TOSHIBA

## Leading Innovation >>>

## Q9 ASD Installation and Operation Manual

Document Number: 59445-003
Date: April, 2010

# Q9 ASD Installation and Operation Manual 

Document Number: 59445-003
Date: April, 2010


## Introduction

Congratulations on the purchase of the new Q9 True Torque Control ${ }^{2}$ Adjustable Speed Drive!
The Q9 True Torque Control ${ }^{2}$ Adjustable Speed Drive (ASD) is a solid-state AC drive that features True Torque Control ${ }^{2}$. Toshiba's Vector Control Algorithm enables the motor to develop high starting torque and provide compensation for motor slip, which results in smooth, quick starts and highly efficient operation. The Q9 ASD uses digitally-controlled pulse width modulation. The programmable functions may be accessed via the easy-to-use menu or via the Direct Access Numbers (see page 59). This feature, combined with Toshiba's high-performance software, delivers unparalleled motor control and reliability.

The Q9 ASD is a very powerful tool, yet surprisingly simple to operate. The user-friendly Electronic
Operator Interface (EOI) of the Q9 ASD has an easy-to-read LCD screen. The EOI provides easy access to the many monitoring and programming features of the Q9 ASD.

The motor control software is menu-driven, which allows for easy access to the motor control parameters and quick changes when required.

To maximize the abilities of your new Q9 ASD, a working familiarity with this manual will be required. This manual has been prepared for the ASD installer, user, and maintenance personnel. This manual may also be used as a reference guide or for training. With this in mind, use this manual to develop a system familiarity before attempting to install or operate the device.

## Important Notice

The instructions contained in this manual are not intended to cover all details or variations in equipment types, nor may it provide for every possible contingency concerning the installation, operation, or maintenance of this equipment. Should additional information be required contact your Toshiba Sales Representative.

The contents of this manual shall not become a part of or modify any prior or existing agreement, commitment, or relationship. The sales contract contains the entire obligation of Toshiba International Corporation. The warranty contained in the contract between the parties is the sole warranty of Toshiba International Corporation and any statements contained herein do not create new warranties or modify the existing warranty.

Any electrical or mechanical modifications to this equipment without prior written consent of Toshiba International Corporation may void all warranties and may void the UL listing or other safety certifications. Unauthorized modifications may also result in a safety hazard or equipment damage.

Misuse of this equipment could result in injury and equipment damage. In no event will Toshiba Corporation be responsible or liable for direct, indirect, special, or consequential damage or injury that may result from the misuse of this equipment.

## About This Manual

This manual was written by the Toshiba Technical Publications Group. This group is tasked with providing technical documentation for the Q9 Adjustable Speed Drive. Every effort has been made to provide accurate and concise information to you, our customer.

At Toshiba we're continuously searching for better ways to meet the constantly changing needs of our customers. E-mail your comments, questions, or concerns about this publication to Technical-Publications-Dept@tic.toshiba.com.

## Manual's Purpose and Scope

This manual provides information on how to safely install, operate, maintain, and dispose of your Q9 Adjustable Speed Drive. The information provided in this manual is applicable to the Q9 Adjustable Speed Drive only.

This manual provides information on the various features and functions of this powerful cost-saving device, including

- Installation,
- System operation,
- Configuration and menu options, and
- Mechanical and electrical specifications.

Included is a section on general safety instructions that describe the warning labels and symbols that are used throughout the manual. Read the manual completely before installing, operating, performing maintenance, or disposing of this equipment.

This manual and the accompanying drawings should be considered a permanent part of the equipment and should be readily available for reference and review. Dimensions shown in the manual are in metric and/or the English equivalent.

Because of our commitment to continuous improvement, Toshiba International Corporation reserves the right, without prior notice, to update information, make product changes, or to discontinue any product or service identified in this publication.

Toshiba International Corporation (TIC) shall not be liable for direct, indirect, special, or consequential damages resulting from the use of the information contained within this manual.

This manual is copyrighted. No part of this manual may be photocopied or reproduced in any form without the prior written consent of Toshiba International Corporation.
© Copyright 2010 Toshiba International Corporation.
TOSHIBA ${ }^{\circledR}$ is a registered trademark of Toshiba Corporation. All other product or trade references appearing in this manual are registered trademarks of their respective owners.

All rights reserved.
Printed in the U.S.A.

## Contacting Toshiba's Customer Support Center

Toshiba's Customer Support Center can be contacted to obtain help in resolving any Adjustable Speed Drive system problem that you may experience or to provide application information.

The Support Center is open from 8 a.m. to 5 p.m. (CST), Monday through Friday. The Center's toll free number is US (800) 231-1412/Fax (713) 937-9349 — Canada (800) 527-1204. For after-hours support follow the directions in the outgoing message when calling.

You may also contact Toshiba by writing to:
Toshiba International Corporation
13131 West Little York Road
Houston, Texas 77041-9990
Attn: ASD Product Manager.

For further information on Toshiba's products and services, please visit our web site at www.toshiba.com/ind/.

## TOSHIBA INTERNATIONAL CORPORATION Q9 Adjustable Speed Drive

Please complete the Warranty Card supplied with the ASD and return it to Toshiba by prepaid mail. This will activate the 12 month warranty from the date of installation; but, shall not exceed 18 months from the shipping date.

Complete the following information and retain for your records.
Model Number: $\qquad$

Serial Number: $\qquad$

Project Number (if applicable): $\qquad$
Date of Installation: $\qquad$

Inspected By: $\qquad$
Name of Application: $\qquad$

## Table of Contents

General Safety Information ..... 1
Safety Alert Symbol .....
Signal Words ..... 1
Special Symbols ..... 2
Equipment Warning Labels .....  .2
Qualified Personnel ..... 2
Equipment Inspection ..... 3
Handling and Storage ..... 3
Disposal ..... 3
Installation Precautions .....  4
Location and Ambient Requirements ..... 4
Mounting Requirements .....  4
Conductor Routing and Grounding ..... 5
Power Connections ..... 6
Protection ..... 6
System Integration Precautions .....  7
Personnel Protection ..... 7
System Setup Requirements ..... 8
Operational and Maintenance Precautions ..... 9
Motor Characteristics ..... 10
Motor Autotuning ..... 10
Pulse Width Modulation Operation ..... 10
Low Speed Operation ..... 10
Overload Protection Adjustment ..... 10
Operation Above 60 Hz ..... 10
Power Factor Correction ..... 11
Light Load Conditions ..... 11
Motor/Load Combinations ..... 11
Motor Braking ..... 11
Installation and Connections ..... 12
Installation Notes ..... 12
Mounting the ASD ..... 13
Connecting the ASD ..... 14
Lead Length Specifications ..... 18
I/O and Control ..... 19
Electronic Operator Interface ..... 26
EOI Operation ..... 26
EOI Remote Mounting ..... 26
EOI Features ..... 27
EOI Remote Mounting ..... 29
Command Mode and Frequency Mode Control ..... 32
Command Control (F003) ..... 32
Frequency Control (F004) ..... 33
System Configuration and Menu Options ..... 37
Root Menu Items ..... 37
System Operation ..... 57
Operation (Local) ..... 57
Default Setting Changes ..... 57
Direct Access Parameter Information ..... 59
Direct Access Parameters/Numbers ..... 59
Alarms, Trips, and Troubleshooting ..... 195
User Notification Codes ..... 196
Alarms and Trips ..... 197
Enclosure Dimensions ..... 204
Enclosure Dimensions ..... 205
Current/Voltage Specifications ..... 211
Cable/Terminal Specifications ..... 213
Short Circuit Protection Recommendations ..... 215

## General Safety Information

DO NOT attempt to install, operate, maintain, or dispose of this equipment until you have read and understood all of the product safety information and directions that are contained in this manual.

## Safety Alert Symbol

The Safety Alert Symbol is comprised of an equilateral triangle enclosing an exclamation mark. This indicates that a potential personal injury hazard exists.


## Signal Words

Listed below are the signal words that are used throughout this manual followed by their descriptions and associated symbols. When the words DANGER, WARNING, and CAUTION are used in this manual they will be followed by important safety information that must be carefully adhered to.

The word DANGER preceded by the safety alert symbol indicates that an imminently hazardous situation exists that, if not avoided, will result in serious injury to personnel or loss of life.

## . DANGER

The word WARNING preceded by the safety alert symbol indicates that a potentially hazardous situation exists that, if not avoided, could result in serious injury to personnel or loss of life.

## . WARNING

The word CAUTION preceded by the safety alert symbol indicates that a potentially hazardous situation exists that, if not avoided, may result in minor or moderate injury to personnel.

## !. CAUTION

The word CAUTION without the safety alert symbol indicates a potentially hazardous situation exists that, if not avoided, may result in equipment or property damage.

## CAUTION

## Special Symbols

To identify special hazards, other symbols may appear in conjunction with the DANGER, WARNING, and CAUTION signal words. These symbols indicate areas that require special and/or strict adherence to the procedures to prevent serious injury to personnel or loss of life.

## Electrical Hazard Symbol

A symbol that is comprised of an equilateral triangle enclosing a lightning bolt indicates a hazard of injury from electrical shock or burn.

## Explosion Hazard Symbol

A symbol that is comprised of an equilateral triangle enclosing
 an explosion indicates a hazard of injury from exploding parts.

## Equipment Warning Labels

DO NOT attempt to install, operate, perform maintenance, or dispose of this equipment until you have read and understood all of the user directions that are contained in this manual.

Warning labels that are attached to the equipment will include an equilateral triangle enclosing an exclamation mark. DO NOT remove or cover any of these labels. If the labels are damaged or if additional labels are required, contact your Toshiba Sales Representative.
Labels attached to the equipment are there to provide useful information or to indicate an imminently hazardous situation that may result in serious injury, severe property and equipment damage, or loss of life if safe procedures or methods are not followed as outlined in this manual.

## Qualified Personnel

Installation, operation, and maintenance shall be performed by Qualified Personnel Only. A Qualified Person is one that has the skills and knowledge relating to the construction, installation, operation, and maintenance of the electrical equipment and has received safety training on the hazards involved (Refer to the latest edition of NFPA 70E for additional safety requirements).

## Qualified Personnel shall:

- Have carefully read the entire operation manual.
- Be familiar with the construction and function of the ASD, the equipment being driven, and the hazards involved.
- Be able to recognize and properly address hazards associated with the application of motor-driven equipment.
- Be trained and authorized to safely energize, de-energize, ground, lockout/tagout circuits and equipment, and clear faults in accordance with established safety practices.
- Be trained in the proper care and use of protective equipment such as safety shoes, rubber gloves, hard hats, safety glasses, face shields, flash clothing, etc., in accordance with established safety practices.

For further information on workplace safety visit www.osha.gov.

## Equipment Inspection

- Upon receipt of the equipment inspect the packaging and equipment for shipping damage.
- Carefully unpack the equipment and check for damaged parts, missing parts, or concealed damage that may have occurred during shipping. If any discrepancies are discovered, it should be noted with the carrier prior to accepting the shipment, if possible. File a claim with the carrier if necessary and immediately notify your Toshiba Sales Representative.
- DO NOT install the ASD if it is damaged or if it is missing any component(s).
- Ensure that the rated capacity and the model number specified on the nameplate conform to the order specifications.
- Modification of this equipment is dangerous and is to be performed by factory trained personnel. When modifications are required contact your Toshiba Sales Representative.
- Inspections may be required after moving equipment.
- Contact your Toshiba Sales Representative to report discrepancies or for assistance if required.


## Handling and Storage

- Use proper lifting techniques when moving the ASD; including properly sizing up the load, getting assistance, and using a forklift if required.
- Store in a well-ventilated location and preferably in the original carton if the equipment will not be used upon receipt.
- Store in a cool, clean, and dry location. Avoid storage locations with extreme temperatures, rapid temperature changes, high humidity, moisture, dust, corrosive gases, or metal particles.
- The storage temperature range of the Q9 ASD is $-13^{\circ}$ to $149^{\circ} \mathrm{F}\left(-25^{\circ}\right.$ to $\left.65^{\circ} \mathrm{C}\right)$.
- DO NOT store the unit in places that are exposed to outside weather conditions (i.e., wind, rain, snow, etc.).
- Store in an upright position.


## Disposal

Never dispose of electrical components via incineration. Contact your state environmental agency for details on disposal of electrical components and packaging in your area.

## Installation Precautions Location and Ambient Requirements

- The Toshiba ASD is intended for permanent installations only.
- Installation should conform to the 2008 National Electrical Code - Article 110 (NEC) (Requirements For Electrical Installations), all regulations of the Occupational Safety and Health Administration, and any other applicable national, regional, or industry codes and standards.
- Select a mounting location that is easily accessible, has adequate personnel working space, and adequate illumination for adjustment, inspection, and maintenance of the equipment (Refer to 2008 NEC Article 110-13).
- DO NOT mount the ASD in a location that would produce catastrophic results if it were to fall from its mounting location (Equipment damage or injury to personnel).
- DO NOT mount the ASD in a location that would allow it to be exposed to flammable chemicals or gases, water, solvents, or other fluids.
- Avoid installation in areas where vibration, heat, humidity, dust, fibers, metal particles, explosive/ corrosive mists or gases, or sources of electrical noise are present.
- The installation location shall not be exposed to direct sunlight.
- Allow proper clearance spaces for installation. DO NOT obstruct the ventilation openings. Refer to the section titled Installation and Connections on pg. 12 for further information on ventilation requirements.
- The ambient operating temperature range of the Q9 ASD is $14^{\circ}$ to $104^{\circ} \mathrm{F}\left(-10^{\circ}\right.$ to $\left.40^{\circ} \mathrm{C}\right)$.


## Mounting Requirements

- Only Qualified Personnel should install this equipment.
- Install the unit in a secure and upright position in a well-ventilated area.
- As a minimum, the installation of the equipment should conform to the $\mathbf{2 0 0 8}$ National Electrical Code - Article 110 (NEC), OSHA, as well as any other applicable national, regional, or industry codes and standards.
- Installation practices should conform to the latest revision of NFPA 70E Electrical Safety Requirements for Employee Workplaces.
- It is the responsibility of the ASD installer/maintenance personnel to ensure that the unit is installed into an enclosure that will protect personnel against electric shock.


## Conductor Routing and Grounding . WARNING 令

- Use separate metal conduits for routing the input power, output power, and control circuits.
- A separate ground cable should be run inside the conduit with the input power, output power, and control circuits.
- DO NOT connect $\mathbf{C C}$ to earth ground.
- Use IICC terminal as the return for the V/I (VI/II) input.
- Always ground the ASD to prevent electrical shock and to help reduce electrical noise.
- It is the responsibility of the ASD installer/maintenance personnel to provide proper grounding and branch circuit protection in accordance with the $\mathbf{2 0 0 8}$ NEC and any applicable local codes.
- The Metal Of Conduit Is Not An Acceptable Ground——


## Grounding Capacitor Switch

The ASD is equipped with leak reduction capacitors which are used to reduce the EMI leakage via the 3-phase power-input circuit and for compliance with the Electromagnetic Compatibility Directive (EMC).

The effective value of the capacitor may be increased, reduced, or removed entirely via the Selector Switch, Switching Bar, or the Switching Screw - the type used is typeform-specific.
The Grounding Capacitor Switch allows the user to quickly change the value of the leakage-reduction capacitance of the 3-phase input circuit without the use of any tools.

See the section titled Power Connection Requirements on pg. 15 for more on the Grounding Capacitor.
See figures 4, 5, 6, and 7 on pg. 17 for an electrical depiction of the leakage-reduction functionality of the Grounding Capacitor and the methods used to set the capacitance value.

## Power Connections

## DANGER 令

## Contact With Energized Wiring Will Cause Severe Injury Or Loss Of Life.

- Turn off, lockout, and tag out all power sources before proceeding to connect the power wiring to the equipment.
- After ensuring that all power sources are turned off and isolated in accordance with established lockout/tag out procedures, connect the 3-phase power source wiring of the correct voltage to the correct input terminals and connect the output terminals to a motor of the correct voltage and type for the application (Refer to NEC Article 300 - Wiring Methods and Article 310 - Conductors For General Wiring). Size the branch circuit conductors in accordance with NEC Table 310.16.
- If multiple conductors are used in parallel for the input or output power and it is necessary to use separate conduits, each parallel set shall have its own conduit (i.e., place U1, V1, W1, and a ground wire in one conduit and U2, V2, W2 and a ground wire in another; refer to NEC Article 300.20 and Article 310.4). National and local electrical codes should be referenced if three or more power conductors are run in the same conduit (Refer to 2008 NEC Article 310 adjustment factors).
- DO NOT connect the 3-phase input power to the output of the ASD. This will damage the ASD and may cause injury to personnel.
- DO NOT connect resistors across terminals PA - PC or PO - PC. This may cause a fire.
- Ensure the correct phase sequence and the desired direction of motor rotation in the Bypass mode (If applicable).
- Turn the power on only after attaching and/or securing the front cover.


## Protection

- Ensure that primary protection exists for the input wiring to the equipment. This protection must be able to interrupt the available fault current from the power line. The equipment may or may not be equipped with an input disconnect (Option).
- All cable entry openings must be sealed to reduce the risk of entry by vermin and to allow for maximum cooling efficiency.
- External dynamic braking resistors must be thermally protected.
- It is the responsibility of the ASD installer/maintenance personnel to setup the Emergency Off braking system of the ASD. The function of the Emergency Off braking function is to remove output power from the drive in the event of an emergency. A supplemental braking system may also be engaged in the event of an emergency. For further information on braking systems see parameters F250 and F304.


## Note: A supplemental emergency stopping system should be used with the ASD. Emergency stopping should not be a task of the ASD alone.

- Follow all warnings and precautions and do not exceed equipment ratings.


## System Integration Precautions

The following precautions are provided as general guidelines for the setup of the ASD within the system.

- The Toshiba ASD is a general-purpose product. It is a system component only and the system design should take this into consideration. Please contact your Toshiba Sales Representative for application-specific information or for training support.
- The Toshiba ASD is part of a larger system and the safe operation of the ASD will depend upon observing certain precautions and performing proper system integration.
- Improperly designed or improperly installed system interlocks may render the motor unable to start or stop on command.
- The failure of external or ancillary components may cause intermittent system operation (i.e., the system may start the motor without warning).
- A detailed system analysis and job safety analysis should be performed by the systems designer and/or systems integrator before the installation of the ASD component. Contact your Toshiba Sales Representative for options availability and for application-specific system integration information if required.


## Personnel Protection

- Installation, operation, and maintenance shall be performed by Qualified Personnel Only.
- A thorough understanding of the ASD will be required before the installation, operation, or maintenance of the ASD.


## $\triangle$ WARNING 令

- Rotating machinery and live conductors can be hazardous and shall not come into contact with personnel. Personnel should be protected from all rotating machinery and electrical hazards at all times.
- Insulators, machine guards, and electrical safeguards may fail or be defeated by the purposeful or inadvertent actions of workers. Insulators, machine guards, and electrical safeguards are to be inspected (and tested where possible) at installation and periodically after installation for potential hazardous conditions.
- DO NOT allow personnel near rotating machinery. Warning signs to this effect shall be posted at or near the machinery.
- DO NOT allow personnel near electrical conductors. Contact with electrical conductors can be fatal. Warning signs to this effect shall be posted at or near the hazard.
- Personal protection equipment shall be provided and used to protect employees from any hazards inherent to system operation.


## System Setup Requirements

- When using the ASD as an integral part of a larger system, it is the responsibility of the ASD installer/maintenance personnel to ensure that there is a fail-safe in place (i.e., an arrangement designed to switch the system to a safe condition if there is a fault or failure).
- System safety features should be employed and designed into the integrated system in a manner such that system operation, even in the event of system failure, will not cause harm or result in system damage or injury to personnel (i.e., E-Off, Auto-Restart settings, System Interlocks, etc.).
- The programming setup and system configuration of the ASD may allow it to start the motor unexpectedly. A familiarity with the Auto-Restart settings are a requirement to use this product.
- Improperly designed or improperly installed system interlocks may render the motor unable to start or stop on command.
- DO NOT install power factor improvement/correction capacitors or surge absorbers on the output of the ASD.
- Use of the built-in system protective features is highly recommended (i.e., E-Off, Overload Protection, etc.).
- The operating controls and system status indicators should be clearly readable and positioned where the operator can see them without obstruction.
- Additional warnings and notifications shall be posted at the equipment installation location as deemed required by Qualified Personnel.


