

S

S Curve Accel (No. 540) 109
S Curve Decel (No. 541) 109
Safe Accel Limit (No. 65) 297
Safe Max Speed (No. 62) 297
Safe Speed Limit (No. 55) 295
Safe Speed Monitor
Module Status 270
Parameters 289
Safe Stop Input (No. 44) 294
Safe Stop Type (No. 45) 294
Safety Mode (No. 21) 291
Safety Port Sts (No. 946) 160
Save MOP Ref (No. 559) 111
ScaleBIk Int 00 (No. 1902) 151
ScaleBIk Int 01 (No. 1906) 151
ScaleBIk Int 02 (No. 1910) 151
ScaleBIk Int 03 (No. 1914) 151
ScaleBIk Int 04 (No. 1918) 151
ScaleBIk Int 05 (No. 1922) 151
ScaleBIk Int 06 (No. 1926) 151
ScaleBIk Int 07 (No. 1930) 151
ScaleBlk Real 00 (No. 1903) 151
ScaleBlk Real 01 (No. 1907) 151
ScaleBIk Real 02 (No. 1911) 151
ScaleBlk Real 03 (No. 1915) 151
ScaleBlk Real 04 (No. 1919) 151
ScaleBlk Real 05 (No. 1923) 151
ScaleBlk Real 06 (No. 1927) 151
ScaleBlk Real 07 (No. 1931) 151
ScaleBIk Scal 00 (No. 1901) 151
ScaleBIk Scal 01 (No. 1905) 151
ScaleBIk Scal 02 (No. 1909) 151
ScaleBIk Scal 03 (No. 1913) 151
ScaleBIk Scal 04 (No. 1917) 151
ScaleBIk Scal 05 (No. 1921) 151
ScaleBlk Scal 06 (No. 1925) 151
ScaleBIk Scal 07 (No. 1929) 151
ScaleBlk Sel 00 (No. 1900) 151
ScaleBIk Sel 01 (No. 1904) 151
ScaleBIk Sel 02 (No. 1908) 151
ScaleBlk Sel 03 (No. 1912) 151
ScaleBIk Sel 04 (No. 1916) 151
ScaleBlk Sel 05 (No. 1920) 151
ScaleBIk Sel 06 (No. 1924) 151
ScaleBIk Sel 07 (No. 1928) 151
SCR Temp (No. 24) 218
Security Code (No. 18) 289
Security Parameters 147

Selected Spd Ref (No. 592) 114
Selected Trq Ref (No. 685) 124
Servo Lock Gain (No. 642) 118
Servo Motors 497, 501
Set Top ofStroke (No. 1193) 183
SFAdapt CnvrgLmt (No. 116) 63
SFAdapt CnvrgLvl (No. 115) 62
SFAdapt SlewLmt (No. 113) 62
SFAdapt SlewRate (No. 114) 62
Shear Pin Cfg (No. 434) 97
Shear Pin n Actn (No. 435, 438) 97
Shear Pin n Time (No. 437, 440) 97
Shear Pinn Level (No. 436, 439) 97
Signature ID (No. 10) 289
Simulator Fdbk (No. 138) 66
Single Incremental Encoder
Faults and Alarms 344
Parameters 263
Single-Phase Output Configuration 178
Skip Speed Band (No. 529) 109
Skip Speed n (No. 526...528) 109
SLAT Dwell Time (No. 315) 83
SLAT Err Stpt (No. 314) 83
Sleep Level (No. 352) 88
Sleep Time (No. 353) 88
Sleep Wake 87
Sleep Wake Mode (No. 350) 87
SleepWake RefSel (No. 351) 88
Slip Adapt Iqs (No. 112) 62
Slip Comp BW (No. 622) 116
Slip Compensation Parameters 116
Slip Reg Enable (No. 100) 61
Slip Reg Ki (No. 101) 61
Slip Reg Kp (No. 102) 61
Slip RPM at FLA (No. 621) 116
SLS Out Mode (No. 73) 291
SO Accel Time (No. 1591) 206
SO Cnts per Rvis (No. 1587) 206
SO Config (No. 1580) 205
SO Decel Time (No. 1592) 207
SO EPR Input (No. 1584) 206
SO Fwd Vel Lmt (No. 1593) 207
SO Offset (No. 1583) 206
SO Position Out (No. 1589) 206
SO Rev Vel Lmt (No. 1594) 207
SO Rvis Input (No. 1585) 206
SO Rvis Output (No. 1586) 206
SO Setpoint (No. 1582) 206
SO Status (No. 1581) 206
SO Unit Out (No. 1590) 206
SO Unit Scale (No. 1588) 206
Spd Err FItr BW (No. 644) 119
Spd Loop Damping (No. 653) 120
Spd Options Ctrl (No. 635) 117