## ! CAUTION

- The Dynamic Braking function is NOT used with the Q9 ASD.
- DO NOT attempt to configure or connect the DBR function to the Q9 ASD.
- Attempts to configure or adapt the ASD to use the Dynamic Braking function may result in system damage or injury to personnel.
- If a secondary magnetic contactor (MC) or an ASD output disconnect is used between the ASD and the load, it should be interlocked to halt the ASD before the secondary contact opens. If the output contactor is used for bypass operation, it must be interlocked such that commercial power is never applied to the ASD output terminals (U, V, or W).
- When using an ASD output disconnect, the ASD and the motor must be stopped before the disconnect is either opened or closed. Closing the output disconnect while the 3-phase output of the ASD is active may result in equipment damage or injury to personnel.


## Operational and Maintenance Precautions

## 1. WARNING

- Turn off, lockout, and tag out the main power, the control power, and instrumentation connections before inspecting or servicing the drive, connecting or disconnecting the power wiring to the equipment, or opening the door of the enclosure.
- The capacitors of the ASD maintain a residual charge for a period of time after turning off the ASD. The required time for each ASD typeform is indicated with a cabinet label and a Charge LED (Shown for smaller ASDs in Figure 2 on pg. 14; LED is located on the front panel of larger ASDs). Wait at least the minimum time indicated on the enclosure-mounted label and ensure that the Charge LED has gone out before opening the door of the ASD once the ASD power has been turned off.
- Turn the power on only after attaching (or closing) the front cover and DO NOT remove or open the front cover of the ASD when the power is on.
- DO NOT attempt to disassemble, modify, or repair the ASD. Call your Toshiba Sales Representative for repair information.
- DO NOT place any objects inside of the ASD.
- If the ASD should emit smoke, or an unusual odor or sound, turn the power off immediately.
- The heat sink and other components may become extremely hot to the touch. Allow the unit to cool before coming in contact with these items.
- Remove power from the ASD during extended periods of non-use.
- The system should be inspected periodically for damaged or improperly functioning parts, cleanliness, and to ensure that the connectors are tightened securely.


## Motor Characteristics

Listed below are some variable speed AC motor control concepts with which the user of the Q9 Adjustable Speed Drive should become familiar.

## Motor Autotuning

Motor production methods may cause minor differences in motor operation. The negative effects of these differences may be minimized by using the Autotune feature of the ASD. Autotuning is a function of the ASD that measures several parameters of the connected motor and places these readings in a stored table. The software uses the information in the table to help optimize the response of the ASD to applicationspecific load and operational requirements. The Autotuning function may be enabled for automatic tuning, configured manually at F400, or disabled.

The measured parameters include the rotor resistance, the stator resistance, the required excitation inductance, rotational inertia values, and leakage inductance values.

## Pulse Width Modulation Operation

The ASD uses sinusoidal Pulse Width Modulation (PWM) control. The output current waveform generated by the ASD approaches that of a perfect sine wave; however, the output waveform is slightly distorted. For this reason, the motor may produce more heat, noise, and vibration when operated by an ASD, rather than directly from commercial power.

## Low Speed Operation

Operating a general-purpose motor at lower speeds may cause a decrease in the cooling ability of the motor. Reducing the torque requirement of the motor at lower speeds will decrease the generated heat at lower speeds.

When the motor is to be operated at low speed (less than $50 \%$ of full speed) and at the rated torque continuously, a Toshiba VF motor (designed for use in conjunction with an ASD) is recommended.

## Overload Protection Adjustment

The ASD software monitors the output current of the system and determines when an overload condition occurs. The overload current level is a percentage of the rating of the motor. This function protects the motor from overload.

The default setting for the overload detection circuit is set to the maximum rated current of the ASD at the factory. This setting will have to be adjusted to match the rating of the motor with which the ASD is to be used. To change the overload reference level, see Electronic Thermal Protection 1 on pg. 41.

## Operation Above 60 Hz

A motor produces more noise and vibration when it is operated at frequencies above 60 Hz . Also, when operating a motor above 60 Hz , the rated limit of the motor or its bearings may be exceeded; this may void the motor warranty.

Contact the motor manufacturer for additional information before operating the motor above 60 Hz .

## Power Factor Correction

DO NOT connect a power factor correction capacitor or surge absorber to the output of the ASD.
If the ASD is used with a motor that is equipped with a capacitor for power factor correction, remove the capacitor from the motor.

Connecting either of these devices to the output of the ASD may cause the ASD to malfunction and trip, or the output device may cause an over-current condition resulting in damage to the device or the ASD.

## Light Load Conditions

When a motor is operated under a continuous light load (i.e., at a load of less than $50 \%$ of its rated capacity) or it drives a load which produces a very small amount of inertia, it may become unstable and produce abnormal vibration or trips because of an over-current condition. In such a case, the carrier frequency may be lowered to compensate for this undesirable condition (see Program $\Rightarrow$ Special Controls $\Rightarrow$ PWM Carrier Frequency).

## Note: $\quad$ When operating in the Vector Control mode the carrier frequency should be set to 2.2 kHz or above.

## Motor/Load Combinations

When the ASD is used in combination with one of the following motors or loads, it may result in unstable operation.

- A motor with a rated capacity that exceeds the motor capacity recommended for the ASD.
- An explosion-proof motor.

When using the ASD with an explosion-proof motor or other special motor types, lower the carrier frequency to stabilize the operation. DO NOT set the carrier frequency below 2.2 kHz if operating the system in the vector control mode.

Note: $\quad$ When operating in the Vector Control mode the carrier frequency should be set to 2.2 kHz or above.

If the motor being used is coupled to a load that has a large backlash or if coupled to a reciprocating load, use one of the following procedures to stabilize motor operation.

- Adjust the S-Pattern acceleration/deceleration setting,
- If operating in the Vector control mode, adjust the response time, or
- Switch to the Constant Torque control mode.


## Motor Braking

The motor may continue to rotate and coast to a stop after being shut off due to the inertia of the load. If an immediate stop is required, a braking system should be used. For further information on braking systems see DC Injection Braking Current on pg. 99.

## Installation and Connections

The ASD may be set up initially by performing a few simple configuration settings. To operate properly, the ASD must be securely mounted and connected to a power source (3-phase AC input at the R/L1, S/L2, and T/L3 terminals). The control terminals of the ASD may be used by connecting the terminals of the Terminal Board (P/N 072314P903) to the proper sensors or signal input sources (See the section titled I/O and Control on pg. 19 and Figure 9 on pg. 22).

System performance may be further enhanced by assigning a function to the output terminals of the Terminal Board and connecting the terminals to the proper indicators or actuators (LEDs, relays, contactors, etc.).

Note: $\quad$ The optional Q9 ASD interface boards may be used to expand the I/O functionality of the ASD.

## ! CAUTION

When a brake-equipped motor is connected to the ASD, it is possible that the brake may not release at startup because of insufficient voltage. To avoid this, DO NOT connect the brake or the brake contactor to the output of the ASD.
If an output contactor is used for bypass operation, it must be interlocked such that commercial power is never applied to the output terminals of the ASD (U/T1, V/T2, and W/T3).

DO NOT apply commercial power to the ASD output terminals U/T1, V/T2, and W/T3.
If a secondary magnetic contactor (MC) is used between the output of the ASD and the motor, it should be interlocked such that the $\mathbf{S T} \mathbf{- C C}$ connection is disconnected before the output contactor is opened.

DO NOT open and then close a secondary magnetic contactor between the ASD and the motor unless the ASD is off and the motor is not rotating.
Note: Re-application of power via a secondary contact while the Q9 ASD is on or while the motor is still turning may cause ASD damage.

The Q9 ASD input voltage should remain within $10 \%$ of the specified input voltage range. Input voltages approaching the upper or lower-limit settings may require that the over-voltage and undervoltage stall protection level parameters be adjusted. Voltages outside of the permissible tolerance should be avoided.

The frequency of the input power should be $\pm 2 \mathrm{~Hz}$ of the specified input frequency.
DO NOT use an ASD with a motor that has a power rating higher than the rated output of the ASD.
The Q9 ASD is designed to operate NEMA B motors. Consult with your Toshiba Sales Representative before using the ASD for special applications such as with an explosion-proof motor or applications with a piston load.

Disconnect the ASD from the motor before megging or applying a bypass voltage to the motor.
Interface problems may occur when an ASD is used in conjunction with some types of process controllers. Signal isolation may be required to prevent controller and/or ASD malfunction (Contact your Toshiba Sales Representative or the process controller manufacturer for additional information about compatibility and signal isolation).

Use caution when setting the output frequency. Over-speeding a motor decreases the ability to deliver torque and may result in damage to the motor and/or the driven equipment.

Not all ASDs are equipped with internal primary power input fuses (HP dependent). When connecting two or more drives that have no internal fuse to the same power line as shown in Figure 1, it will be necessary to select a circuit-breaking configuration that will ensure that if a short circuit occurs in ASD 1 , only MCCB2 trips, not MCCB1. If it is not feasible to use this configuration, insert a fuse between MCCB2 and ASD 1.

Figure 1. Typical Circuit Breaker Configuration.


## Mounting the ASD

## CAUTION

- The following thermal specifications apply to the 230- and 460-volt ASDs ONLY -

Install the unit securely in a well ventilated area that is out of direct sunlight.
The process of converting AC to DC, and then back to AC produces heat. During normal ASD operation, up to $5 \%$ of the input energy to the ASD may be dissipated as heat. If installing the ASD in a cabinet, ensure that there is adequate ventilation.

DO NOT operate the ASD with the enclosure door open.
The ambient operating temperature rating of the Q9 ASD is $14^{\circ}$ to $104^{\circ} \mathrm{F}\left(-10^{\circ}\right.$ to $\left.40^{\circ} \mathrm{C}\right)$.
When installing adjacent ASDs horizontally Toshiba recommends at least 5 cm of space between adjacent units. However, horizontally mounted ASDs may be installed side-by-side with no space in between the adjacent units - side-by-side installations require that the top cover be removed from each ASD.

For 150 HP ASDs and above, a minimum of 50 cm of space is required above and below adjacent units and any obstruction. This space is the recommended minimum space requirement for the ASD and ensures that adequate ventilation is provided for each unit. More space will provide a better environment for cooling (See the section titled Enclosure Dimensions on pg. 204 for additional information on mounting space requirements).

Note: Ensure that the ventilation openings are not obstructed.

## Connecting the ASD <br> . DANGER 食

Refer to the section titled Installation Precautions on pg. 4 and the section titled Lead Length Specifications on pg. 18 before connecting the ASD and the motor to electrical power.

## Power Connections

## . DANGER 昘

## Contact With 3-Phase Input/Output Terminals May Cause Electrical Shock Resulting In Injury Or Loss Of Life.

See Figure 20 on pg. 24 for a system I/O connectivity schematic.
An inductor (DCL) may be connected across the $\mathbf{P O}$ and $\mathbf{P A} /+$ terminals to provide additional filtering. When not used, a jumper must be connected across these terminals (See Figure 20 on pg. 24).
$\mathbf{P A} /+$ and $\mathbf{P B}$ are used for the DBR connection. The DBR function is not used on the Q9 ASD.
$\mathbf{P C} /-$ is the negative terminal of the DC bus.
$\mathbf{R} / \mathbf{L} 1, \mathbf{S} / \mathbf{L} 2$, and $\mathbf{T} / \mathbf{L} \mathbf{3}$ are the 3-phase input supply terminals for the ASD.
U/T1, V/T2, and W/T3 are the output terminals of the ASD that connect to the motor.
The location of the Charge LED for the smaller typeform ASD is provided in Figure 2. The Charge LED is located on the front door of the enclosure of the larger ASDs.

Figure 2. Typical Q9 ASD input/output terminals and the Grounding Capacitor Switch.


Grounding Capacitor Switch - Pull for Small capacitance/push for Large capacitance.
Note: PO-to-PA/+ shorting bar removed to show reference designators.

## Power Connection Requirements

Connect the 3-phase input power to the input terminals of the ASD at R/L1, S/L2, and T/L3 (see Figure 3 for the typical electrical connection scheme). Connect the output of the ASD to the motor from the ASD terminals U/T1, V/T2, and W/T3. The input and output conductors and terminal lugs used shall be in accordance with the requirements listed in the section titled Current/Voltage Specifications on pg. 211.

If multiple conductors are used in parallel for the input or output power and it is necessary to use separate conduits, each parallel set shall have its own conduit and not share its conduit with other parallel sets (i.e., place U1, V1, and W1 in one conduit and U2, V2, and W2 in another - refer to NEC Article 300.20 and Article 310.4). National and local electrical codes should be referenced if three or more power conductors are run in the same conduit (Refer to 2008 NEC Article 310 adjustment factors).

Note: $\quad$ National and local codes should be referenced when running more than three conductors in the same conduit.

Install a molded case circuit breaker (MCCB) or fuse between the 3-phase power source and the ASD in accordance with the fault current setting of the ASD and 2008 NEC Article 430.

The ASD is designed and tested to comply with UL Standard 508C. Modifications to the ASD system or failure to comply with the short circuit protection requirements outlined in this manual may disqualify the UL rating. See Table 19 on pg. 215 for typeform-specific short circuit protection recommendations.

As a minimum, the installation of the ASD shall conform to 2008 NEC Article 110, the Occupational Safety and Health Administration requirements, and to any other local and regional industry codes and standards.

Note: In the event that the motor rotates in the wrong direction when powered up, reverse any two of the three ASD output power leads connected to the motor.

Figure 3. Q9 ASD/Motor Typical Connection Diagram.


## System Grounding

Proper grounding helps to prevent electrical shock and to reduce electrical noise. The Q9 ASD is designed to be grounded in accordance with Article 250 of the 2008 NEC or Section 10/Part One of the Canadian Electrical Code (CEC).

The grounding conductor shall be sized in accordance with Article 250-122 of the NEC or Part OneTable 6 of the CEC.

## -The Metal Of Conduit Is Not An Acceptable Ground-

The input, output, and control lines of the system shall be run in separate metal conduits and each shall have its own ground conductor.

ASDs produce high-frequency noise - steps must be taken during installation to avoid the negative effects of noise. Listed below are some examples of measures that will help to combat noise problems.

- DO NOT install the input power and output power wires in the same duct or in parallel with each other, and do not bind them together.
- DO NOT install the input/output power wires and the wires of the control circuit in the same duct or in parallel with each other, and do not bind them together.
- Use shielded wires or twisted wires for the control circuits.
- Ensure that the grounding terminals $(\mathrm{G} / \mathrm{E})$ of the ASD are securely connected to ground.
- Connect a surge suppressor to every electromagnetic contactor and every relay installed near the ASD.
- Install noise filters as required.


## Grounding Capacitor

The Grounding Capacitor plays a role in minimizing the effects of leakage current through the ASD system and through ground paths to other systems. Leakage current may cause the improper operation of earth-leakage current breakers, leakage-current relays, ground relays, fire alarms, and other sensors - and it may cause superimposed noise on CRT screens.

The Grounding Capacitor Switch allows the user to quickly change the value of the leakage-reduction capacitance of the 3-phase input circuit. See figures 4, 5, 6, and 7 on pg. 17 for an electrical depiction of the leakage-reduction functionality and the methods used to change the capacitance value. The method used is typeform-specific.

If using a 460 -volt 5 HP ASD or a 460 -volt ASD that is in the range of 7.5 HP to 25 HP , and the U/T1, V/T2, and W/T3 connections to the motor are 100 meters or more in length, the ASD Carrier Frequency must be set to 4 kHz or less when activating or deactivating the Grounding Capacitor Switch. ASD overheating may occur if the Carrier Frequency is set above 4 kHz when activating or deactivating the Grounding Capacitor Switch.

See pg. 5 for more information on the Grounding Capacitor Switch and pg. 14 for the location.

Figure 4. The Grounding Capacitor Switch is used on typeforms - 200-volt 0.5 HP to 10 HP and the 25 and $30 \mathrm{HP} /$ 460-volt 1.0 HP to 250 HP .
The value may be set to Maximum (default setting) or to Zero by pushing or pulling the switch actuator, respectively.


Ir


Figure 5. The Grounding Capacitor
Switch is used on typeforms - 200-volt 15 HP to 20 HP and the 40 HP to $60 \mathrm{HP} /$ 460-volt 30 HP to 100 HP .

The value may be set to Large (default setting) or Small by pushing or pulling the switch actuator, respectively.


Figure 6. The Grounding Capacitor Bar is used on typeforms - 200-volt 75 HP and the $100 \mathrm{HP} / 460$-volt 125 HP and the 150 HP. The value may be set to Large or Small (default setting) by connecting or disconnecting the switching bar, respectively.


Figure 7. The Grounding Capacitor
Screw is used on typeforms - 460-volt 175 HP and above.

The value may be set to Large or Small (default setting) by placing the screw in the $\mathbf{A}$ position or by placing the screw in the $\mathbf{B}$ position, respectively.


## Lead Length Specifications

Adhere to the NEC and any local codes during the installation of ASD/motor systems. Excessive lead lengths may adversely effect the performance of the motor. Special cables are not required. Lead lengths from the ASD to the motor in excess of those listed in Table 1 may require filters to be added to the output of the ASD. Table 1 lists the suggested maximum lead lengths for the listed motor voltages.

Table 1. Lead Length Recommendations.

| Model | PWM Carrier <br> Frequency | NEMA MG1 Part 31 <br> Compliant Motors | NEMA MG1 Part 30 <br> Compliant Motors |
| :---: | :---: | :---: | :---: |
| 230 -Volt | All | 1000 feet | 450 feet |
| $460-$ Volt | $<5 \mathrm{kHz}$ | 600 feet | 200 feet |
|  | $\geq 5 \mathrm{kHz}$ | 300 feet | 100 feet |

Contact the Toshiba Customer Support Center for application assistance when using lead lengths in excess of those listed.

Exceeding the peak voltage rating or the allowable thermal rise time of the motor insulation will reduce the life expectancy of the motor.

When operating in the Vector Control mode the carrier frequency should be set to 2.2 kHz or above.

## I/O and Control

The ASD can be controlled by several input types and combinations thereof, as well as operate within a wide range of output frequency and voltage levels. This section discusses the ASD control methods and supported I/O functions.

The Terminal Board supports discrete and analog I/O functions and is shown in Figure 9 on pg. 22. Table 2 lists the names, descriptions, and default settings (of programmable terminals) of the input and output terminals of the Terminal Board.

Note: $\quad$ To use the input lines of the Terminal Board to provide Run commands the Command Mode setting must be set to Terminal Block.

Figure 20 on pg. 24 shows the typical connection diagram for the Q9 ASD system.
Table 2. Terminal Board Terminal Names and Functions.

| Terminal Name | Input/Output | Function (Default Setting If Programmable) <br> (See Terminal Descriptions on pg. 20) | Circuit Config. |
| :---: | :---: | :---: | :---: |
| ST | Discrete Input Connect to CC to activate (Sink mode). | Standby - Multifunctional programmable discrete input. Activation required for normal ASD operation. | Figure 10 on pg. 23. |
| RES |  | Reset - Multifunctional programmable discrete input. Activation resets ASD when Faulted - ignored when not Faulted. |  |
| F |  | Forward - Multifunctional programmable discrete input. |  |
| R |  | Reverse - Multifunctional programmable discrete input. |  |
| S1 |  | Fire Speed - Multifunctional programmable discrete input. |  |
| S2 |  | Preset Speed 2 - Multifunctional programmable discrete input. |  |
| S3 |  | Damper Feedback - Multifunctional programmable discrete input. |  |
| S4 |  | Emergency Off - Multifunctional programmable discrete input. |  |
| 01A/B (OUT1) | Switched Output | Damper Command - Multifunctional programmable discrete output. | Figure 16 on pg. 23. |
| O2A/B (OUT2) |  | Reach Frequency - Multifunctional programmable discrete output. |  |
| FLA |  | Fault relay (N.O.). | Figure 19 on pg. 23. |
| FLB |  | Fault relay (N.C.). |  |
| FLC |  | Fault relay (Common). |  |
| RR | Analog Input | Frequency Mode 1 - Multifunction programmable analog input. ( 0.0 to 10 volt input -0 Hz to Maximum Frequency). | Figure 11 on pg. 23. |
| RX |  | Unassigned - Multifunctional programmable analog input (-10 to +10 VDC input Unassigned). | Figure 12 on pg. 23. |
| V/I |  | Unassigned - V - Multifunctional programmable isolated analog voltage input (0 to 10 VDC input). | Figure 13 on pg. 23. |
| SW301) |  | Frequency Mode 2 - I (Default setting) -Multifunctional programmable isolated analog current input (4 [0] to 20 mADC input - 0 Hz to Maximum Frequency). |  |
| AM | Analog Output | Output Current - Current output that is proportional to the output current of the ASD or to the magnitude of the function assigned to this terminal (See Table 6 on pg. 189). | Figure 18 on pg. 23 |
| FM |  | Output Frequency - Current or Voltage output that is proportional to the output frequency of the ASD or to the magnitude of the function assigned to this terminal (See Table 6 on pg. 189). Select Current or Voltage at F681. |  |
| SU+ | DC Input | Externally-supplied 24 VDC backup control power (1.1 A max.). |  |
| P24 | DC Output | 24 VDC (200 mA max.) output. | Figure 14 on pg. 23. |
| PP |  | 10.0 VDC (10 mA max.) voltage source for the external potentiometer. | Figure 15 on pg. 23. |
| FP | Pulsed Output | Output Frequency - Multifunctional programmable output pulse train of a frequency based on the output frequency (See Table 6 on pg. 189). | Figure 17 on pg. 23. |
| IICC | - | Return for the V/I input terminal. | DO NOT <br> connect to <br> Earth Gnd or to each other. |
| CCA | - | Return for the RR, RX, P24, and the PP terminals. |  |
| CC | - | Return for the AM, FM, SU+, and the discrete input terminal. |  |

## Terminal Descriptions

Note: The programmable terminal assignments may be accessed and changed from their default settings as mapped on pg. 41 or via the Direct Access method: Program $\Rightarrow$ Direct Access $\Rightarrow$ Applicable Parameter Number. See the section titled Program Mode Menu Navigation on pg. 41 for the applicable Direct Access parameter numbers.

For further information on terminal assignments and default setting changes, see the sections titled Default Setting Changes on pg. 57 and Input Terminals on pg. 44.

Note: $\quad$ See the section titled Cable/Terminal Specifications on pg. 213 for the Q9 ASD conductor and terminal electrical specifications.

Note: Programmable terminals will not retain their settings indefinitely in the event of a power loss. Connect an external $+24 V D C$ supply to the $\boldsymbol{S U}+$ terminal to retain the programmable settings in the event of Control Power loss (See Figure 20 on pg. 24).

ST - The default setting for this terminal is the Standby mode controller. As the default setting, this terminal must be activated for normal system operation. The ST terminal is activated by connecting CC to this terminal (Sink mode). When deactivated, OFF is displayed on the Frequency Command screen. This input terminal may be programmed to any of the functions listed in Table 4 on pg .186 (See F113).

RES - The default setting for this terminal is Reset. The RES terminal is activated by connecting CC to this terminal (Sink mode). A momentary connection to CC resets the ASD and any fault indications from the display. Reset is effective when faulted only. This input terminal may be programmed to any of the functions listed in Table 4 on pg. 186 (See F114).
$\mathbf{F}$ - The default setting for this terminal is Forward run command. The $\mathbf{F}$ terminal is activated by connecting CC to this terminal (Sink mode). This input terminal may be programmed to any of the functions listed in Table 4 on pg. 186 (See F111).
$\mathbf{R}$ - The default setting for this terminal is Reverse run command. The $\mathbf{R}$ terminal is activated by connecting CC to this terminal (Sink mode). This input terminal may be programmed to any of the functions listed in Table 4 on pg. 186 (See F112).

S1 - The default setting for this terminal is Fire Speed. The function of this input as Fire Speed is to run the motor at the Preset Speed \#1 setting upon activation. This terminal may be activated by connecting CC to this terminal (Sink mode) and may be initiated by a fire alarm signal or fire/smoke sensing device. This input terminal may be programmed to any of the functions listed in Table 4 on pg. 186 (See F115).

S2 - The default setting for this terminal is Preset Speed 2. The function of this input as Preset Speed 2 is to run the motor at the Preset Speed 2 setting upon activation. The terminal may be activated by connecting $\mathbf{C C}$ to this terminal (Sink mode). This input terminal may be programmed to any of the functions listed in Table 4 on pg. 186 (See F116).

S3 - The default setting for this terminal is Damper Feedback. The function of this input as Damper Feedback is to complete the requirements for normal system operation as described in Table 4 on pg. 186. The S 3 terminal is activated by connecting CC to this terminal (Sink mode). This input terminal may be programmed to any of the functions listed in Table 4 on pg. 186 (See F117).

S4 - The default setting for this terminal is Emergency Off (Normally Closed). The Emergency Off terminal is activated by opening the connection to $\mathbf{C C}$ (Sink mode). The function of this input as Emergency Off is to remove power from the output of the ASD and may apply a supplemental braking system using the method selected at the Emg Off Mode selection parameter (See F603). This input terminal may be programmed to any of the functions listed in Table 4 on pg. 186 (See F118).
$\mathbf{R R}$ - The default function assigned to this terminal is the Frequency Mode $\mathbf{1}$ setting. The RR terminal accepts a $0-10 \mathrm{VDC}$ input signal that is used to control the function assigned to this terminal. This input terminal may be programmed to control the speed or torque of the motor via an amplitude setting or regulate by setting a limit. The gain and bias of this terminal may be adjusted for applicationspecific suitability (See F210 - F215). See Figure 20 on pg. 24 for an electrical depiction of the RR terminal. This terminal references CCA.
$\mathbf{R X}$ - The RX terminal accepts a $\pm 10$ VDC analog input signal and controls the function assigned to this terminal. This input terminal may be programmed to control the speed, torque, or direction of the motor. It may also be used to regulate (limit) the speed or torque of the motor by setting a limit. The gain and bias of this terminal may be adjusted for application-specific suitability (See F216 - F221). See Figure 20 on pg. 24 for an electrical depiction of the $\mathbf{R X}$ terminal.

V/I - The V/I terminal has the dual function of being able to receive an input voltage or current. The function as a voltage input to receive a $0-10 \mathrm{VDC}$ input signal. The function as a current input is to receive a $0-20 \mathrm{~mA}$ input signal. Using either input type, the function is to control the 0.0 - Maximum Frequency output or the 0.0 to $250 \%$ torque output of the ASD. This is an isolated input terminal. This terminal may be programmed to control the speed or torque of the motor and cannot process both input types simultaneously. SW301 must be set to V or I to receive a voltage or current, respectively (See Figure 9 on pg. 22). Terminal scaling is accomplished via F201 - F206. The gain and bias of this terminal may be adjusted for application-specific suitability (See F470 and F471).

SU+ - Externally supplied $+24 \mathrm{VDC} \pm 10 \%$ at 1.1 A (minimum) backup control power. This terminal references CC.
$\mathbf{P 2 4}-+24$ VDC at 200 mA power supply for customer use. This terminal references CCA.
$\mathbf{P P}$ - The function of output $\mathbf{P P}$ is to provide a $10 \mathrm{VDC} / 10 \mathrm{mADC}$ output that may be divided using a potentiometer. The tapped voltage is applied to the $\mathbf{R} \mathbf{R}$ input to provide manual control of the $\mathbf{R} \mathbf{R}$ programmed function. This terminal references CCA.

O1A/B (OUT1A/B) — The default function assigned to this terminal is Damper Command. This output may be programmed to provide an indication (open or closed) that any one of the functions listed in Table 7 on pg. 190 has occurred or is active. This function may be used to signal external equipment (e.g., activate the brake) (See F130). The OUT1 terminal is rated at 2 A/120 VAC and 2 A/30 VDC.

O2A/B (OUT2A/B) - The default function assigned to this terminal is ACC/DEC Complete. This output may be programmed to provide an indication (open or closed) that any one of the functions listed in Table 7 on pg. 190 has occurred or is active. This function may be used to signal external equipment (e.g., activate the brake) (See F131). The OUT2 terminal is rated at 2A/120 VAC and 2A/30 VDC.

FP - The default function assigned to this open collector output terminal is Output Frequency. This output terminal produces an output pulse train that has a frequency which is proportional to the magnitude of the Output Frequency (or the function assigned to this terminal). This terminal may be programmed to provide an output pulse rate that is proportional to the magnitude of the user-selected item from Table 6 on pg. 189. For further information on this terminal see F676 on pg. 143.

AM - The default function assigned to this output terminal is Output Current. This output terminal produces an output current that is proportional to the magnitude of the Output Current of the Q9 ASD (or the function assigned to this terminal). The available assignments for this output terminal are listed in Table 6 on pg. 189. For further information on this terminal see F670 on pg. 141.

FM - This output terminal produces an output current or voltage that is proportional to the output frequency of the ASD or of the magnitude of the function assigned to this terminal. The available assignments for this output terminal are listed in Table 6 on pg. 189. For further information on this terminal see F005 on pg. 61. The Voltage/Current output selection is performed at F681.

FLA - A normally open contact that, under a user-defined condition, connects to FLC.
FLB - A normally closed contact that, under a user-defined condition, opens the FLB-to-FLC connection.

FLC - FLC is the common leg of a single-pole double-throw form C relay. The FL relay is the Fault Relay by default, but may be programmed to any of the selections of Table 7 on pg . 190. For further information on this terminal see F132 and Figure 8.

Note: $\quad$ The $\boldsymbol{F L A}, \boldsymbol{F L B}$, and $\boldsymbol{F L C}$ contacts are rated at $2 A / 120$ VAC and $2 A / 30$ VDC.
Figure 8. FLA, FLB, and FLC Switching Contacts Shown in the Normal Operating Condition.
Note: The relay is shown in the normal operating condition. During a faulted condition the relay connection is $\boldsymbol{F L C}$-to-FLA.


Figure 9. Terminal Board.


See Figure 20 on pg. 24 for more information on the Terminal Board connections.

See the section titled Terminal Descriptions on pg. 20 for terminal descriptions.
See the section titled Cable/Terminal Specifications on pg. 213 for information on the proper cable/ terminal sizes and torque specifications when making Terminal Board connections.

## I/O Circuit Configurations



## Typical Connection Diagram

Figure 20. The Q9 ASD Typical Connection Diagram.
Note: When connecting multiple wires to any of ASD terminals, do not connect a solid wire and a stranded wire to the same terminal.


Note: $\quad$ The $\boldsymbol{A M}, \boldsymbol{F M}$, and the $+\boldsymbol{S U}$ analog terminals are referenced to $\boldsymbol{C C}$.
The $\boldsymbol{R R}, \boldsymbol{R} \boldsymbol{X}, \boldsymbol{P} 24$, and the $\boldsymbol{P P}$ analog terminals are referenced to $\boldsymbol{C C A}$.
The isolated V/I analog terminal references IICC.

## Startup and Test

Before turning on the ASD ensure that:

- The enclosure door is closed or reattached, and secure.
- R/L1, S/L2, and T/L3 are connected to the 3-phase input power.
- U/T1, V/T2, and W/T3 are connected to the motor.
- The 3-phase input voltage is within the specified tolerance.
- There are no shorts and all grounds are secure.
- All personnel are at a safe distance away from the motor and/or the motor-driven equipment.


## Electronic Operator Interface

The Q9 ASD Electronic Operator Interface (EOI) is comprised of an LCD screen, a rotary encoder, and five keys. These items are shown on pg. 27.

## EOI Operation

The EOI is the primary input/output device for the user. The EOI may be used to monitor system functions, input data into the system, perform diagnostics, and view performance data (e.g., motor frequency, bus voltage, torque, etc.).

The software used with the Q9 ASD is menu driven; thus, making it a select and click environment. The operating parameters of a motor may be selected and viewed or changed using the EOI (or via communications).

## EOI Remote Mounting

The EOI may be mounted remotely using the optional ASD-MTG-KITQ9. The kit contains all of the hardware required to mount the EOI of the 9-Series ASD remotely.

System operation and EOI operation while using the remotely-mounted EOI are the same as with the ASD-mounted configuration.

Figure 21. The Q9 ASD Electronic Operator Interface Features.


## EOI Features

LCD Screen - Displays configuration information, performance data (e.g., output frequency, bus voltage, torque, etc.), and diagnostic information.
Rotary Encoder - Used to access the Q9 ASD menu selections, change the value of a displayed parameter, and performs the Enter key function. Turn the Rotary Encoder either clockwise or counterclockwise to perform the Up or Down functions of the displayed menu selection. Press the Rotary Encoder to perform the Enter (select) function.

Local/Remote Key - Toggles the system to and from the Local and Remote modes. The LED is on when the system is in the Local Command mode. The Local mode allows the Command and Frequency control functions to be carried out via the EOI.

The Remote mode enables the Command and Frequency control functions to be carried out via the Terminal Board, RS485, Communication Card, or Pulse Input. The selection may be made via Program $\Rightarrow$ Utility Group $\Rightarrow$ Command Mode and Frequency Mode 1, respectively.

ESC Key - Returns the system to the previously viewed menu item. Subsequent Escape key activation scrolls through the Root Menu until reaching the Frequency Command screen (See Figure 25 on pg. 37). Further ESC key entries are ignored.

Run Key - Issues the Run command while in the Local mode. The Run key LED Illuminates green while stopped. Illuminates red while running or while exciting the motor.
Mode Key — Provides a means to access the five root menus. Pressing the Mode Key key repeatedly loops the system through the five root menus (See Figure 25 on pg. 37). While looping through the root menus, the Program menu will display the default Program root menu screen item or the Program submenu item being accessed prior to pressing the Mode key.

Stop-Reset Key - This key has three functions.

1. Issues the Off command (decelerates to Stop at the programmed rate; F721) if pressed once while in the Local mode.
2. Initiates an Emergency Off Fault if pressed twice quickly from the Local or Remote modes. The Emergency Off function terminates the Q9 ASD output and will apply the stopping method selected at F603.
3. Resets active Faults and/or active Alarms if pressed twice quickly. The source of the Fault or Alarm must be determined and corrected before normal ASD operation can resume.

## LCD Screen

The LCD screen is the primary user input/output information center. Parameter settings may be viewed, or selected and changed using the LCD screen module of the EOI. To view or change a parameter setting using the LCD screen, press the Mode key until the Program menu is displayed. Turn the Rotary Encoder until the desired Primary Menu item of the Program menu is displayed. Press the Rotary Encoder to select the item from the Primary Menu (repeat the press-to-select for submenu items).
See the section titled Default Setting Changes on pg. 57 for more information on changing parameter setting.
Repeated ESC key entries at any time takes the menu back one level each time the ESC key is pressed until the Frequency Command screen is reached. Further ESC key entire are ignored.

## LCD Screen Installation Note

When installing the LCD screen module of the EOI, ensure that the left side of the display is inserted first with the top and bottom catches (See Phillips screws at underside of screen) securely in place. This ensures the proper alignment and electrical connection of the NX connector of the LCD screen module PCB. Gently hold the screen in place while securing the Phillips mounting screw.

If improperly seated, the periphery of the LCD screen module will not be flush with the front panel surface and the unit will not function properly.

## EOI Remote Mounting

The Q9ASD may be controlled from a remotely-mounted EOI. For safety and application-specific reasons, some ASD installations will warrant that the operator not be in the vicinity during operation or that the EOI not be attached to the ASD housing. The EOI may be mounted either with or without the optional Remote Mounting Kit (P/N ASD-MTG-KITQ9) which allows for remote EOI placement and easier cable routing.
The EOI can operate up to 9 feet away from the ASD. An EOI extender cable is required for remote mounting and is included with Remote Mounting Kit or can be ordered through your Toshiba Sales Representative.

Remote Mounting Hardware

- Remote Mounting Kit (Optional) — P/N ASD-MTG-KITQ9
- LCD Cable, 9 ft. - P/N 76268


## Remote Mounting Installation Precautions

Install the unit securely in a well ventilated area that is out of direct sunlight. The ambient temperature rating for the display module is $14^{\circ}$ to $104^{\circ} \mathrm{F}\left(-10^{\circ}\right.$ to $\left.40^{\circ} \mathrm{C}\right)$.

- Select a mounting location that is easily accessible by the use.
- Avoid installation in areas where vibration, heat, humidity, dust, metal particles, or high levels or electrical noise (EMI) are present.
- Do not install the unit where it may be exposed to flammable chemicals or gases, water, solvents, or other fluids.
- Turn on the power only after securing the front cover of the ASD.


## Remote Mounting Using the Mounting Kit

## Note: $\quad$ See Figure 22 for the dimensions and the item locations referenced in steps $1-7$.

1. At the EOI mounting location, mark the 4.60 " by 4.50 " hole and the four $11 / 32$ " screw holes.
2. Cut the 4.60 " by 4.50 " rectangular mounting hole.
3. Drill the four 11/32" screw holes for the Bezel Plate mount.
4. Attach and secure the Bezel Plate to the front side of the mounting location using the four 10-32 hex nuts, \#10 split lock washers, and the \#10 flat washers.
5. Remove the Front Panel Assembly of the ASD - using a flathead screwdriver, release the upper retaining tabs of the EOI panel then pivot the EOI assembly away from the ASD and lift (see Figure 23).
6. Remove the Display Module from the Front Panel Assembly of step 5 - discard the assembly.
7. Attach and secure the Display Module to the front side of the Bezel Plate using the four 6-32 x 5/16" pan head screws, and the \#6 split lock washers.

When installing the Display Module into the Bezel Plate ensure that the left side of the display is inserted first with the top and bottom catches securely in place (adjacent to the Phillips screws at underside of display). This ensures the proper alignment and electrical connection of the CNX connector of the Display Module PCB. Then gently hold the display in place while securing the Phillips mounting screw.
8. Install the Front Panel Connector Assembly to the ASD (see Figure 23).
9. Connect the Extender Cable from the EOI to the Front Panel Assembly.

Figure 22. Remote Mounting Dimensions (inches).

$F R \square N T \vee I E W$


BACK VIEW

Figure 23. Front Panel Removal/Front Panel Connector Assembly.


## Remote Mounting Without the Mounting Kit

Note: $\quad$ See Figure 24 for the dimensions and the item locations referenced in steps $1-7$.

1. At the EOI mounting location, mark the $3.80^{\prime \prime}$ by 3.56 " hole and the four $7 / 32$ " screw holes.
2. Cut the $3.80^{\prime \prime}$ by 3.56 " rectangular mounting hole.
3. Drill the four 7-32" screw holes.
4. Remove the Front Panel Assembly of the ASD - using a flathead screwdriver, release the upper retaining tabs of the EOI panel then pivot the EOI assembly away from the ASD and lift (see Figure 23).
5. Remove the EOI from the Front Panel Assembly of step 4 - discard the assembly.
6. Attach and secure the EOI to the front side of the mounting location using the four $6-32 \times 5 / 16$ " pan head screws, the \#6 split lock washers, and the \#6 flat washers.
7. Install the Front Panel Connector Assembly to the ASD (see Figure 23).
8. Connect the Extender Cable from the EOI to the Front Panel Assembly.

Figure 24. EOI Remote Mounting Dimensions (inches).


## Command Mode and Frequency Mode Control

Command control includes instructions such as Stop, Run, Jog, etc. The source of the Command signal must be established for normal operation.

Frequency commands control the output speed of the Q9 ASD. The source of the frequency (Speed) control signal must be established for normal operation.
The source of the command control and speed control may be either internal or external. Once the source signal is selected for either function, the system may be configured to use the selected signal all of the time or switch under user-defined conditions.

Command and Frequency control may be carried out using any one of several control methods (signal sources) or combinations thereof. In the event that multiple control commands are received, the signal sources are assigned priority levels. The primary control method for Command and Frequency control uses the settings of F003 and F004, respectively.

## Command Control (F003)

The Command Mode selection of F003 establishes the primary source of the command input for the ASD. However, the Override feature may supersede the F003 setting as indicated in Table 3 on pg. 34.


Table 3 shows the hierarchy of the control sources managed by the Override function. The level of the control item on the hierarchy is listed from left to right, most to least, respectively. As indicated in the table, the Override setting may supersede the F003 setting.

Placing the EOI in the Local mode selects the RS485 (2-Wire) as the Command Mode control source. Local mode operation may be superseded by other Override settings.
Example: With the EOI set to Local, Communication Card input or RS485 (4-Wire) input will supersede EOI control input.

The remaining control sources may be placed into the Override Mode using communications.
The source of the Command control signal may be selected by:

- The F003 setting,
- Placing an item from the list below in the Override Mode via communications, or
- Placing the EOI in the Local mode (places only the RS485 [2-Wire] in the Override Mode).

Possible Command signal source selections include the following:

- Terminal Block (Default Setting),
- Panel Keypad Option,
- RS485 (2-Wire),
- RS485 (4-Wire),
- Communication Option Board, or
- F003 setting (Used If No Signal Sources Are in the Override Mode).

Note: $\quad$ The Terminal Board is placed in the Override Mode for Command functions by assigning a discrete terminal to Command Terminal Board Priority and connecting the terminal to CC. Once activated (Run command required), the Terminal Board settings will be used for Override Command control (F, R, Preset Speeds, etc.).

## Frequency Control (F004)

The Frequency Mode 1 (or the Frequency Mode 2) setting establishes the user-selected source of the frequency-control input for the Q9 ASD. The signal source selected here is used for speed control unless the Reference Priority Selection parameter is
 configured to switch this setting automatically (See F200) or if the Override feature is enabled.
Table 3 on pg. 34 shows the hierarchy of the control sources managed by the Override function. The level of the control item on the hierarchy is listed from left to right, most to least, respectively. As indicated in the table, the Override setting may supersede the selection at F004.