Spd Ref Filter (No. 588) 112
Spd Ref Fltr BW (No. 589) 112
Spd Ref FltrGain (No. 590) 112
Spd Ref n AnlgHi (No. 547, 552) 110
Spd Ref n AnlgLo (No. 548, 553) 110
Spd Ref n Mult (No. 549, 554) 110
Spd Ref n Sel $($ No. 545, 550) 110
Spd Ref n Stpt (No. 546, 551) 110
Spd Ref Scale (No. 555) 110
Spd Ref Sel Sts (No. 591) 113
Spd Reg Int Out (No. 654) 121
Spd Reg Neg Lmt (No. 656) 121
Spd Reg Pos Lmt (No. 655) 121
Spd Trim Source (No. 617) 115
SpdBand Intgrtr (No. 1106) 175
SpdReg AntiBckup (No. 643) 118
SpdTrimPrcRefSrc (No. 616) 115
SpdTrqPsn Mode n (No. 309...312) 82
Speed and Position Feedback
Block Diagram (753) 363
Block Diagram (755) 399
Speed Comp Gain (No. 666) 122
Speed Comp Out (No. 667) 122
Speed Comp Sel (No. 665) 122
Speed Compensation Parameters 122
Speed Control
Block Diagram (753) 364
Block Diagram (755) 400
Speed Control Parameters 108
Speed Dev Band (No. 1105) 175
Speed Error (No. 641) 118
Speed Hysteresis (No. 56) 295
Speed Limits Parameters 108, 109
Speed Rate Ref (No. 596) 114
Speed Ref Source (No. 930) 152
Speed Reference Parameters 110
Speed References 68
Speed Reg BW (No. 636) 117
Speed Reg Ki (No. 647) 119
Speed Reg Kp (No. 645) 119
Speed Reg Max Kp (No. 646) 119
Speed Regulation
Setting Gains for Primary and Alternate Feedback Sources 117
Speed Regulator Parameters 117
Speed Torque Position 82
Speed Trim Parameters 114
Speed Units (No. 300) 80
Spindle Orientation Configuration 205
Spindle Orientation Parameters 205, 206
SReg FB FItr BW (No.639) 118
SReg FB Fltr Sel (No. 637) 118
SReg FB FItrGain (No. 638) 118
SReg OutFItr BW (No. 659) 121
SReg OutFItr Sel (No. 657) 121

SReg OutFItrGain (No. 658) 121
SReg Output (No. 660) 121
SReg Trq Preset (No. 652) 120
SS Out Mode (No. 72) 291
Stab Angle Gain (No.52) 53
Stab Volt Gain (No.51) 53
Stability Filter (No. 50) 53
Standstill Pos (No. 49) 294
Standstill Speed (No. 48) 294
Start Acc Boost (No.60) 56
Start At PowerUp (No. 345) 85
Start Features Parameters 85
Start Inhibits (No. 933) 153
Start Owner (No. 920) 149
Start Up
Check List 13
Status Indicators 16, 303
Communication Adapters 16
Status Parameters 152
Statusn at Fault (No. 954, 955) 162
Step n Accel (No. 1232...1382) 189
Step n Action (No. 1238...1388) 193
Step n Batch (No. 1236...1386) 192
Step n Decel (No. 1233...1383) 190
Step n Dig In (No. 1239...1389) 194
Step n Dwell (No. 1235...1385) 192
Step n Next (No. 1237...1387) 193
Step n Type (No. 1230...1380) 188
Step n Value (No. 1234. ..1384) 191
Step n Velocity (No. 1231...1381) 189
Stop Decel Tol (No. 51) 294
Stop Dwell Time (No. 392) 93
Stop Mode $\boldsymbol{n}($ No. 370, 371) 90
Stop Mon Delay (No. 46) 294
Stop Owner (No. 919) 149
Stroke Per Min (No. 1202) 184
Stroke Pos Count (No. 1201) 184
Subnet Cfg n (No. 42...45) 231
Support, Product 357
SVC Boost Filter (No. 64) 56
Sync Time (No. 1122) 177
Sys Rated Amps
No. 1 - Converter 217, 223
No. 1 - Inverter 212
Sys Rated Volts
No. 2 - Converter 217, 223
No. 2 - Inverter 212