Placing the EOI in the Local mode selects the RS485 (2-Wire) as the Frequency Mode 1 control source. Local mode operation may be superseded by other Override settings.
Example: With the EOI set to Local, Communication Card input or RS485 (4-Wire) input will supersede EOI control input.
The remaining control sources may be placed into the Override Mode using communications.
The source of the Frequency control signal may be selected by:

- The F004 setting,
- Placing an item from the list below in the Override Mode via communications, or
- Placing the EOI in the Local mode (places only the RS485 [2-wire] in the Override Mode).

Possible Frequency control source selections include the following:

- Communication Card,
- RS485 (2-Wire),
- RS 485 (4-Wire),
- Panel Keypad Option,
- Terminal Block (Default Setting), or
- F004 setting (Used if No Other Items Are in the Override Mode).

Note: $\quad$ The Terminal Board is placed in the Override Mode for Speed control functions by assigning a discrete terminal to V/I Terminal Priority and connecting the terminal to CC. Once the discrete terminal is activated, $V / I$ is used as the Terminal Board Override control item.

## Command and Frequency Control Selections

Any or all of the Command and Frequency control sources may be placed in the Override Mode.
Placing the Q9 ASD in the Local mode (Local/Remote LED on) places the RS485 (2-Wire) control selection in the Override Mode for Command and Frequency input.
Communications may be used to place the remaining Command and eligible Frequency control sources in the Override Mode. Once placed in the Override Mode this setting is valid until it is cancelled, the power supply is turned off, or the Q9 ASD is reset.
Command and Frequency control changes may be disabled at parameter F736.

## Override Operation

The status of the listed control sources of Table 3 are read to determine which input sources are in the Override Mode. The outcome is used for Command and/or Frequency control input.

The Override control setting supersedes the setting of the Command mode setting (F003) and the Frequency mode setting (F004). However, the F003 and F004 settings will be used in the event that the scan returns the condition that none of the listed items have the Override feature turned on (See Table 3) or a discrete input terminal is set to Local Priority and is activated.

## Command and Frequency-Control Override Hierarchy

Table 3 lists the input conditions and the resulting output control source selections for Command and Frequency control Override operation. The Q9 ASD reads the command registers of the listed control items from the left to the right.

The first item to be read that has the Override feature turned on will be used for Command or Frequency control.

Table 3. Command and Frequency Control Hierarchy.

| Forced F003/ <br> F004 by I/P <br> Terminal <br> (Assign to Local <br> Priority) | Communication <br> Card | RS485 <br> (4-Wire) | RS485 <br> $(2$-Wire) | Panel | F003/F004 <br> (Setting) | Actual Command/ <br> Frequency Mode |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathbf{1}$ | X | X | X | X | X | F003/F004 Setting |
| 0 | $\mathbf{1}$ | X | X | X | X | Communication Card |
| 0 | 0 | $\mathbf{1}$ | X | X | X | RS232/485 |
| 0 | 0 | 0 | $\mathbf{1}$ | X | X | Common Serial |
| 0 | 0 | 0 | 0 | $\mathbf{1}$ | X | Panel |
| 0 | 0 | 0 | 0 | 0 | $\mathbf{1}$ | F003/F004 Setting |

## Command Control Selections

The following is a listing with descriptions of the Command Mode (F003) selections (Program $\Rightarrow$ Utility Group $\Rightarrow$ Command Mode). Settings:

0 - Terminal Block
F003
Terminal Block

Allows for Command control input via the Terminal Board.

1 - Panel Keypad
The Panel Keypad is unavailable at the time of this release.
2 - RS485 (2-Wire)
Used for EOI command control.
3 - RS485 (4-Wire)
Use this setting if using a remotely-mounted EOI for command control. Connect the EOI to the RJ45 connector of the Terminal Board.

4 - (Communication) Option Board
Use this setting if using the optional Communication Board for command control.

## Frequency Control Selections

The following is a listing with descriptions of the

F004
RR

Frequency Mode (F004) selections (Program $\Rightarrow$ Utility Group $\Rightarrow$ Frequency Mode 1).

Settings:
1 - V/I (VI/II)
Used when a 0 to 10 VDC analog input or a $4-20 \mathrm{~mA}$ (or 0 to 1 mA ) DC current input is used as the speed control input. Only one input signal type may be used at a time. Set SW301 to the desired signal type.

2 - RR
Used for a 0 to 10 VDC analog input signal.
3 - RX
Used for a -10 to +10 VDC analog input signal.
4 - Panel Keypad
The Panel Keypad is unavailable at the time of this release.
5 - RS485 (2-Wire)
Used for EOI frequency control.
6 - RS485 (4-Wire)
Use this setting if using a remotely-mounted EOI for frequency control. Connect the EOI to the RJ45 connector of the Terminal Board.

## 7 - (Communication) Option Board

Use this setting if using the optional Communication Board for frequency control.
8 - RX2
Used for a -10 to +10 -volt DC analog input signal.

## 9 - Option V/I

Allows for the use of the optional voltage/current frequency-control interface.

## 10 - UP/DOWN Frequency

A discrete terminal may be configured to increase or decrease the speed of the motor by momentarily connecting the assigned terminal to CC. See F264 on pg. 103 for further information on this feature.

## 11 - Pulse (Option)

Used to allow the system to use a pulsed input for frequency control. See PG Reference 1 on pg. 96 for further information on this feature.

## 12 - Pulse (Motor)

Used to allow the system to use a pulsed input for frequency control. See PG Reference 1 on pg. 96 for further information on this feature.

## System Configuration and Menu Options Root Menu Items

The Mode key accesses the five primary modes of the Q9 ASD: the Frequency Command mode, the Setup mode, the PID Setup mode, the Program mode, and the Monitor mode. From either mode, press the Mode key to loop through to the other four modes (See Figure 25). Press the ESC key from any mode to return to the previous mode until reaching the Frequency Command mode.

The Alarm or Fault information will be displayed in the event of an active Alarm or Fault. Alarm text will be displayed on the Frequency Command screen when active. Fault information will be displayed via a Fault screen. See Alarms, Trips, and Troubleshooting on pg. 195 for more information.


Figure 25. Q9 ASD Root Menu Navigation.

## Frequency Command Mode <br> Frequency Setting

While operating in the Local mode (Local LED is illuminated), the running frequency of the motor may be set from the Frequency Command screen. Using the Rotary Encoder, enter the Frequency Command value, connect ST to CC, provide a Run command ( F and/or R) and then press the Run key. The motor will run at the Frequency Command speed and may be changed while running. See Operation (Local) on pg. 57 for more information on the Frequency Command mode.

## Setup Mode

The Setup mode is comprised of the commonly used configuration items.
The quick-access items are listed below:
Acceleration Time 1 (see pg. 63 for more information).
Deceleration Time 1 (see pg. 63 for more information).
Upper-Limit Frequency (see pg. 63 for more information).
Lower-Limit Frequency (see pg. 64 for more information).
V/I Reference 1 (see pg. 83 for more information).
V/I Frequency 1 (see pg. 83 for more information). V/I Reference 2 (see pg. 84 for more information).
V/I Frequency 2 (see pg. 84 for more information).
Type Reset (see pg. 62 for more information).
V/f Pattern (see pg. 64 for more information).
Electronic Thermal Protection 1 (see pg. 130 for more information).

## PID Setup Mode

The PID Setup (Proportional-Integral-Derivative) mode is comprised of parameter settings that are specific to the PID operating mode. PID is a closed-loop control technique that seeks error minimization by reacting to three values: One that is proportional to the error, one that is representative of the error, and one that is representative of the rate of change of the error.

The quick-access items are listed below:
Command Mode (see pg. 60 for more information).
Frequency Mode 1 (see pg. 60 for more information).
V/I Reference 1 (see pg. 83 for more information).
V/I Frequency 1 (see pg. 83 for more information).
V/I Reference 2 (see pg. 84 for more information).
V/I Frequency 2 (see pg. 84 for more information).
PID Control Switching (see pg. 116 for more information).
PID Feedback Selection (see pg. 117 for more information).
PID Feedback Delay Filter (see pg. 117 for more information).
PID Feedback Proportional (P) Gain (see pg. 117 for more information).
PID Feedback Integral (I) Gain (see pg. 117 for more information).
PID Deviation Upper-Limit (see pg. 117 for more information).
PID Deviation Lower-Limit (see pg. 118 for more information).
PID Feedback Differential (D) Gain (see pg. 118 for more information).
Process Upper-Limit (see pg. 118 for more information).
Process Lower-Limit (see pg. 118 for more information).
PID Control Wait Time (see pg. 118 for more information).
PID Output Upper-Limit (see pg. 118 for more information).
PID Output Lower-Limit (see pg. 119 for more information).
Process Increasing Rate (see pg. 119 for more information).
Process Decreasing Rate (see pg. 119 for more information).
Upper-Limit Frequency (see pg. 63 for more information).
Lower-Limit Frequency (see pg. 64 for more information).
Low Output Disable Time (see pg. 100 for more information).
Acceleration Time 1 (see pg. 63 for more information).
Deceleration Time 1 (see pg. 63 for more information).
Frequency Command Panel (Same as command entered via Frequency Command screen).
PID Feedback (Read-Only — displays active feedback value in Hz ).

## Monitor Mode

The Monitor mode allows the user to monitor motor performance variables, control settings, and configuration data during motor operation. There are 30 items that may be monitored from this mode. The items are listed and described below.

Press the Rotary Encoder to access the listing of monitored parameters. Turn the Rotary Encoder to access subsequent monitored parameters.

Note: $\quad$ The Monitor mode is a read-only mode. The settings cannot be changed from the Monitor mode. For information on how to change the values, see the section titled Default Setting Changes on pg. 57.

Note: $\quad$ The F701 setting will determine if the Current and Voltage values displayed appear as $\boldsymbol{A}$ (Amps) or $\boldsymbol{V}$ (Voltage), or if the value is shown as a \% (Percentage) of the ASD rating.

Frequency at Trip - Displays the running frequency or the at-trip frequency if tripped.
Frequency Reference - Displays the Frequency Setpoint (Commanded Frequency).
Output Current - Displays the Output Current as a percentage of the rated capacity of the ASD.
DC (Bus) Voltage - Displays the Bus Voltage as a percentage of the rated capacity of the ASD.
Output Voltage - Displays the Output Voltage as a percentage of the rated capacity of the ASD.
(Discrete) Input Terminals - Displays any activated discrete input terminals of the Terminal Board.
(Discrete) Output Terminals — Displays any activated discrete output terminals of the Terminal Board.

Run Time - Displays the Cumulative Run Time in hours. Select Clear Run Timer at F007 to reset this reading.

Compensation Frequency - Displays the Output Frequency after the application of the slip compensation correction value (Post Compensation Frequency).

PID Feedback - Provides a status of the PID Real Time Feedback in Hz.
Motor OL Ratio - Displays the real-time Motor Overload value as a percentage of the rated capacity of the motor.

ASD OL Ratio - Displays the real-time ASD Overload as a percentage of the rated capacity of the ASD.

Motor Load - Displays the real-time Motor Load as a percentage of the rated capacity of the motor.

ASD Load - Displays the ASD Load as a percentage of the rated capacity of the ASD.
Input Power - Displays the Input Power in Kilowatts (kW).
Output Power - Displays the Output Power in Kilowatts (kW).
Input kWH - Displays the Input Power in kWH.
Output kWH - Displays the Output Power in kWH.
Direction - Displays the Direction command (Forward/Reverse).
$\mathbf{R R}$ - Displays the $\mathbf{R R}$ input value as a percentage of the full range of the $\mathbf{R R}$ value (Potentiometer input).
*V/I — Displays the $\mathbf{V} / \mathbf{I}$ input setting as a percentage of the full range of the $\mathbf{V} / \mathbf{I}$ value.
Note: The isolated V/I input terminal may receive Current or Voltage to control the output speed or the output torque. The input signal type must be selected at SW301 on the Terminal Board.

The $\boldsymbol{V}$ input setting of $\mathbf{S W 3 0 1}$ is used for the $0-10$ VDC analog input signal and the I input setting of SW301 is used for the $0-20 \mathrm{~mA}$ analog input signal. Either may be used as a frequency or torque control source. Throughout this manual they will be selection-specific and may be listed as V/I.

See parameter F201 for more information on the setup of this input.
$\mathbf{R X}$ - Displays the $\mathbf{R X}$ input setting as a percentage of the full range of the $\mathbf{R X}$ value ( -10 to +10 VDC Input).
$\mathbf{R X 2}$ - Displays the $\mathbf{R X 2}$ input setting as a percentage of the full range of the $\mathbf{R X 2}$ value.

Note: $\quad$ The RX2 terminal function is available on the Expansion IO Card Option 1 Option Board (P/N ETB003Z) only.

FM Output - Displays the magnitude of the function assigned to this terminal relative to the fullscale reading of the FM terminal. This terminal may be configured at F005 for application-specific suitability.

AM Output - Displays the magnitude of the function assigned to this terminal relative to the fullscale reading of the AM terminal. This terminal may be configured at F670 for application-specific suitability.

Fault - Displays the active fault or No Error if there are no errors.
Past Trip 1 - This function records and displays the last trip incurred. Subsequent trips will replace Past Trip 1. As trip records are replaced they are shifted to the next level of the Past Trip locations until being deleted (i.e., Past Trip 1 is moved to Past Trip 2 and then to Past Trip 3 until being shifted out of Past Trip 4). Once shifted out of Past Trip 4 the record is deleted. If no trips have occurred since the last reset, No Error is displayed for each trip record.

Past Trip 2 — Past trip information or None.
Past Trip 3 - Past trip information or None.
Past Trip 4 - Past trip information or None.
Note: An improper ASD setup may cause some trips - reset the ASD to the Factory
Default settings before pursuing a systemic malfunction (Program $\Rightarrow$ Utility Group
$\Rightarrow$ Type Reset $\Rightarrow$ Factory Settings).
Direction - Displays the Direction command (Forward/Reverse).
Discrete Input Terminals - Displays the status (Activated $=$ Reverse Video) of the discrete input terminals of the Terminal Board.

Discrete Output Terminals — Displays the status (Activated = Reverse Video) of the discrete output lines of the Terminal Board.

## Program Mode Menu Navigation

The following table lists the menu items of the Program mode and maps the flow of the menu selections. The Parameter Numbers for the listed functions are provided where applicable.
The functions listed may be viewed, or selected and changed as mapped below or via the Direct Access method: Program $\Rightarrow$ Direct Access $\Rightarrow$ Applicable Parameter Numbers.


Program Mode Menu Navigation

| Primary Menu | Sub Menu | Parameter Name | Parameter Number |
| :---: | :---: | :---: | :---: |
| PID Setup |  | Input Feedback Select | F360 |
|  |  | PID Feedback Delay Filter | F361 |
|  |  | PID Feedback Proportional Gain | F362 |
|  |  | PID Feedback Integral Gain | F363 |
|  |  | PID Upper Deviation Limit | F364 |
|  |  | PID Lower Deviation Limit | F365 |
|  |  | PID Feedback Differential Gain | F366 |
|  |  | Process Upper-Limit | F367 |
|  |  | Process Lower-Limit | F368 |
|  |  | PID Control Wait Time | F369 |
|  |  | PID Output Upper-Limit | F370 |
|  |  | PID Output Lower-Limit | F371 |
|  |  | Process Increasing Rate | F372 |
|  |  | Process Decreasing Rate | F373 |
|  |  | Upper-Limit Frequency $\quad 90.00 \mathrm{HZ}$ | F012 |
|  |  | Lower-Limit Frequency 0.00 HZ | F013 |
|  |  | Low Output Disable Time | F256 |
|  |  | Acceleration Time 1 | F009 |
|  |  | Decel Time $1 \quad 15$ SEC | F010 |
|  |  | Frequency Command Panel | N/A |
|  |  | PID Feedback | F360 |
| Program | Search |  |  |
|  | Direct Access |  |  |
|  | Fundamental 1 | Maximum Output Frequency 90.0 Hz | F011 |

Program Mode Menu Navigation

| Primary Menu | Sub Menu | Parameter Name | Parameter Number |
| :---: | :---: | :---: | :---: |
| Program | Fundamental 1 | Base Frequency 1PER MOTOR NAMEPLATE! <br> USUALLY 60.0 HZ ! | F014 |
|  |  | Voltage Compensation | F307 |
|  |  | Base Voltage 1 | F409 |
|  |  | Disable Forward/Reverse Run $\begin{aligned} & \text { 1=DISABLE } \\ & \text { REVERSE RUN }\end{aligned}$ | F311 |
|  |  | Upper-Limit Frequency $\quad 90.00 \mathrm{HZ}$ | F012 |
|  |  | Lower-Limit Frequency 0.00 HZ | F013 |
|  |  | V/f Pattern 1 = VAriable torque | F015 |
|  |  | Torque Boost 1 | F016 |
|  |  | Acceleration Time $1 \quad 15$ SEC | F009 |
|  |  | Decel Time $1 \quad 15$ SEC | F010 |
|  |  | Accel/Decel Pattern 1 | F502 |
|  | Fundamental 2 | Base Frequency 2 | F170 |
|  |  | Base Voltage 2 | F171 |
|  |  | Torque Boost 2 | F172 |
|  |  | Electronic Thermal Protection 2 | F173 |
|  |  | Acceleration Time 2 | F500 |
|  |  | Deceleration Time 2 | F501 |
|  |  | Accel/Decel Pattern 2 | F503 |
|  |  | Accel/Decel Switching Frequency 1 | F505 |
|  | Panel Control | Panel Direction | F008 |
|  |  | Panel Stopping Pattern | F721 |
|  |  | Panel Accel/Decel Selection | F504 |
|  |  | Switch-On-The-Fly | F295 |
|  |  | Lock CMOD/FMOD | F736 |

Program Mode Menu Navigation

| Primary Menu | Sub Menu | Parameter Name | Parameter Number |
| :---: | :---: | :---: | :---: |
| Program | Input Terminals | F Terminal 2=FWD, NO | F111 |
|  |  | R Terminal | F112 |
|  |  | ST Terminal 6=STANDBY, NO | F113 |
|  |  | RES Terminal | F114 |
|  |  | S1 Terminal 10=RUN PRESET BIT 0, No | F115 |
|  |  | S2 Terminal 12=RUN PRESET BIT 1, NO | F116 |
|  |  | S3 Terminal 14=RUN PRESET BIT 2, NO | F117 |
|  |  | S4 Terminal 16=RUN PRESET BIT 3, No | F118 |
|  |  | LI1 Terminal | F119 |
|  |  | LI2 Terminal | F120 |
|  |  | LI3 Terminal | F121 |
|  |  | LI4 Terminal | F122 |
|  |  | LI5 Terminal | F123 |
|  | Input Terminals | LI6 Terminal | F124 |
|  |  | LI7 Terminal | F125 |
|  |  | LI8 Terminal | F126 |
|  |  | On Terminal | F110 |
|  |  | Direction Priority | F105 |
|  |  | Input Priority | F106 |
|  | Output Terminals | OUT1 Terminal 156=DAMPER CMD, NO | F130 |
|  |  | OUT2 Terminal | F131 |
|  |  | FL Terminal | F132 |
|  |  | OUT3 Terminal | F133 |
|  |  | OUT4 Terminal | F134 |

Program Mode Menu Navigation


Program Mode Menu Navigation

| Primary Menu | Sub Menu | Parameter Name | Parameter Number |
| :---: | :---: | :---: | :---: |
| Program | Special Controls | Forced Fire-Speed | F650 |
|  |  | Preset Speed 15 | F294 |
|  |  | Power Switching | F354 |
|  |  | Power Switching Frequency | F355 |
|  |  | ASD Switching Wait Time | F356 |
|  |  | Commercial Power Wait Time | F357 |
|  |  | Commercial Power Hold Time | F358 |
|  |  | DC Injection Braking Start Frequency | F250 |
|  |  | DC Injection Braking Current | F251 |
|  |  | DC Injection Braking Time | F252 |
|  |  | DC Injection On During Direction Change | F253 |
|  |  | Shaft Stationary | F254 |
|  |  | kWH Memory Selection | F748 |
|  |  | kWH Units Selection | F749 |
|  | Preset Speeds | Preset Speed 1 BACKUP VFD SPEED, <br> PER CUSTOMER SPECS | F018 |
|  |  | Preset Speed 2 | F019 |
|  |  | Preset Speed 3 | F020 |
|  |  | Preset Speed 4 | F021 |
|  |  | Preset Speed 5 | F022 |
|  |  | Preset Speed 6 | F023 |
|  |  | Preset Speed 7 | F024 |
|  |  | Preset Speed 8 | F287 |
|  |  | Preset Speed 9 | F288 |
|  |  | Preset Speed 10 | F289 |

Program Mode Menu Navigation

| Primary Menu | Sub Menu | Parameter Name | Parameter Number |
| :---: | :---: | :---: | :---: |
| Program | Preset Speeds | Preset Speed 11 | F290 |
|  |  | Preset Speed 12 | F291 |
|  |  | Preset Speed 13 | F292 |
|  |  | Preset Speed 14 | F293 |
|  |  | Preset Speed 15 | F294 |
|  | Protection | Dynamic Braking (Not Used) | F304 |
|  |  | Dynamic Braking Resistance (Not Used) | F308 |
|  |  | Dynamic Braking Capacity (Not Used) | F309 |
|  |  | Over-Current Stall Level | F601 |
|  |  | Over-Voltage Stall Enable | F305 |
|  |  | Over-Voltage Stall Level | F626 |
|  |  | Emergency Off Mode Selection | F603 |
|  |  | Emergency Off DC Injection Time | F604 |
|  |  | Number of Retries | F303 |
|  |  | Speed Search Selection | F301 |
|  |  | Ridethrough Mode | F302 |
|  |  | Ridethrough Time | F310 |
|  |  | Under-Voltage Trip | F627 |
|  |  | Overload Reduction Starting Frequency | F606 |
|  |  | Soft Stall Selection | F017 |
|  |  | Trip Save | F602 |
|  |  | Cooling Fan Control | F620 |
|  |  | Run-Time Alarm Setting | F621 |
|  |  | Output Phase Loss | F605 |

Program Mode Menu Navigation

| Primary Menu | Sub Menu | Parameter Name | Parameter Number |
| :---: | :---: | :---: | :---: |
| Program | Protection | Low-Current Trip | F610 |
|  |  | Low-Current Setting | F611 |
|  |  | Low-Current Time | F612 |
|  |  | Low-Current Detect Hysteresis Width | F609 |
|  |  | Abnormal Speed Time | F622 |
|  |  | Overspeed Frequency | F623 |
|  |  | Speed Drop Frequency | F624 |
|  |  | Short Circuit Test | F613 |
|  |  | Over-Torque Trip | F615 |
|  |  | Over-Torque Level (Positive Torque) | F616 |
|  |  | Over-Torque Level (Negative Torque) | F617 |
|  |  | Over-Torque Detection Time | F618 |
| ENABLE, EXCEPT DIS ADD-A-PHASE APPLI |  | Over-Torque Detection Hysteresis | F619 |
|  |  | $\begin{array}{ll} \hline \hline \text { Input Phase Loss } & \begin{array}{l} \text { O=DISABLED, } 1=\text { ENABLE } \\ \text { TRIP ON PHASE LOSS } \end{array} \\ \hline \end{array}$ | F608 |
|  |  | Adding Input Selection | F660 |
|  |  | Multiplying Input Selection | F661 |
|  |  | PM Current Level | F640 |
|  |  | PM Current Time | F641 |
|  | Feedback Settings | PID Switching | F359 |
|  |  | Input Feedback Selection | F360 |
|  |  | Delay Filter | F361 |
|  |  | Proportional Gain | F362 |
|  |  | Integral Gain | F363 |
|  |  | Upper Deviation Limit | F364 |

Program Mode Menu Navigation

| Primary Menu | Sub Menu | Parameter Name | Parameter Number |
| :---: | :---: | :---: | :---: |
| Program | Feedback Settings | Lower Deviation Limit | F365 |
|  |  | Differential Gain | F366 |
|  |  | Process Upper-Limit | F367 |
|  |  | Process Lower-Limit | F368 |
|  |  | PID Wait Time | F369 |
|  |  | PID Output Upper-Limit | F370 |
|  |  | PID Output Lower-Limit | F371 |
|  |  | Process Increasing Rate | F372 |
|  |  | Process Decreasing Rate | F373 |
|  | Communication Settings | ASD Number 1... 247 (EXCEPT 47) | F802 |
|  |  | 2-Wire Baud Rate $0=9600$ | F800 |
|  |  | 4-Wire Baud Rate $0=9600$ | F820 |
|  |  | Parity (RS485 2- and 4-Wire) $0=$ NONE | F801 |
|  |  | Time Out Time (RS485 2- and 4-Wire) 60s | F803 |
|  |  | Time-Out Action (RS485 2- and 4-Wire) 60s | F804 |
|  |  | Send Wait Time (2-Wire) 0.000s | F805 |
|  |  | Send Wait Time (4-Wire) 0.000s | F825 |
|  |  | ASD-to-ASD Comm. (RS485 2-Wire) | F806 |
|  |  | ASD-to-ASD Comm. (RS485 4-Wire) | F826 |
|  |  | Communication Reference Selection | F810 |
|  |  | Communication Reference 1 | F811 |
|  |  | Communication Frequency 1 | F812 |
|  |  | Communication Reference 2 | F813 |
|  |  | Communication Frequency 2 | F814 |

Program Mode Menu Navigation

| Primary Menu | Sub Menu | Parameter Name | Parameter Number |
| :---: | :---: | :---: | :---: |
| Program | Communication Settings | Network Reset | F899 |
|  | AM/FM | FM Assignment | F005 |
|  |  | FM Adjustment | F006 |
|  |  | FM Output Gradient Characteristic | F682 |
|  |  | FM Bias Adjustment | F683 |
|  |  | FM Voltage/Current Output Switching | F681 |
|  |  | AM Assignment | F670 |
|  |  | AM Adjustment | F671 |
|  |  | AM Output Gradient Characteristic | F685 |
|  |  | AM Bias Adjustment | F686 |
| RECOMMEND LOWER F EASIER ON THE MOTOF ON THE EARS. | REQUENCIES: , BUT HARDER | Type Reset | F007 |
|  |  | Command Mode $0=$ TERMINAL BLOCK | F003 |
|  |  | Frequency Mode $1 \quad 1=\mathrm{V} / \mathrm{I}$ | F004 |
|  |  | PWM Carrier Frequency $\begin{aligned} & \text { 1.0... MAX KHZ, DRV } \\ & \text { SPECIFIC, RECOMM } 2.0\end{aligned}$ | F300 |
|  | Utility Group | Panel Frequency Lockout | F730 |
|  |  | CPU Version | N/A |
|  |  | CPU Revision |  |
|  |  | MC Version |  |
|  |  | MC Revision |  |
|  |  | Control EEPROM Version |  |
|  |  | ASD Typeform |  |
|  |  | Frequency Multiplier | F702 |
|  |  | User Unit Type | F703 |
|  |  | Units for Voltage/Current $0=\%$ | F701 |

Program Mode Menu Navigation

| Primary Menu | Sub Menu | Parameter Name | Parameter Number |
| :---: | :---: | :---: | :---: |
| Program | Utility Group | User Units Selection | F092 |
|  | T, 10\%-100\%, RATING IS DOUBLE AMEPLATE RATING. | $\begin{array}{ll}\text { Base Frequency } 1 & \begin{array}{l}\text { MOTOR-DEPENDENT } \\ \text { USUALLY } 60.0\end{array}\end{array}$ | F014 |
|  |  | Base Voltage $1 \underset{\substack{\text { MOTOR-DEPENDENT } \\ \text { E.G. } \\ \text { 480VAC }}}{\text { and }}$ | F409 |
|  |  | Torque Boost 1 | F016 |
|  |  | Electronic Thermal Protection 1 | F600 |
| MOTOR-DRV DEPENDE EG 50\% IF VFD OUTPUT |  | Base Frequency 2 | F170 |
|  |  | Base Voltage 2 | F171 |
|  |  | Torque Boost 2 | F172 |
|  |  | Electronic Thermal Protection 2 | F173 |
|  |  | Autotune Control | F400 |
|  | Motor Settings | Motor Slip Gain | F401 |
|  |  | Autotuning Control 2 | F402 |
|  |  | Motor Rated CapacityMOTOR-DEPENDENT <br> IN KW | F405 |
|  |  | Motor Rated Current M $\begin{aligned} & \text { MOTOR-DEPENDENT } \\ & \text { IN AMPS }\end{aligned}$ | F406 |
|  |  | Motor Rated RPM MOTOR-DEPENDENT | F407 |
|  |  | Motor Constant 1 | F410 |
|  |  | Motor Constant 2 | F411 |
|  |  | Motor Constant 3 | F412 |
|  |  | Motor Constant 4 | F413 |
|  | Frequency Settings | Reference Priority Selection | F200 |
|  |  | Frequency Mode 2 | F207 |
|  |  | Mode 1/Mode 2 Switching Frequency | F208 |
|  |  | V/I Reference $1 \quad 0.00 \%$ | F201 |
|  |  | V/I Frequency $1 \quad 0.00 \mathrm{~Hz}$ | F202 |

Program Mode Menu Navigation

| Primary Menu | Sub Menu | Parameter Name | Parameter Number |
| :---: | :---: | :---: | :---: |
| Program | Frequency Settings | V/I Reference $2 \quad 100.00 \%$ | F203 |
|  |  | V/I Frequency $2 \quad 60.00 \mathrm{HZ}$ | F204 |
|  |  | V/I Torque Reference 1 | F205 |
|  |  | V/I Torque Reference 2 | F206 |
|  |  | RR Reference 1 | F210 |
|  |  | RR Frequency 1 | F211 |
|  |  | RR Reference 2 | F212 |
|  |  | RR Frequency 2 | F213 |
|  |  | RR Torque Reference 1 | F214 |
|  |  | RR Torque Reference 2 | F215 |
|  |  | RX Reference 1 | F216 |
|  |  | RX Frequency 1 | F217 |
|  |  | RX Reference 2 | F218 |
|  |  | RX Frequency 2 | F219 |
|  |  | RX Torque Reference 1 | F220 |
|  |  | RX Torque Reference 2 | F221 |
|  |  | RX2 Reference 1 | F222 |
|  |  | RX2 Frequency 1 | F223 |
|  |  | RX2 Reference 2 | F224 |
|  |  | RX2 Frequency 2 | F225 |
|  |  | BIN Reference 1 | F228 |
|  |  | BIN Frequency 1 | F229 |
|  |  | BIN Reference 2 | F230 |
|  |  | BIN Frequency 2 | F231 |

Program Mode Menu Navigation

| Primary Menu | Sub Menu | Parameter Name | Parameter Number |
| :---: | :---: | :---: | :---: |
| Program | Frequency Settings | PG Reference 1 | F234 |
|  |  | PG Frequency 1 | F235 |
|  |  | PG Reference 2 | F236 |
|  |  | PG Frequency 2 | F237 |
|  |  | Jog Run Frequency | F260 |
|  |  | Jog Stop Control | F261 |
|  | My Function Unit 1 | My Function Selection | F977 |
|  |  | Input Function Target 1 | F900 |
|  |  | Input Function Command 1 | F901 |
|  |  | Input Function Target 2 | F902 |
|  |  | Input Function Command 2 | F903 |
|  |  | Input Function Target 3 | F904 |
|  |  | Output Function Assigned | F905 |
|  | My Function Unit 2 | Input Function Target 1 | F906 |
|  |  | Input Function Command 1 | F907 |
|  |  | Input Function Target 2 | F908 |
|  |  | Input Function Command 2 | F909 |
|  |  | Input Function Target 3 | F910 |
|  |  | Output Function Assigned | F911 |
|  | My Function Unit 3 | Input Function Target 1 | F912 |
|  |  | Input Function Command 1 | F913 |
|  |  | Input Function Target 2 | F914 |
|  |  | Input Function Command 2 | F915 |
|  |  | Input Function Target 3 | F916 |

Program Mode Menu Navigation

| Primary Menu | Sub Menu | Parameter Name | Parameter Number |
| :---: | :---: | :---: | :---: |
| Program | My Function Unit 3 | Output Function Assigned | F917 |
|  | My Function Unit 4 | Input Function Target 1 | F935 |
|  |  | Input Function Command 1 | F936 |
|  |  | Input Function Target 2 | F937 |
|  |  | Input Function Command 2 | F938 |
|  |  | Input Function Target 3 | F939 |
|  |  | Output Function Assigned | F940 |
|  | My Function Unit 5 | Input Function Target 1 | F941 |
|  |  | Input Function Command 1 | F942 |
|  |  | Input Function Target 2 | F943 |
|  |  | Input Function Command 2 | F944 |
|  |  | Input Function Target 3 | F945 |
|  |  | Output Function Assigned | F946 |
|  | My Function Unit 6 | Input Function Target 1 | F947 |
|  |  | Input Function Command 1 | F948 |
|  |  | Input Function Target 2 | F949 |
|  |  | Input Function Command 2 | F950 |
|  |  | Input Function Target 3 | F951 |
|  |  | Output Function Assigned | F952 |
|  | My Function Unit 7 | Input Function Target 1 | F953 |
|  |  | Input Function Command 1 | F954 |
|  |  | Input Function Target 2 | F955 |
|  |  | Input Function Command 2 | F956 |
|  |  | Input Function Target 3 | F957 |

Program Mode Menu Navigation

| Primary Menu | Sub Menu | Parameter Name | Parameter Number |
| :---: | :---: | :---: | :---: |
| Program | My Function Unit 7 | Output Function Assigned | F958 |
|  | My Function Data | My Function Percent Data 1 | F918 |
|  |  | My Function Percent Data 2 | F919 |
|  |  | My Function Percent Data 3 | F920 |
|  |  | My Function Percent Data 4 | F921 |
|  |  | My Function Percent Data 5 | F922 |
|  |  | My Function Frequency Data 1 | F923 |
|  |  | My Function Frequency Data 2 | F924 |
|  |  | My Function Frequency Data 3 | F925 |
|  |  | My Function Frequency Data 4 | F926 |
|  |  | My Function Frequency Data 5 | F927 |
|  |  | My Function Time Data 1 | F928 |
|  |  | My Function Time Data 2 | F929 |
|  |  | My Function Time Data 3 | F930 |
|  |  | My Function Time Data 4 | F931 |
|  |  | My Function Time Data 5 | F932 |
|  |  | My Function Count Data 1 | F933 |
|  |  | My Function Count Data 2 | F934 |
|  | My Function Analog | Input Target 11 | F959 |
|  |  | Assigned Object 11 | F961 |
|  |  | Input Target 21 | F962 |
|  |  | Assigned Object 21 | F964 |
|  | My Function Monitor | Output Function 11 | F965 |
|  |  | Output Command 11 | F966 |

Program Mode Menu Navigation

| Primary Menu | Sub Menu | Parameter Name | Parameter Number |
| :---: | :---: | :---: | :---: |
| Program | My Function Monitor | Output Function 21 | F967 |
|  |  | Output Command 21 | F968 |
|  |  | Output Function 31 | F969 |
|  |  | Output Command 31 | F970 |
|  |  | Output Function 41 | F971 |
|  |  | Output Command 41 | F972 |
| Monitor | Read-Only (See Monit | Mode on pg. 39). | N/A |

## System Operation Operation (Local)

To run the motor perform the following steps:

1. Press the Mode key until the Frequency Command screen is displayed.
2. Press the Local/Remote key to enter the Local mode (Local LED is illuminated).
3. Use the Rotary Encoder to set the desired running speed.

Note: Ensure that there are no personnel around or near the motor or the motor-driven

Frequency Command Screen.
 equipment.
4. Press the Run key (Green Run LED illuminates Red) and the motor runs at the Frequency Command value set at step 3.

Note: $\quad$ The speed of the motor may be changed while the motor is running by using the Rotary Encoder to change the Frequency Command value.
5. Press the Stop-Reset key to stop the motor.

## Default Setting Changes

To change a parameter setting from the keypad, go to the Program menu by pressing the Mode key until Program is displayed.

From the Program menu turn the Rotary Encoder until the desired parameter group is displayed. Press the Rotary Encoder to access the sub-menu items - repeat as required until reaching the parameter to be changed.

Once a parameter setting is displayed, press the Rotary Encoder to enter the Edit mode (parameter title flashes). Turn the Rotary Encoder to change the parameter setting.
While still in the Edit mode, press ESC or the Mode key to exit the menu without saving the change, or press the Rotary Encoder to accept and save the changed setting.

Note: $\quad$ Some parameters use the unsaved changed value until the ASD is Reset or powered off (e.g., Frequency Command, Accel/Decel, etc.).

Turn the Rotary Encoder to repeatedly loop through the complete listing of sub-menu items for a given Program Menu group.

For a complete listing of the Program menu items see the section titled Program Mode Menu Navigation on pg. 41. The menu items are mapped for convenience.

From any menu, press the Mode key to return to the root menu. Repeated Mode key entries loop the system through the root menus as shown in Figure 25 on pg. 37.

## Search (For Default Setting Changes)

A listing of all parameters that have been changed from the factory default settings may be viewed sequentially by accessing the Search screen (Program $\Rightarrow$ Search).

The Search feature allows the user to view (and/or change) the parameters that are different from the factory default settings. From the Search screen, press the Rotary Encoder to start the Search function. Once started, the system automatically scrolls through all of the system parameters and halts once reaching a changed parameter.

After stopping at a changed parameter, the Rotary Encoder may be clicked either clockwise or counter-clockwise once to continue scrolling either forward or reverse, respectively. With each Up or Down click from a stop, the system scrolls and stops at the next parameter that has been changed.

Press the Rotary Encoder once while the system is halted at a changed parameter to enter the Edit mode (Parameter title flashes). Turn the Rotary Encoder to change the setting.

While still in the Edit mode, press the Mode key to exit the Search function without saving the change, press the ESC key to return to the Search mode, or press the Rotary Encoder to accept and save the new setting.

Note: $\quad$ Some parameters use the unsaved changed value until the ASD is reset or powered off (e.g., Frequency Command, Accel/Decel, etc.).

Pressing the Mode key when finished searching or when halted at a changed parameter returns the system to the primary menu loop.

## Direct Access Parameter Information

The Q9 ASD has the ability to allow the user direct access to the motor control functions. There are two ways in which the motor-control parameters may be accessed for modification: Program $\Rightarrow$ Applicable Menu Path or Program $\Rightarrow$ Direct Access $\Rightarrow$ Applicable Parameter Number. Both methods access the parameter via the Program mode. Once accessed, the parameter may be viewed or changed.
The Program mode allows the user to develop an application-specific motor-control profile. Motor control functions may be set to accommodate specific power and timing requirements for a given application. The configurable parameters of the Program mode that have user-accessible Parameter Numbers are listed and described below.

Note: Parameter selections are preceded by the number used to select an item if using communications to write to a parameter location in memory (i.e., F000 $\Rightarrow \underline{0}$-Manual, $\underline{1}$ - No Trip on Acc/Dec, $\underline{2}$-No trip on Acc Only, etc.).

Note: The setup procedures included within this section may require a Reset before performing the procedure. Application-specific settings may then be performed. The pre-Reset conditions may be saved (see F007).

Note: Communications setting changes will require that the power be removed and then re-applied for the changes to take affect.

## Direct Access Parameters/Numbers

## Automatic Acceleration/Deceleration

No Path — Direct Access Only
This parameter is used to adjust the acceleration and deceleration rates in accordance with the applied load automatically.

The adjusted acceleration and deceleration times range from $12.5 \%$ to $800 \%$ of the programmed values for Acceleration Time 1 (F009) and Deceleration Time 1 (F010).

Settings:
0 - Manual
1 - Automatic ACC/DEC
2 - Automatic ACC Only
Note: $\quad$ The motor and the load must be connected prior to selecting Automatic Acceleration/Deceleration.

## Direct Access Number - F000

Parameter Type - Selection List
Factory Default - Manual
Changeable During Run - No

| Automatic Torque Boost | Direct Access Number - F001 |
| :--- | :--- |
| No Path — Direct Access Only | Parameter Type — Selection List |
| This parameter Enables/Disables the ability of the ASD to adjust the output <br> torque in accordance with the applied load automatically. When enabled | Factory Default — Disabled |
| Changeable During Run — No |  |

## Command Mode

Program $\Rightarrow$ Utility Group

The Command Mode Selection establishes the source of the command input for the ASD. Command inputs include Run, Stop, Forward, etc. The Override feature may supersede the Command Mode Selection setting (see Command Mode and Frequency Mode Control on pg. 32).

Settings:
0 - Terminal Block
1 - Panel Keypad
2 - RS485 (2-Wire)
3 - RS485 (4-Wire)
4 - Communication Option Board

## Frequency Mode 1

Program $\Rightarrow$ Utility Group
The Frequency Mode 1 setting establishes the source of the frequency-control input for the ASD. The Frequency Mode 2 setting or the Override feature may supersede the Frequency Mode 1 setting (see Command Mode and Frequency Mode Control on pg. 32 and F200 for more information on this feature).