T

Technical Support
Contacting 357
Testpoint Fval \boldsymbol{n} (No. 971...983) 167
Testpoint Lval n (No. 972...984) 167
Testpoint Sel n

No. 30, 32 - Converter 219, 224
No. 30, 32 - Inverter 213
No. 970 ... 982 - Main Control Board 167
Testpoint Val n
No. 31, 33 - Converter 219, 224
No. 31, 33 - Inverter 213
Testpoints Parameters 167
To Peer Enable (No. 91) 236
To Peer Period (No. 89) 236
To Peer Skip (No. 90) 236
TOO Level (No. 22) 244, 254
TOO Level (No. 242) 74
TOO Level CmpSts (No. 23) 244, 254
TOO Level CmpSts (No. 243) 74
TOO Level Sel (No. 21) 244, 254
TOO Level Sel (No. 241) 74
TOO Off Time (No. 245) 75
TOO Off Time (No. 25) 245, 255
TOO On Time (No. 24) 244, 254
TOO On Time (No. 244) 75
TOO Sel (No. 20) 244, 254
TOO Sel (No. 240) 74
T01 Level (No. 32) 245, 255
T01 Level CmpSts (No. 33) 245, 255
T01 Level Sel (No. 31) 245, 255
T01 Off Time (No. 35) 245, 255
T01 On Time (No. 34) 245, 255
T01 Sel (No. 30) 245, 255
TorqAlarm Action (No. 1168) 180
TorqAlarm Config (No. 1169) 180
TorqAlarm Dwell (No. 1170) 180
TorqAlarm Level (No. 1171) 180
TorqAlarm TOActn (No. 1173) 180
TorqAlm Timeout (No. 1172) 180
Torque Boost Parameters 201
Torque Control
Block Diagram (753) 375, 376
Block Diagram (755) 417, 418
Torque Cur Fdbk (No.5) 48
Torque Limits Parameters 123
Torque Prove 507
Torque Prove Parameters 174
Torque Reference Parameters 123
Torque Setpoint (No. 1194) 183
Torque Step (No. 686) 124
Total Gear Ratio (No. 1174) 181
Total Inertia (No. 76) 57
Traverse
Fiber Control 177
Increment and Decrement 177
Traverse Dec (No. 1124) 177
Traverse Inc (No. 1123) 177
Trim Ref n Sel (No. 600, 604) 114
Trim Ref n Stpt $(N o .601,605) 114$
Trim Refn AnlgHi (No.602, 606) 115

Trim Refn AnlgLo (No. 603, 607) 115
TrmPct Refn AnHi (No. 610, 614) 115
TrmPct Refn AnLo (No. 611, 615) 115
TrmPct Refn Sel (No. 608, 612) 115
TrmPct Refn Stpt (No. 609, 613) 115
Troubleshooting 301
Common Symptoms 353
Crane Setup Encoderless 458
Crane Setup with Encoder 450
Trq Adapt En (No. 107) 62
Trq Adapt Speed (No. 106) 62
Trq Comp Mode (No. 109) 62
Trq Comp Mtring (No.110) 62
Trq Comp Regen (No. 111) 62
Trq Lmt SlewRate (No. 1104) 175
Trq Prove Cfg (No. 1100) 174
Trq Prove Setup (No. 1101) 174
Trq Prove Status (No. 1103) 175
Trq Ref n AnlgHi (No. 677, 682) 123
Trq Ref n AnlgLo (No. 678, 683) 123
Trq Ref n Mult ($\mathbf{(N o . 6 7 9 , 6 8 4)} 123$
Trq Ref n Sel (No. 675, 680) 123
Trq Ref n Stpt (No. 676, 681) 123
Type 2 Alarms (No. 961) 165