Settings:
1 - V/I
2 - RR
3 - RX
4 - Panel Keypad
5 - RS485 (2-Wire)
6 - RS485 (4-Wire)
7 - Communication Option Board
8 - RX2 (AI1)
9 - Option V/I
10 - UP/DOWN Frequency (Terminal Board)
11 - Pulse Input (Option)
12 - Pulse Input (Motor CPU)

Direct Access Number - F003
Parameter Type - Selection List
Factory Default - Terminal Block
Changeable During Run - No

Direct Access Number - F004
Parameter Type - Selection List
Factory Default - RR
Changeable During Run - No

## FM Output Terminal Assignment

Program $\Rightarrow$ AM/FM
This setting determines the output function of the FM analog output terminal. The FM output terminal produces an output current that is proportional to the magnitude of the function assigned to this terminal. The available assignments for this output terminal are listed in Table 6 on pg. 189.

Note: To read voltage at this terminal a $100-500 \Omega$ resistor is required and it must be connected from $\boldsymbol{F M}(+)$ to $\boldsymbol{C C}(-)$. The voltage is read across the $100-500 \Omega$ resistor.

Current may be read by connecting an ammeter from $\boldsymbol{F M}(+)$ to CC (-).

The FM analog output has a maximum resolution of $1 / 1024$ and a maximum load rating of 500 ohms.

## FM Terminal Setup Parameters

F005 - Terminal Assignment
F006 - Terminal Adjustment
F681 - Voltage/Current Output Switching
F682 - Output Gradient Characteristic
F683 - Bias Adjustment
F684 - Output Filtering

## FM Output Terminal Adjustment

Program $\Rightarrow$ AM/FM
This parameter is used to calibrate the $\mathbf{F M}$ analog output.
To calibrate the FM analog output, connect a meter (Current or Voltage) to terminals $\mathbf{F M}(+)$ and $\mathbf{C C}(-)$ as described at $\mathbf{F 0 0 5}$.
With the ASD running at a known value (e.g., Output Frequency), adjust this parameter until the associated function set at parameter $\mathbf{F 0 0 5}$ produces the desired DC level output at the FM output terminal.
See F005 for more information on this setting.

Direct Access Number - F005
Parameter Type - Selection List
Factory Default - Output Frequency
Changeable During Run - Yes

Direct Access Number - F006
Parameter Type - Numerical
Factory Default - 493
Changeable During Run - Yes
Minimum - 1
Maximum - 1280

## Type Reset

Program $\Rightarrow$ Utility Group
This feature assists the user when performing fault analysis or by allowing a quick system setup change when required. Performing a Type Reset results in one of the following user-selected post-reset configurations.

Settings:
0 - None
$1-50 \mathrm{~Hz}$ Setting
$2-60 \mathrm{~Hz}$ Setting
3 - Reset to Factory Settings
4 - Clear Past Trips
5 - Clear Run Timer
6 - Initialize Typeform
7 - Save User Settings
8 - Restore User Settings
9 - Clear Cumulative Fan Timer
10 - Accel/Decel Time Setting 0.01 - 600.0 Seconds
11 - Accel/Decel Time Setting 0.1 - 6000.0 Seconds

## Forward/Reverse Run Selection

No Path — Direct Access Only
While operating using the keypad (F003 is set to Panel Keypad) this parameter sets the direction of motor rotation. This setting may be changed during operation. This setting will not override parameter F311 (Forward/Reverse Disable).
If either direction is disabled via parameter F311, the disabled direction will not be recognized if commanded by the keypad. If both directions are disabled via parameter F311, the direction command from the keypad will determine the direction of the motor rotation.

Settings:
0 - Forward
1 - Reverse
2 - Forward (EOI-Switchable F/R)
3 - Reverse (EOI-Switchable F/R)

Direct Access Number - F007
Parameter Type - Selection List
Factory Default - None
Changeable During Run - No

Direct Access Number - F008
Parameter Type - Selection List
Factory Default - Forward
Changeable During Run - Yes

## Acceleration Time 1

Program $\Rightarrow$ Fundamental 1
This parameter specifies the time in seconds for the output of the ASD to go from 0.0 Hz to the Maximum Frequency for the Acceleration 1 profile. The Accel/ Decel Pattern may be set using F502.

Note: An acceleration time shorter than the load will allow may cause nuisance tripping and mechanical stress to loads. Automatic Accel/Decel, Stall, and Ridethrough settings may lengthen the acceleration times.

## Acceleration

The acceleration rate of a motor is determined by several factors: applied power, applied load, and the physical properties of the motor (winding parameters, motor size, etc.). The ASD will control the first of these factors: input power. The settings of the ASD will control the frequency and amplitude of the applied voltage to the motor.

Under most operating conditions, as the output frequency of the ASD increases so does the output voltage (linear acceleration). The ASD has the ability to modify the relationship between frequency and voltage automatically to produce smoother operation or increased (starting) torque (see F502).

## Deceleration Time 1

Program $\Rightarrow$ Fundamental 1
This parameter specifies the time in seconds for the output of the ASD to go from the Maximum Frequency to 0.0 Hz for the Deceleration 1 profile. The Accel/ Decel Pattern may be set using F502.
Note: A deceleration time shorter than the load will allow may cause nuisance tripping and mechanical stress to loads. Automatic Accel/Decel, Stall, and Ridethrough settings may lengthen the deceleration times.

## Maximum Frequency

Program $\Rightarrow$ Fundamental 1
This setting determines the absolute maximum frequency that the ASD can output.
Accel/Decel times are calculated based on the Maximum Frequency setting.
The Maximum Frequency is not limited by this setting while operating in the Drooping Control mode (see F320 for more information on this setting).

Note: $\quad$ This setting may not be lower than the Upper-Limit setting (F012).

## Upper-Limit Frequency

Program $\Rightarrow$ Fundamental 1
This parameter sets the highest frequency that the ASD will accept as a frequency command or frequency setpoint. The ASD may output frequencies higher than the Upper-Limit Frequency (but, lower than the Maximum Frequency) when operating in the PID Control mode, Torque Control mode, or the Vector Control modes (Sensorless or Feedback).

Note: $\quad$ This setting may not be higher than the Maximum Frequency (F011) setting.

## Direct Access Number - F009

Parameter Type - Numerical
Factory Default - (ASD-Dependent)
Changeable During Run - Yes
Minimum - 0.1
Maximum - 6000
Units - Seconds

```
Direct Access Number - F010
Parameter Type - Numerical
Factory Default - (ASD-Dependent)
Changeable During Run - Yes
Minimum - 0.1
Maximum - 6000
Units - Seconds
```

Direct Access Number - F012
Parameter Type - Numerical
Factory Default - (ASD-Dependent)
Changeable During Run - Yes
Minimum - 0.0
Maximum - Max. Freq. (F011)
Units — Hz

Parameter Type - Numerical
Factory Default - (ASD-Dependent)
Changeable During Run - Yes
Minimum - 0.0

Units - Hz

## Lower-Limit Frequency

Program $\Rightarrow$ Fundamental 1
This parameter sets the lowest frequency that the ASD will accept as a frequency command or frequency setpoint. The ASD will output frequencies lower than the Lower-Limit Frequency when accelerating to the lower-limit or decelerating to a stop. Frequencies below the Lower-Limit may also be output when operating in the PID Control mode, Torque Control mode, or the Vector Control modes (Sensorless or Feedback).

## Base Frequency 1

Program $\Rightarrow$ Fundamental 1
The Base Frequency $\mathbf{1}$ setting is the frequency at which the output voltage of the ASD reaches its maximum setting. The Base Frequency Voltage $\mathbf{1}$ parameter is set at F409.
For proper motor operation, the Base Frequency should be set for the nameplated frequency of the motor.

## V/f Pattern

Program $\Rightarrow$ Fundamental 1
This function establishes the relationship between the output frequency and the output voltage.

The Automatic Torque Boost and the Sensorless Vector Control selections use the motor tuning parameters of the ASD to properly configure the ASD for the motor being used. If Load Reactors or Long Lead Filters are used, or if the capacity of the ASD is greater than the motor, manual tuning of the motor parameters may be required for optimum performance.

## Settings:

0 - Constant Torque
1 - Variable Torque
2 - Automatic Torque Boost
3 - Sensorless Vector Control (Speed)
5 - V/f 5-Point Curve
6 - PM Drive
7 - PG Feedback Vector Control (Speed)
9 - Auto Power Save
10 - Dynamic Power Save
Note: $\quad$ When operating in the Vector Control mode the carrier frequency should be set to 2.2 kHz or above.

## Direct Access Number - F013

Parameter Type - Numerical
Factory Default - $\mathbf{0 . 0 0}$
Changeable During Run - Yes
Minimum - 0.00
Maximum - Upper-Limit (F012)
Units - Hz

Direct Access Number - F015
Parameter Type - Selection List
Factory Default - Variable Torque
Changeable During Run - No

## Manual Torque Boost 1

Program $\Rightarrow$ Fundamental 1
The Manual Torque Boost 1 function is used to increase the low frequency torque for high-inertia loads by increasing the output voltage at frequencies below $1 / 2$ of the Base Frequency 1 (F014) setting.
The value programmed as a boost percentage establishes an output voltage vs. output frequency relationship to be used to start the motor or to provide smoother operation.


Note: Setting an excessive Torque Boost level may cause nuisance tripping and mechanical stress to loads.

## Soft Stall Selection

Program $\Rightarrow$ Protection
This parameter is used to protect the motor from an over-current condition by automatically reducing the output frequency when approaching an overload condition.

The Overload/Stall setting and the type of motor being used is selected here to better match the application.
This parameter setting may extend the Over-Voltage Stall time settings.
Settings:
0 - Overload Trip without Stall
1 - Overload Trip with Stall
2 - No Overload without Stall
3 - Stall Only
4 - V/f Motor-Overload without Stall
5 - V/f Motor-Overload with Stall
6 - V/f Motor-No Overload without Stall
7 - V/f Motor-Stall Only

## Direct Access Number - F016

Parameter Type - Numerical
Factory Default - (ASD-Dependent)
Changeable During Run - Yes
Minimum - 0.0
Maximum - 30.0
Units - \%

Direct Access Number - F017
Parameter Type - Selection List
Factory Default - O/L Trip With Stall
Changeable During Run - Yes

## Preset Speed 1

Program $\Rightarrow$ Preset Speeds
Up to 15 output frequency values that fall within the Lower-Limit and the Upper-Limit range may be programmed into the ASD and output as a Preset Speed. This parameter assigns an output frequency to binary number 0001 and is identified as Preset Speed 1. The binary number is applied to $\mathbf{S 1}-\mathbf{S 4}$ of the Terminal Board to output the Preset Speed.

Perform the following setup to allow the system to receive Preset Speed control input at the $\mathbf{S 1} \mathbf{-} \mathbf{S 4}$ terminals:

1. $\quad$ Program $\Rightarrow$ Utility Group $\Rightarrow$ Command Mode $\Rightarrow$ Terminal Block.
2. Program $\Rightarrow$ Input Terminals $\Rightarrow \mathbf{S 1}$ (Set to Preset Speed $1 ;$ LSB of 4 -bit count). Repeat for $\mathbf{S 2}$ - S4 (MSB of 4-bit count) as Preset Speed 2-4, respectively (All set to Normally Open).
3. Program $\Rightarrow$ Preset Speeds $\Rightarrow$ Preset Speed 1 (Set an output frequency as Preset Speed 1; repeat for Preset Speeds $2-15$ as required).
4. Place the system in the Remote mode (Local/Remote LED Off).
5. Provide a Run command (Connect F and/or R to CC ).

Connect $\mathbf{S 1}$ to $\mathbf{C C}$ to run Preset Speed 1 (S1 to CC = 0001 binary).
With S1 - S4 configured to output Preset Speeds (F115 - F118), 0001-1111 may be applied to S1 - S4 of the Terminal Board to run the associated Preset Speed.
If bidirectional operation is required, $\mathbf{F}$ and $\mathbf{R}$ must be connected to $\mathbf{C C}$.
With $\mathbf{S 1}$ being the least significant bit of a binary count, the $\mathbf{S 1} \mathbf{-} \mathbf{S 4}$ settings will produce the programmed speed settings as indicated in the Preset Speed Truth Table to the right.

Direct Access Number - F018
Parameter Type - Numerical
Factory Default - $\mathbf{0 . 0}$
Changeable During Run - Yes
Minimum - Lower-Limit (F013)
Maximum - Upper-Limit (F012)
Units - Hz

Preset Speed Truth Table

| Preset | S4 <br> MSB | S3 | S2 | S1 <br> LSB | Output |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 0 | 0 | 0 | $\mathbf{1}$ | F018 |
| 2 | 0 | 0 | $\mathbf{1}$ | 0 | F019 |
| 3 | 0 | 0 | $\mathbf{1}$ | $\mathbf{1}$ | F020 |
| 4 | 0 | $\mathbf{1}$ | 0 | 0 | F021 |
| 5 | 0 | $\mathbf{1}$ | 0 | $\mathbf{1}$ | F022 |
| 6 | 0 | $\mathbf{1}$ | $\mathbf{1}$ | 0 | F023 |
| 7 | 0 | $\mathbf{1}$ | $\mathbf{1}$ | $\mathbf{1}$ | F024 |
| 8 | $\mathbf{1}$ | 0 | 0 | 0 | F287 |
| 9 | $\mathbf{1}$ | 0 | 0 | $\mathbf{1}$ | F288 |
| 10 | $\mathbf{1}$ | 0 | $\mathbf{1}$ | 0 | F289 |
| 11 | $\mathbf{1}$ | 0 | $\mathbf{1}$ | $\mathbf{1}$ | F290 |
| 12 | $\mathbf{1}$ | $\mathbf{1}$ | 0 | 0 | F291 |
| 13 | $\mathbf{1}$ | $\mathbf{1}$ | 0 | $\mathbf{1}$ | F292 |
| 14 | $\mathbf{1}$ | $\mathbf{1}$ | $\mathbf{1}$ | 0 | F293 |
| 15 | $\mathbf{1}$ | $\mathbf{1}$ | $\mathbf{1}$ | $\mathbf{1}$ | F294 |

Note: $1=$ Terminal connected to $\boldsymbol{C C}$.

Direct Access Number - F019
Parameter Type - Numerical
Factory Default - $\mathbf{0 . 0}$
Changeable During Run - Yes
Minimum - Lower-Limit (F013)
Maximum - Upper-Limit (F012)
Units - Hz

## Preset Speed 3

Program $\Rightarrow$ Preset Speeds
This parameter assigns an output frequency to binary number 0011 and is identified as Preset Speed 3. The binary number is applied to $\mathbf{S 1} \mathbf{- S 4}$ of the Terminal Board to output the Preset Speed (see F018 for more information on this parameter).

Direct Access Number - F020
Parameter Type - Numerical
Factory Default - $\mathbf{0 . 0}$
Changeable During Run - Yes
Minimum - Lower-Limit (F013)
Maximum - Upper-Limit (F012)
Units - Hz
Direct Access Number - F021
Parameter Type - Numerical
Factory Default - $\mathbf{0 . 0}$
Changeable During Run - Yes
Minimum - Lower-Limit (F013)
Maximum - Upper-Limit (F012)
Units - Hz
Preset Speed 5
Program $\Rightarrow$ Preset Speeds
This parameter assigns an output frequency to binary number 0101 and is identified as Preset Speed 5. The binary number is applied to $\mathbf{S 1}-\mathbf{S 4}$ of the Terminal Board to output the Preset Speed (see F018 for more information on this parameter).

Direct Access Number - F022
Parameter Type - Numerical
Factory Default - $\mathbf{0 . 0}$
Changeable During Run - Yes
Minimum - Lower-Limit (F013)
Maximum - Upper-Limit (F012)
Units - Hz

| Preset Speed 6 | Direct Access Number - F023 |
| :---: | :---: |
| Program $\Rightarrow$ Preset Speeds | Parameter Type - Numerical |
|  | Factory Default - 0.0 |
| This parameter assigns an output frequency to binary number 0110 and is identified as Preset Speed 6. The binary number is applied to $\mathbf{S 1}-\mathbf{S 4}$ of the Terminal Board to output the Preset Speed (see F018 for more information on this parameter). | Changeable During Run - Yes |
|  | Minimum - Lower-Limit (F013) |
|  | Maximum - Upper-Limit (F012) |
|  | Units - Hz |
| Preset Speed 7 | Direct Access Number - F024 |
| Program $\Rightarrow$ Preset Speeds | Parameter Type - Numerical |
|  | Factory Default - $\mathbf{0 . 0}$ |
| This parameter assigns an output frequency to binary number 0111 and is identified as Preset Speed 7. The binary number is applied to $\mathbf{S 1}-\mathbf{S 4}$ of the Terminal Board to output the Preset Speed (see F018 for more information on this parameter). | Changeable During Run - Yes |
|  | Minimum - Lower-Limit (F013) |
|  | Maximum - Upper-Limit (F012) |
|  | Units - Hz |

Direct Access Number - F023
Parameter Type - Numerical
Factory Default - $\mathbf{0 . 0}$

Minimum - Lower-Limit (F013)
Maximum - Upper-Limit (F012)
its - Hz

## Automatic Function Selection

No Path — Direct Access Only
This parameter setting is used to configure multiple parameters with the setting of only one parameter. From the selection below multiple parameters may be set as indicated in the table.

Once set, the selected configuration is placed in effect and remains in effect until this parameter is changed or the individual settings are changed.

Set this parameter to Disable to set these parameters individually.
Note: After performing the desired selection the EOI display returns to
Disabled though the selected function has been carried out (i.e., Without this, if selection 1 is performed, F004 and F207 would retain the RR terminal setting regardless of attempts to change the settings individually).

Settings:
0 - Disabled
1 - RR
2 - V/I
3 - RR or VI/II (V/I) Switched via Terminal Board
4 - Keypad = Frequency/Terminal Board = Command
5 - Keypad = Frequency and Command

|  |  | User Settings |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Related Parameters | Default Settings | 0-Disabled | 1-RR | 2-V/I | 3-RR or V/I via TB | 4-Keypad/ Freq. CMD/TB | 5-Keypad Freq/CMD |
| $\begin{array}{\|l\|l\|} \hline \text { CMOD } \\ \text { F003 } \end{array}$ | Terminal Board | N/C |  |  |  | Terminal Board | Keypad |
| FMOD1 F004 | RR | N/C | RR | N/C | RR | Keypad |  |
| S3 Terminal F117 | Preset Speed 3 | N/C |  |  | Freq. Ref. Priority | N/C |  |
| Freq. <br> Priority <br> F200 | Terminal Board | N/C | Terminal Board |  |  |  |  |
| $\begin{aligned} & \text { V/I Setup } \\ & \text { F201 } \end{aligned}$ | 0.0\% | N/C |  |  | 20.0\% | N/C |  |
| FMOD2 <br> F207 | V/I | N/C | RR |  | V/I | Keypad |  |
| $\mathrm{N} / \mathrm{C}=$ No Change - the setting remains as it was before setting parameter F040. |  |  |  |  |  |  |  |

## User Units Selection

Program $\Rightarrow$ Utility Group

This parameter is used to select the displayed unit of measure (relative to the output speed) for the commodity being processed by the ASD.

Settings:
0 - UDU
1 - RPM
2 - PSI
3 - CFM
4 - LBFT

## Low-Speed Signal Output Frequency

No Path — Direct Access Only
The Low-Speed Signal Output Frequency parameter sets a frequency threshold that activates the assigned output terminal for the duration that the ASD output is at or above this setting (see Table 7 on pg. 190 for the available output assignments).

## Speed Reach Frequency

Program $\Rightarrow$ Output Terminals
The Speed Reach Frequency sets a frequency threshold that, when reached or is within the bandwidth specified by parameter F102, activates the assigned output terminal for the duration that the ASD output is within the bandwidth specified (see Table 7 on pg. 190 for the available output assignments).

## Speed Reach Detection Band

Program $\Rightarrow$ Output Terminals
This parameter sets the bandwidth of the Speed Reach Frequency (F101) setting.

Direct Access Number - F092
Parameter Type - Selection List
Factory Default - UDU
Changeable During Run - Yes

Direct Access Number - F100
Parameter Type - Numerical
Factory Default - $\mathbf{0 . 0 0}$
Changeable During Run - Yes
Minimum - 0.00
Maximum - Max. Freq. (F011)
Units - Hz
Direct Access Number - F101
Parameter Type - Numerical
Factory Default - $\mathbf{0 . 0 0}$
Changeable During Run - Yes
Minimum - 0.00
Maximum - Max. Freq. (F011)
Units - Hz
Direct Access Number - F102
Parameter Type - Numerical
Factory Default - $\mathbf{2 . 5 0}$
Changeable During Run - Yes
Minimum - 0.00
Maximum - Max. Freq. (F011)
Units - Hz

## Direction Priority

Program $\Rightarrow$ Input Terminals
The Direction Priority setting determines the disposition of the ASD if the $\mathbf{F}$ and $\mathbf{R}$ control terminals are activated simultaneously.

## Settings:

0 - Reverse
1 - Suspend

The waveforms shown depict the motor response for all combinations of the $\mathbf{F}$ and $\mathbf{R}$ terminal settings if the Reverse option is chosen.

The Suspend setting will decelerate the motor to a stop regardless of the rotation direction when both the $\mathbf{F}$ and $\mathbf{R}$ control terminals are activated.

## Input Terminal Priority

Program $\Rightarrow$ Input Terminals
This parameter is used to allow the Jog and DC Injection Braking input signals to control the ASD when received via the Terminal Board even though the system is in the Local mode.

With this parameter enabled, a Jog command or a DC Injection Braking command received from the Terminal Board will receive priority over commands from the EOI.

See F260 for more information on using the Jog function.
See F250 - F252 for more information on DC Injection Braking.
Settings:
0 — Disabled
1 - Enabled

## Option V/I Terminal Voltage/Current Selection

No Path — Direct Access Only
This parameter is used to set the AI2 input terminal to receive either current or voltage as a control signal.

## Direct Access Number - F105

Parameter Type - Selection List
Factory Default - Suspend
Changeable During Run - No
Simultaneous $F$ and $R$ activation.


Direct Access Number - F106
Parameter Type - Selection List
Factory Default - Disabled
Changeable During Run - No

Note: The Expansion IO Card Option 2 Option Board (P/N ETB004Z) is required to use this terminal.

See the Expansion IO Card Option 2 Instruction Manual (P/N 58686) for more information on the function of this terminal.

Settings:
0 - Voltage Input
1 - Current Input

## Direct Access Number - F109

Parameter Type - Selection List
Factory Default - Voltage Input
Changeable During Run - No

## Always ON 1 Terminal 1

No Path — Direct Access Only
This parameter is used to set the functionality of the virtual discrete input terminal ON. As a virtual terminal, the ON control terminal exists only in memory and is considered to always be in its True (or connected to CC) state.
It is often practical to assign a function to this terminal that the user desires to be maintained regardless of external conditions or operations.
This parameter sets the programmable $\mathbf{O N}$ terminal to any of the user-selectable functions listed in Table 4 on pg. 186.

## F Terminal

Program $\Rightarrow$ Input Terminals
This parameter is used to set the functionality of the $\mathbf{F}$ discrete input terminal. In addition, this input terminal must be specified as Normally Open or Normally Closed.

This parameter sets the programmable $\mathbf{F}$ terminal to any of the user-selectable functions listed in Table 4 on pg. 186.
R Terminal
Program $\Rightarrow$ Input Terminals
This parameter is used to set the functionality of the $\mathbf{R}$ discrete input terminal.
In addition, this input terminal must be specified as Normally Open or Normally
Closed.
This parameter sets the programmable $\mathbf{R}$ terminal to any of the user-selectable
functions listed in Table 4 on pg. 186 .

## ST Terminal

Program $\Rightarrow$ Input Terminals
This parameter is used to set the functionality of the $\mathbf{S T}$ discrete input terminal. In addition, this input terminal must be specified as Normally Open or Normally Closed.

This parameter sets the programmable ST terminal to any of the user-selectable functions listed in Table 4 on pg. 186.

## RES Terminal

Program $\Rightarrow$ Input Terminals
This parameter is used to set the functionality of the RES discrete input terminal. In addition, this input terminal must be specified as Normally Open or Normally Closed.

This parameter sets the programmable RES terminal to any of the user-selectable functions listed in Table 4 on pg. 186.

## Direct Access Number - F110

Parameter Type - Selection List
Factory Default - Unassigned
Changeable During Run - No

Direct Access Number - F111
Parameter Type - Selection List
Factory Default-Forward
Changeable During Run - No

Direct Access Number - F112
Parameter Type - Selection List
Factory Default - Reverse
Changeable During Run - No

Direct Access Number - F113
Parameter Type - Selection List
Factory Default — Standby
Changeable During Run - No

Direct Access Number - F114
Parameter Type - Selection List
Factory Default - Reset
Changeable During Run - No

## S1 Terminal

Program $\Rightarrow$ Input Terminals
This parameter is used to set the functionality of the $\mathbf{S} \mathbf{1}$ discrete input terminal. In addition, this input terminal must be specified as Normally Open or Normally Closed.
This parameter sets the programmable S1 terminal to any of the user-selectable functions listed in Table 4 on pg. 186.

## S2 Terminal

Program $\Rightarrow$ Input Terminals
This parameter is used to set the functionality of the $\mathbf{S} \mathbf{2}$ discrete input terminal. In addition, this input terminal must be specified as Normally Open or Normally Closed.
This parameter sets the programmable $\mathbf{S 2}$ terminal to any of the user-selectable functions listed in Table 4 on pg. 186.

## S3 Terminal

Program $\Rightarrow$ Input Terminals
This parameter is used to set the functionality of the $\mathbf{S} \mathbf{3}$ discrete input terminal. In addition, this input terminal must be specified as Normally Open or Normally Closed.
This parameter sets the programmable S3 terminal to any of the user-selectable functions listed in Table 4 on pg. 186.

## S4 Terminal

Program $\Rightarrow$ Input Terminals
This parameter is used to set the functionality of the $\mathbf{S 4}$ discrete input terminal. In addition, this input terminal must be specified as Normally Open or Normally Closed.
This parameter sets the programmable $\mathbf{S 4}$ terminal to any of the user-selectable functions listed in Table 4 on pg. 186.

## LI1 Terminal

Program $\Rightarrow$ Input Terminals
This parameter is used to set the functionality of the LI1 discrete input terminal. In addition, this input terminal must be specified as Normally Open or Normally Closed.
This setting assigns the function of the programmable LI1 terminal to any of the user-selectable functions listed in Table 4 on pg. 186.

Note: $\quad$ The Expansion IO Card Option 1 Option Board (P/N ETBOO3Z) is required to use this terminal.

See the Expansion IO Card Option 1 Instruction Manual (P/N 58685) for more information on the function of this terminal.

## Direct Access Number - F115

Parameter Type - Selection List
Factory Default - Fire Speed
Changeable During Run - No

Direct Access Number - F116
Parameter Type - Selection List
Factory Default — Preset Speed 2
Changeable During Run - No

Direct Access Number - F117
Parameter Type - Selection List
Factory Default — Damper Feedback
Changeable During Run - No

## Direct Access Number - F118

Parameter Type - Selection List
Factory Default - E-Off
Changeable During Run - No

## Direct Access Number - F119

Parameter Type - Selection List
Factory Default - Unassigned
Changeable During Run - No

## LI2 Terminal

Program $\Rightarrow$ Input Terminals
This parameter is used to set the functionality of the LI2 discrete input terminal. In addition, this input terminal must be specified as Normally Open or Normally Closed.
This setting assigns the function of the programmable LI2 terminal to any of the user-selectable functions listed in Table 4 on pg. 186.

Note: The Expansion IO Card Option 1 Option Board (P/N ETB003Z) is required to use this terminal.

See the Expansion IO Card Option 1 Instruction Manual (P/N 58685) for more information on the function of this terminal.

## LI3 Terminal

Program $\Rightarrow$ Input Terminals
This parameter is used to set the functionality of the LI3 discrete input terminal. In addition, this input terminal must be specified as Normally Open or Normally Closed.
This setting assigns the function of the programmable LI3 terminal to any of the user-selectable functions listed in Table 4 on pg. 186.

Note: $\quad$ The Expansion IO Card Option 1 Option Board (P/N ETBOO3Z) is required to use this terminal.

See the Expansion IO Card Option 1 Instruction Manual (P/N 58685) for more information on the function of this terminal.

## LI4 Terminal

Program $\Rightarrow$ Input Terminals
This parameter is used to set the functionality of the LI4 discrete input terminal. In addition, this input terminal must be specified as Normally Open or Normally Closed.
This setting assigns the function of the programmable LI4 terminal to any of the user-selectable functions listed in Table 4 on pg. 186.

Note: $\quad$ The Expansion IO Card Option 1 Option Board (P/N ETBOO3Z) is required to use this terminal.

See the Expansion IO Card Option 1 Instruction Manual (P/N 58685) for more information on the function of this terminal.

## Direct Access Number - F120

Parameter Type - Selection List
Factory Default - Unassigned
Changeable During Run - No

## Direct Access Number - F121

Parameter Type - Selection List
Factory Default - Unassigned
Changeable During Run - No

## Direct Access Number - F122

Parameter Type - Selection List
Factory Default - Unassigned
Changeable During Run - No

## LI5 Terminal

Program $\Rightarrow$ Input Terminals
This parameter is used to set the functionality of the LI5 discrete input terminal. In addition, this input terminal must be specified as Normally Open or Normally Closed.
This setting assigns the function of the programmable LI5 terminal to any of the user-selectable functions listed in Table 4 on pg. 186.

Note: $\quad$ The Expansion IO Card Option 2 Option Board (P/N ETB004Z) is required to use this terminal.

See the Expansion IO Card Option 2 Instruction Manual (P/N 58686) for more information on the function of this terminal.

## LI6 Terminal

Program $\Rightarrow$ Input Terminals
This parameter is used to set the functionality of the LI6 discrete input terminal. In addition, this input terminal must be specified as Normally Open or Normally Closed.
This setting assigns the function of the programmable LI6 terminal to any of the user-selectable functions listed in Table 4 on pg. 186

Note: $\quad$ The Expansion IO Card Option 2 Option Board (P/N ETB004Z) is required to use this terminal.

See the Expansion IO Card Option 2 Instruction Manual (P/N 58686) for more information on the function of this terminal.

## LI7 Terminal

Program $\Rightarrow$ Input Terminals
This parameter is used to set the functionality of the LI7 discrete input terminal. In addition, this input terminal must be specified as Normally Open or Normally Closed.
This setting assigns the function of the programmable LI7 terminal to any of the user-selectable functions listed in Table 4 on pg. 186.

Note: $\quad$ The Expansion IO Card Option 2 Option Board (P/N ETBOO4Z) is required to use this terminal.

See the Expansion IO Card Option 2 Instruction Manual (P/N 58686) for more information on the function of this terminal.

## Direct Access Number - F123

Parameter Type - Selection List
Factory Default - Unassigned
Changeable During Run - No

## Direct Access Number - F124

Parameter Type - Selection List
Factory Default - Unassigned
Changeable During Run - No

## Direct Access Number - F125

Parameter Type - Selection List
Factory Default - Unassigned
Changeable During Run - No

## LI8 Terminal

Program $\Rightarrow$ Input Terminals
This parameter is used to set the functionality of the LI8 discrete input terminal. In addition, this input terminal must be specified as Normally Open or Normally Closed.
This setting assigns the function of the programmable LI8 terminal to any of the user-selectable functions listed in Table 4 on pg. 186.

Note: The Expansion IO Card Option 2 Option Board (P/N ETB004Z) is required to use this terminal.

See the Expansion IO Card Option 2 Instruction Manual (P/N 58686) for more information on the function of this terminal.

## OUT1 Terminal

Program $\Rightarrow$ Output Terminals
This parameter is used to set the functionality of the OUT1 discrete output terminals O1A and O1B.

The O1A and O1B (OUT1) output terminals change states (open or close) as a function of a user-selected event. See Table 7 on pg. 190 for listing the possible assignments for the OUT1 terminals.

In addition, the output terminals must be specified as Normally Open or Normally Closed.

## OUT2 Terminal

Program $\Rightarrow$ Output Terminals

This parameter is used to set the functionality of the OUT2 discrete output terminals $\mathbf{O 2 A}$ and $\mathbf{O 2 B}$.

The O2A and O2B (OUT2) output terminals change states (open or close) as a function of a user-selected event. See Table 7 on pg. 190 for listing the possible assignments for the OUT2 terminals.

In addition, the output terminals must be specified as Normally Open or Normally Closed.

## FL Terminal

Program $\Rightarrow$ Output Terminals
This parameter is used to set the functionality of the $\mathbf{F L}$ output terminals to 1 of the functions listed in Table 7 on pg. 190.
In addition, the output terminals must be specified as Normally Open or Normally Closed.


## Direct Access Number - F126

Parameter Type - Selection List
Factory Default - Unassigned
Changeable During Run - No

## Direct Access Number - F130

Parameter Type - Selection List
Factory Default - Damper Command
Changeable During Run - No

Direct Access Number - F131
Parameter Type - Selection List
Factory Default - RCH (Acc/Dec Complete)
Changeable During Run - No

Direct Access Number - F132
Parameter Type - Selection List
Factory Default - Fault (All)
Changeable During Run - No

## OUT3 Terminal

Program $\Rightarrow$ Output Terminals

This parameter is used to set the functionality of the OUT3 discrete output terminal.

In addition, this input terminal must be specified as Normally Open or Normally Closed.
This setting assigns the function of the programmable OUT3 terminal to any of the user-selectable functions listed in Table 7 on pg. 190.

Note: The Expansion IO Card Option 1 Option Board (P/N ETB003Z) is required to use this terminal.

See the Expansion IO Card Option 1 Instruction Manual (P/N 58685) for more information on the function of this terminal.

## OUT4 Terminal

Program $\Rightarrow$ Output Terminals
This parameter is used to set the functionality of the OUT4 discrete output terminal.

In addition, this input terminal must be specified as Normally Open or Normally Closed.

This setting assigns the function of the programmable OUT4 terminal to any of the user-selectable functions listed in Table 7 on pg. 190.

Note: The Expansion IO Card Option 1 Option Board (P/N ETBOO3Z) is required to use this terminal.

See the Expansion IO Card Option 1 Instruction Manual (P/N 58685) for more information on the function of this terminal.

## R1 Terminal

Program $\Rightarrow$ Output Terminals
This parameter is used to set the functionality of the $\mathbf{R 1}$ discrete output terminal. In addition, this input terminal must be specified as Normally Open or Normally Closed.

This setting assigns the function of the programmable $\mathbf{R 1}$ terminal to any of the user-selectable functions listed in Table 7 on pg. 190.

Note: $\quad$ The Expansion IO Card Option 1 Option Board (P/N ETB003Z) is required to use this terminal.

See the Expansion IO Card Option 1 Instruction Manual (P/N 58685) for more information on the function of this terminal.

## Direct Access Number - F133

Parameter Type - Selection List
Factory Default - Always OFF
Changeable During Run - No

## Direct Access Number - F134

Parameter Type - Selection List
Factory Default - Always OFF
Changeable During Run - No

Direct Access Number - F135
Parameter Type - Selection List
Factory Default - Always OFF
Changeable During Run - No

## OUT5 Terminal

Program $\Rightarrow$ Output Terminals

This parameter is used to set the functionality of the OUT5 discrete output terminal.

In addition, this output terminal must be specified as Normally Open or Normally Closed.
This setting assigns the function of the programmable OUT5 terminal to any of the user-selectable functions listed in Table 7 on pg. 190.

Note: The Expansion IO Card Option 2 Option Board (P/N ETB004Z) is required to use this terminal.

See the Expansion IO Card Option 2 Instruction Manual (P/N 58686) for more information on the function of this terminal.

OUT6 Terminal
Program $\Rightarrow$ Output Terminals
This parameter is used to set the functionality of the OUT6 discrete output terminal.

In addition, this output terminal must be specified as Normally Open or Normally Closed.

This setting assigns the function of the programmable OUT6 terminal to any of the user-selectable functions listed in Table 7 on pg. 190.

Note: The Expansion IO Card Option 2 Option Board (P/N ETB004Z) is required to use this terminal.

See the Expansion IO Card Option 2 Instruction Manual (P/N 58686) for more information on the function of this terminal.

## R2 Terminal

Program $\Rightarrow$ Output Terminals
This parameter is used to set the functionality of the $\mathbf{R 2}$ discrete output terminal. In addition, this output terminal must be specified as Normally Open or Normally Closed.

This setting assigns the function of the programmable $\mathbf{R 2}$ terminal to any of the user-selectable functions listed in Table 7 on pg. 190.

Note: $\quad$ The Expansion IO Card Option 2 Option Board (P/N ETB004Z) is required to use this terminal.

See the Expansion IO Card Option 2 Instruction Manual (P/N 58686) for more information on the function of this terminal.

## Output Terminal 10 (R3) Function

No Path — Direct Access Only
This parameter sets the functionality of the $\mathbf{R} \mathbf{3}$ output terminal to any of the userselectable functions listed in Table 7 on pg. 190.
In addition, the output terminals must be specified as Normally Open or Normally Closed.
See the instruction manual for the 16-Bit BIN/BCD option for more information on the function of this terminal.

## Direct Access Number - F136

Parameter Type - Selection List
Factory Default - Always Off
Changeable During Run - No

Direct Access Number - F137
Parameter Type - Selection List
Factory Default - Always Off
Changeable During Run - No

## Direct Access Number - F138 <br> Parameter Type - Selection List <br> Factory Default - Always Off

Changeable During Run - No

## Output Terminal 11 (R4) Function

No Path — Direct Access Only
This parameter sets the functionality of the $\mathbf{R 4}$ output terminal to any of the userselectable functions listed in Table 7 on pg. 190.
In addition, the output terminals must be specified as Normally Open or Normally Closed.
See the instruction manual for the 16-Bit BIN/BCD option for more information on the function of this terminal.

## Base Frequency 2

Program $\Rightarrow$ Fundamental 2
The Base Frequency 2 setting is the frequency at which the output voltage of the ASD reaches its maximum setting. The Base Frequency Voltage $\mathbf{2}$ parameter is set at F171.
This parameter is used only when the parameters for motor number $\mathbf{2}$ are configured and selected. Motor number $\mathbf{2}$ may be selected by a properly configured input terminal (see Table 4 on pg. 186).
For proper motor operation, the Base Frequency should be set for the nameplated frequency of the motor.

## Base Frequency Voltage 2

Program $\Rightarrow$ Fundamental 2
The Base Frequency Voltage $\mathbf{2}$ setting is the Motor $\mathbf{2}$ output voltage at the Base Frequency (F170). Regardless of the programmed value, the output voltage cannot be higher than the input voltage.
The actual output voltage will be influenced by the input voltage of the ASD and the Voltage Compensation setting (F307).
This parameter is used only when the parameters for motor number $\mathbf{2}$ are configured and selected. Motor number $\mathbf{2}$ may be selected by a properly configured input terminal (see Table 4 on pg. 186).

| Manual Torque Boost 2 | Direct Access Number - F172 |
| :---: | :---: |
| Program $\Rightarrow$ Fundamental 2 | Parameter Type - Numerical |
|  | Factory Default - (ASD-Dependent) |
| The Manual Torque Boost 2 function is used to increase the low frequency torque for high inertia loads by increasing the output voltage at frequencies below | Changeable During Run - Yes |
| $1 / 2$ of the Base Frequency 2 setting (F170). | Minimum - 0.0 |
| See parameter F016 (Manual Torque Boost 1) for an explanation of torque boost. | Maximum - 30.0 |
| This parameter is used only when the parameters for motor number $\mathbf{2}$ are configured and selected. Motor number $\mathbf{2}$ may be selected by a properly configured input terminal (see Table 4 on pg. 186). | Units - \% |

Direct Access Number - F169
Parameter Type - Selection List
Factory Default - OFF
Changeable During Run - No

Direct Access Number - F170
Parameter Type - Numerical
Factory Default - $\mathbf{6 0 . 0}$
Changeable During Run - Yes
Minimum - 25.0
Maximum - 299.0
Units - Hz

Direct Access Number - F171
Parameter Type - Numerical
Factory Default - (ASD-Dependent)
Changeable During Run - Yes
Minimum - 50.0
Maximum - 660.0
Units - Volts

Direct Access Number - F172
Parameter Type - Numerical
Factory Default - (ASD-Dependent)
Changeable During Run - Yes
Minimum - 0.0
Maximum - 30.0
Units - \%

## Motor Overload Protection Level 2

## No Path — Direct Access Only

The Motor 2 Overload Protection Level parameter specifies the motor overload current level for motor number 2. This value is entered as either a percentage of the full load rating of the ASD or as the FLA of the motor.
The unit of measurement for this parameter may be set to Amps (A/V) or it may be set as a percentage of the ASD rating. The name-plated FLA of the motor may be entered directly when Amps is selected as the unit of measurement (see F701 to change the display unit).
The Motor 2 Overload Protection Level setting will be displayed in Amps if the EOI display units are set to $\mathbf{A} / \mathbf{V}$ rather than \% .