U

UnderVItg Action (No.460) 100
UnderVItg Level (No. 461) 100
Units Traveled (No. 1212) 185
Universal Feedback Module
Parameters 271
User Home Psn (No. 738) 134
UserData Int 00... 31 (No. 1700...1731) 151
UserData Int 00... 31 (No. 1800...31) 151

V

VB Accel Rate (No. 1541) 204
VB Config (No. 1535) 203
VB Cur Thresh (No. 1550) 205
VB Current Hyst (No. 1549) 205
VB Current Rate (No. 1548) 205
VB Decel Rate (No. 1542) 204
VB Filt Flux Cur (No. 1547) 204
VB Flux Lag Freq (No. 1546) 204
VB Flux Thresh (No. 1545) 204
VB Frequency (No. 1543) 204
VB Maximum (No. 1540) 204
VB Min Freq (No. 1544) 204
VB Minimum (No. 1539) 204
VB Rate Lag Freq (No. 1551) 205
VB Status (No. 1536) 203
VB Time (No. 1538) 204
VB Voltage (No. 1537) 203

Index

VCL Cur Reg BW (No. 95) 61
VCL Cur Reg Ki (No. 97) 61
VCL Cur Reg Kp (No. 96) 61
Vector Regulation Parameters 61
Velocity Feedback 65
VEncdls FReg Ki (No. 99) 61
VEncdls FReg Kp (No. 98) 61
Vendor Password (No. 19) 289
VHz Curve (No. 65) 56
VHzSV Spd Reg Ki (No. 664) 121
VHzSV Spd Reg Kp (No.663) 121
VHzSV SpdTrimReg (No. 623) 116
Viewing Parameters 308
Virtual Enc EPR (No. 141) 66
Virtual Enc Psn (No. 142) 66
Virtual EncDelay (No. 140) 66
Voltage Class (No. 305) 81

Voltage Tolerance 439
Volts per Hertz Parameters 56

W

Wake Level (No. 354) 88
Wake Time (No. 355) 88
Web Enable (No. 52) 232
Web Features (No.53) 232
Write Mask Act (No. 887) 147
Write Mask Cfg (No.888) 147
Z
Zero Position (No. 725) 131
Zero Speed Limit (No. 525) 108
ZeroSpdFloatTime (No. 1113) 176

Rockwell Automation Support

Use the following resources to access support information.

Technical Support Center	Knowledgebase Articles, How-to Videos, FAQs, Chat, User Forums, and Product Notification Updates.	https://rockwellautomation.custhelp.com/
Local Technical Support Phone Numbers	Locate the phone number for your country.	http://www.rockwellautomation.com/global/support/get-support-now.page
Direct Dial Codes	Find the Direct Dial Code for your product. Use the code to route your call directly to a technical support engineer.	http://www.rockwellautomation.com/global/support/direct-dial.page
Literature Library	Installation Instructions, Manuals, Brochures, and Technical Data.	http://www.rockwellautomation.com/global/literature-library//overview.page
Product Compatibility and Download Center (PCDC)	Get help determining how products interact, check features and capabilities, and find associated firmware.	http://www.rockwellautomation.com/global/support/pcdc.page

Documentation Feedback

Your comments will help us serve your documentation needs better. If you have any suggestions on how to improve this document, complete the How Are We Doing? form at http://literature.rockwellautomation.com/idc/groups/literature/documents/du/ra-du002_en-e.pdf.

www.rockwellautomation.com

Power, Control and Information Solutions Headquarters

Americas: Rockwell Automation, 1201 South Second Street, Milwaukee, WI 53204-2496 USA, Tel: (1) 414.382.2000, Fax: (1) 414.382 .4444
Europe/Middle East/Africa: Rockwell Automation NV, Pegasus Park, De Kleetlaan 12a, 1831 Diegem, Belgium, Tel: (32) 2663 0600, Fax: (32) 26630640 Asia Pacific: Rockwell Automation, Level 14, Core F, Cyberport 3, 100 Cyberport Road, Hong Kong, Tel: (852) 2887 4788, Fax: (852) 25081846

[^0]: (1) $x x$ indicates the port number. See Fault and Alarm Display Codes on page 308 for an explanation.

[^1]: IMPORTANT Firmware v12 and higher requires RSLogix 5000 v 28 and higher to work with Integrated Motion on EtherNet/IP.