V/f 5-Point Setting Frequency 1
No Path — Direct Access Only
The V/f 5-Point Setting Frequency 1 setting establishes the frequency that is to be associated with the voltage setting of F191 (V/f 5-Point Setting Voltage 1).
The V/f 5-point settings define a volts per hertz relationship for the startup output of the ASD.
To enable this function, set the V/f Pattern (F015) selection to the V/f 5-Point Curve setting.
V/f Curves may be useful in starting high inertia loads such as rotary drum vacuum filters.


## Direct Access Number - F173

Parameter Type - Numerical
Factory Default - $\mathbf{1 0 0}$
Changeable During Run - Yes
Minimum - 10
Maximum - 100
Units - \%

Direct Access Number - F190
Parameter Type - Numerical
Factory Default - $\mathbf{0 . 0 0}$
Changeable During Run - No
Minimum - 0.00
Maximum - Max. Freq. (F011)
Units - Hz

## V/f 5-Point Setting Voltage 1

No Path — Direct Access Only
The V/f 5-Point Setting Voltage 1 establishes the output voltage level that is to be associated with the frequency setting of F190 (V/f 5-Point Setting Frequency 1).

The F701 parameter setting will determine if the on-screen selection for this parameter appears in the form of a Voltage (V) or as a Percentage (\%) of the ASD rating.
If using Voltage as a unit of measure and with no voltage correction (F307
Disabled), the limit of the on-screen display value for this parameter is 200 volts for the 230 -volt ASD and 400 volts for the 460 -volt ASD.

The actual output voltage is scaled to the maximum EOI display values (e.g., a 100 -volt EOI display corresponds to a 115 -volt actual output for the 230 -volt ASD - $1 / 2$ of the full display range).
If using \% as a unit of measure and with no voltage correction (F307 Disabled), the ASD output voltage will be the percentage setting times 230 for the 230 -volt unit (or \% times 460 volts for the 460-volt unit).
See F190 for additional information on this setting.


## Direct Access Number - F191

Parameter Type - Numerical
Factory Default - $\mathbf{0 . 0}$
Changeable During Run - No
Minimum - 0.0
Maximum - 100.0
Units - V or \% (F701)

[^0]
## V/f 5-Point Setting Voltage 2

No Path — Direct Access Only
The V/f 5-Point Setting Voltage 2 establishes the output voltage level that is to be associated with the frequency setting of F192 (V/f 5-Point Setting Frequency 2).

The F701 parameter setting will determine if the selection for this parameter appears in the form of a Voltage (V) or as a Percentage (\%) of the ASD rating.
The default setting is \%.
See F190 and F191 for additional information on this setting.

V/f 5-Point Setting Frequency 3
No Path — Direct Access Only
The V/f 5-Point Setting Frequency $\mathbf{3}$ sets the frequency to be associated with the voltage setting of parameter F195 (V/f 5-Point Setting Voltage 3).
See F190 and F191 for additional information on this setting.

## V/f 5-Point Setting Voltage 3

No Path — Direct Access Only
The V/f 5-Point Setting Voltage 3 establishes the output voltage level that is to be associated with the frequency setting of F194 (V/f 5-Point Setting Frequency 3).

The F701 parameter setting will determine if the selection for this parameter appears in the form of a Voltage (V) or as a Percentage (\%) of the ASD rating.

The default setting is \%.
See F190 and F191 for additional information on this setting.

## V/f 5-Point Setting Frequency 4

No Path — Direct Access Only
The V/f 5-Point Setting Frequency $\mathbf{4}$ sets the frequency to be associated with the voltage setting of parameter F197 (V/f 5-Point Setting Voltage 4).

See F190 and F191 for additional information on this setting.

## V/f 5-Point Setting Voltage 4

No Path — Direct Access Only
The V/f 5-Point Setting Voltage 4 establishes the output voltage level that is to be associated with the frequency setting of F196 (V/f 5-Point Setting Frequency 4).

The F701 parameter setting will determine if the selection for this parameter appears in the form of a Voltage (V) or as a Percentage (\%) of the ASD rating.

The default setting is \%.
See F190 and F191 for additional information on this setting.

Direct Access Number - F193
Parameter Type - Numerical
Factory Default - $\mathbf{0 . 0}$
Changeable During Run - No
Minimum - 0.0
Maximum - 100.0
Units - V or \% (F701)
Direct Access Number - F194
Parameter Type - Numerical
Factory Default — $\mathbf{0 . 0 0}$
Changeable During Run — No
Minimum — 0.00
Maximum — Max. Freq. (F011)
Units — Hz

Units - Hz

Direct Access Number - F196
Parameter Type - Numerical
Factory Default - $\mathbf{0 . 0 0}$
Changeable During Run - No
Minimum - 0.00
Maximum - Max. Freq. (F011)
Units - Hz

## V/f 5-Point Setting Frequency 5

No Path — Direct Access Only
The V/f 5-Point Setting Frequency 5 sets the frequency to be associated with the voltage setting of parameter F199 (V/f 5-Point Setting Voltage 5).
See F190 and F191 for additional information on this setting.

## V/f 5-Point Setting Voltage 5

No Path — Direct Access Only
The V/f 5-Point Setting Voltage 5 establishes the output voltage level that is to be associated with the frequency setting of F198 (V/f 5-Point Setting Frequency 5).

The F701 parameter setting will determine if the selection for this parameter appears in the form of a Voltage (V) or as a Percentage (\%) of the ASD rating.
The default setting is \%.
See F190 and F191 for additional information on this setting.

## Frequency Priority Selection

Program $\Rightarrow$ Frequency Settings
Either Frequency Mode 1 or Frequency Mode 2 may control the output frequency of the ASD. This parameter determines which of the two will control the output frequency and the conditions in which control will be switched from one to the other.

Note: Frequency Mode is abbreviated as FMOD.
Settings:
0 - FMOD Changed by Terminal Board (Frequency Mode)
1 - FMOD (F208) (Frequency Mode)
The Frequency Mode 1 or Frequency Mode 2 selection specifies the source of the input frequency command signal. These selections are performed at F004 and F207, respectively.

If FMOD changed by Terminal Board is selected here, the ASD will follow the control of the discrete input terminal assigned the function of Frequency Priority. The discrete terminal Frequency Priority will toggle control to and from Frequency Mode 1 and Frequency Mode 2 with each activation/ deactivation.

If FMOD (F208) is selected here, the ASD will follow the control of the Frequency Mode 1 setting for the duration that the commanded frequency of the Frequency Mode 1 setting is greater than the setting of F208.

If the commanded frequency of the Frequency Mode $\mathbf{1}$ setting is less than or equal to the setting of F208 the ASD will follow the setting of Frequency Mode 2.

Direct Access Number - F198
Parameter Type - Numerical
Factory Default - $\mathbf{0 . 0 0}$
Changeable During Run - No
Minimum - 0.00
Maximum - Max. Freq. (F011)
Units - Hz
Direct Access Number - F199
Parameter Type - Numerical
Factory Default - $\mathbf{0 . 0}$
Changeable During Run - No
Minimum - 0.0
Maximum - 100.0
Units - V or \% (F701)

Direct Access Number - F200
Parameter Type - Selection List
Factory Default - FMOD (changed by TB)

Changeable During Run - Yes


If the frequency command of
Frequency Mode 1 is greater
than the F208 setting,
Frequency Mode 1 has priority over Frequency Mode 2.
If the frequency command of Frequency
Mode 1 is equal to or less than the F208 setting, Frequency Mode 2 has priority.

## V/I Reference 1

Program $\Rightarrow$ Frequency Settings
This parameter is used to set the gain and bias of the isolated $\mathbf{V} / \mathbf{I}$ input terminal when the $\mathbf{V} / \mathbf{I}$ terminal is used as the control input while operating in the Speed Control mode or the Torque Control mode.
This parameter sets the $\mathbf{V} / \mathbf{I}$ input level that is associated with the V/I Frequency 1 setting when operating in the Speed control mode or is associated with the V/I Torque Reference 1 setting when operating in the Torque Control mode.

Note: See note on pg. 40 for more information on the V/I terminal.

## V/I Input Speed Control Setup

Perform the following setup to allow the system to receive Speed control input at the $\mathbf{V} / \mathbf{I}$ input terminal:

- Set SW301 of the Terminal Board to Voltage if using a control voltage or to Current if using a control current (see Figure 9 on pg. 22).
- Program $\Rightarrow$ Utility Group $\Rightarrow$ Frequency Mode $1 \Rightarrow$ V/I.
- Program $\Rightarrow$ Utility Group $\Rightarrow$ Command Mode $\Rightarrow$ Terminal Block.


## Speed Control

Perform the following setup to allow the system to perform Speed control from the $\mathbf{V} / \mathbf{I}$ input terminal:

- Set V/I Frequency 1 (F202).
- Set V/I Reference 1 (F201) - the input analog signal level that corresponds to the frequency setting at V/I Frequency 1.
- Set V/I Frequency 2 (F204).
- Set V/I Reference 2 (F203) - the input analog signal level that corresponds to the frequency setting at V/I Frequency 2.
- Provide a Run command (F and/or R).

Once set, as the $\mathbf{V}$ input voltage changes or the $\mathbf{I}$ input current changes, the output frequency of the ASD will vary in accordance with the above settings.
This parameter value is entered as $0 \%$ to $100 \%$ of the $\mathbf{V} / \mathbf{I}$ input signal range.
Note: When using the isolated V/I input terminal the IICC terminal must be used as the return (Negative) connection.

## V/I Frequency 1

Program $\Rightarrow$ Frequency Settings
This parameter is used to set the gain and bias of the isolated $\mathbf{V} / \mathbf{I}$ input terminal when the $\mathbf{V} / \mathbf{I}$ terminal is used as the control input while operating in the Speed Control mode.

This parameter sets V/I Frequency 1 and is the frequency that is associated with the setting of V/I Reference 1 when operating in the Speed Control mode.
See V/I Reference 1 (F201) for more information on this setting.

## Direct Access Number - F201

Parameter Type - Numerical
Factory Default - $\mathbf{0}$
Changeable During Run - Yes
Minimum - 0
Maximum - 100
Units - \%


Direct Access Number - F202
Parameter Type - Numerical
Factory Default - $\mathbf{0 . 0 0}$
Changeable During Run - Yes
Minimum - 0.00
Maximum - Max. Freq. (F011)
Units - Hz

## V/I Reference 2

Program $\Rightarrow$ Frequency Settings
This parameter is used to set the gain and bias of the isolated $\mathbf{V} / \mathbf{I}$ input terminal when the $\mathbf{V} / \mathbf{I}$ terminal is used as the control input while operating in the Speed Control mode or the Torque Control mode.

This parameter sets the $\mathbf{V} / \mathbf{I}$ input level that is associated with V/I Frequency 2 when operating in the Speed control mode or is associated with the V/I Torque Reference 2 when operating in the Torque Control mode.

This value is entered as $0 \%$ to $100 \%$ of the $\mathbf{V} / \mathbf{I}$ input signal range.
See V/I Reference 1 for more information on this setting when used for Speed control.
See V/I Torque Reference 1 (F205) for more information on this setting when used for Torque Control.

## V/I Frequency 2

Program $\Rightarrow$ Frequency Settings
This parameter is used to set the gain and bias of the isolated $\mathbf{V} / \mathbf{I}$ input terminal when the $\mathbf{V} / \mathbf{I}$ terminal is used as the control input while operating in the Speed Control mode.

This parameter sets V/I Frequency 2 and is the frequency that is associated with the setting of V/I Reference 2 when operating in the Speed Control mode.

See V/I Reference 1 (F201) for more information on this setting.

## Direct Access Number - F203

Parameter Type - Numerical
Factory Default - $\mathbf{1 0 0}$
Changeable During Run - Yes
Minimum - 0
Maximum - 100
Units - \%

## Direct Access Number - F204

Parameter Type - Numerical
Factory Default - $\mathbf{6 0 . 0 0}$
Changeable During Run - Yes
Minimum — 0.00
Maximum - Max. Freq. (F011)
Units - Hz

## V/I Torque Reference 1

Program $\Rightarrow$ Frequency Settings
This parameter is used to set the gain and bias of the isolated $\mathbf{V} / \mathbf{I}$ input terminal when the $\mathbf{V} / \mathbf{I}$ terminal is used as the control input while operating in the Torque Control mode.

## V/I Input Torque Control Setup

Perform the following setup to allow the system to receive Torque Control input at the $\mathbf{V} / \mathbf{I}$ input terminal:

- Set SW301 of the Terminal Board to Voltage if using a control voltage or to Current if using a control current (see Figure 9 on pg. 22).
- Program $\Rightarrow$ Utility Group $\Rightarrow$ Frequency Mode $1 \Rightarrow$ V/I.
- Program $\Rightarrow$ Utility Group $\Rightarrow$ Command Mode $\Rightarrow$ Terminal Block.


## Torque Control

Perform the following setup to allow the system to perform Torque Control from the $\mathbf{V} / \mathbf{I}$ input terminal:

- Set V/I Torque Reference 1 (F205).
- Set V/I Reference 1 (F201) - the input analog signal level that corresponds to the torque setting at $\mathrm{V} / \mathrm{I}$ Torque Reference 1.
- Set V/I Torque Reference 2 (F206).
- Set V/I Torque Reference 2 (F203) - the input analog signal level that corresponds to the torque setting at V/I Torque Reference 2.
- Provide a Run command (F and/or R).

Torque Control is accomplished by establishing an associated $\mathbf{V} / \mathbf{f}$ output pattern for a given $\mathbf{V} / \mathbf{I}$ input level.
Once set, as the $\mathbf{V}$ input voltage changes or the $\mathbf{I}$ input current changes, the output torque of the ASD will vary in accordance with the above settings.

This parameter sets V/I Torque Reference 1 and is the output torque value that is associated with the setting of V/I Reference 1 when operating in the Torque Control mode.

This value is entered as $0 \%$ to $250 \%$ of the rated torque.
Note: When using the isolated V/I input terminal the IICC terminal must be used as the return (Negative) connection.

## V/I Torque Reference 2

Program $\Rightarrow$ Frequency Settings
This parameter is used to set the gain and bias of the isolated $\mathbf{V} / \mathbf{I}$ input terminal when the $\mathbf{V} / \mathbf{I}$ terminal is used as the control input while operating in the Torque Control mode.
Torque Control is accomplished by establishing an associated $\mathbf{V} / \mathbf{f}$ output pattern for a given $\mathbf{V} / \mathbf{I}$ input level.
This parameter sets V/I Torque Reference 2 and is the output torque value that is associated with the setting of V/I Reference 2 when operating in the Torque Control mode.
This value is entered as $0 \%$ to $250 \%$ of the rated torque.
See V/I Torque Reference 1 (F205) for more information on this setting.

## Direct Access Number - F205

Parameter Type - Numerical
Factory Default - $\mathbf{0 . 0 0}$
Changeable During Run - Yes
Minimum - 0.00
Maximum - 250.00
Units - \%

Torque Settings


Direct Access Number - F206
Parameter Type - Numerical
Factory Default - $\mathbf{1 0 0 . 0 0}$
Changeable During Run - Yes
Minimum - 0.00
Maximum - 250.00
Units - \%

## Frequency Mode 2

Program $\Rightarrow$ Frequency Settings
This parameter is used to set the source of the frequency command signal to be used as Frequency Mode 2 in the event that Frequency Mode $\mathbf{1}$ is disabled or if Frequency Mode $\mathbf{2}$ is set up as the primary control parameter.

See F004 and F200 for additional information on this setting.
Settings:
1 - V/I
2 - RR
3 - RX
4 - Panel Keypad
5 - RS485 (2-Wire)
6 - RS485 (4-Wire)
7 - Communication Option Board
8 - RX2 (AI1)
9 - Option V/I
10 - UP/DOWN Frequency (Terminal Board)
11 - Pulse Input (Option)
12 - Pulse Input (Motor CPU)
13 - Binary/BCD Input (Option)

## Freq Mode 1/Freq Mode 2 Switching Frequency

Program $\Rightarrow$ Frequency Settings
This parameter establishes a threshold frequency that will be used as a reference when determining when to switch the output frequency control source from the Frequency Mode 1 setting to the Frequency Mode 2 setting.
See F200 for additional information on this setting.

## Analog Input Filter

No Path — Direct Access Only
Analog filtering is applied after the analog reference signal is converted to a digital signal. The type of filtering used is Rolling Average over time.

Direct Access Number - F207
Parameter Type - Selection List
Factory Default - V/I
Changeable During Run - Yes

## Direct Access Number - F208

Parameter Type - Numerical
Factory Default - $\mathbf{0 . 1 0}$
Changeable During Run - Yes
Minimum - 0.10
Maximum - Max. Freq. (F011)
Units - Hz

Settings:
$0-$ None $(1 \mathrm{~ms})$
1 - Small $(8 \mathrm{~ms})$
2 - Medium $(16 \mathrm{~ms})$
3 - Large $(32 \mathrm{~ms})$
$4-$ Huge $(64 \mathrm{~ms})$

The analog input signal is sampled and converted to a digital signal. With no filtering applied, the resulting digital value is scaled for use by the microprocessor of the ASD.
If the filtering selection $\mathbf{S m a l l}$ is selected, the ASD averages the last $\mathbf{8} \mathbf{~ m s}$ of sampled signal and converted (digital) values. The rolling average is updated (every $4 \mu \mathrm{~S}$ ) and scaled for use by the microprocessor.
This holds true for the Medium, Large, and Huge selections providing a larger sample to produce the average for use by the microprocessor.
False responses to electrical noise are eliminated with no loss in bandwidth because the value used by the ASD is the average value of several samples.

Direct Access Number - F209
Parameter Type - Selection List
Factory Default - None (1 ms)
Changeable During Run - Yes

## RR Reference 1

Program $\Rightarrow$ Frequency Settings
This parameter is used to set the gain and bias of the $\mathbf{R} \mathbf{R}$ input terminal when the $\mathbf{R R}$ terminal is used as the control input while operating in the Speed Control mode or the Torque Control mode.

This parameter sets the $\mathbf{R R}$ input level that is associated with the RR Frequency 1 setting when operating in the Speed control mode or is associated with the RR Torque Reference 1 setting when operating in the Torque Control mode.

## Speed Control

Perform the following setup to allow the system to perform Speed control from the $\mathbf{R R}$ input terminal:

- Set RR Frequency 1 (F211).
- Set RR Reference 1 (F210) - the input analog signal level that corresponds to the frequency setting at RR Frequency 1.
- Set RR Frequency 2 (F213).
- Set RR Reference 2 (F212) — the input analog signal level that corresponds to the frequency setting at RR Frequency 2.


## RR Input Speed Control Setup

Perform the following setup to allow the system to receive Speed control input at the $\mathbf{R R}$ input terminal:

- Program $\Rightarrow$ Utility Group $\Rightarrow$ Frequency Mode $1 \Rightarrow \mathbf{R R}$.
- Program $\Rightarrow$ Utility Group $\Rightarrow$ Command Mode $\Rightarrow$ Terminal Block.
- Provide a Run command (F and/or R).

Once set, as the $\mathbf{R R}$ input voltage changes, the output frequency of the ASD will vary in accordance with the above settings.
This parameter value is entered as $0 \%$ to $100 \%$ of the $\mathbf{R R}$ input signal range.

## RR Frequency 1

## Program $\Rightarrow$ Frequency Settings

This parameter is used to set the gain and bias of the $\mathbf{R} \mathbf{R}$ input terminal when the $\mathbf{R R}$ terminal is used as the control input while operating in the Speed Control mode.
This parameter sets RR Frequency 1 and is the frequency that is associated with the setting of RR Reference 1 when operating in the Speed Control mode.
See RR Reference 1 (F210) for more information on this setting.

## Direct Access Number - F210

Parameter Type - Numerical
Factory Default - 0
Changeable During Run - Yes
Minimum - 0
Maximum - 100
Units - \%
Frequency Settings


Direct Access Number - F211
Parameter Type - Numerical
Factory Default - $\mathbf{0 . 0 0}$
Changeable During Run - Yes
Minimum - 0.00
Maximum - Max. Freq. (F011)
Units - Hz

## RR Reference 2

Program $\Rightarrow$ Frequency Settings
This parameter is used to set the gain and bias of the $\mathbf{R R}$ input terminal when the $\mathbf{R R}$ terminal is used as the control input while operating in the Speed Control mode or the Torque Control mode.
This parameter sets the $\mathbf{R R}$ input level that is associated with RR Frequency 2 when operating in the Speed control mode or is associated with the RR Torque Reference 2 when operating in the Torque Control mode.

This value is entered as $0 \%$ to $100 \%$ of the RR input signal range.
See RR Reference 1 for more information on this setting when used for Speed control.
See RR Torque Reference 1 (F214) for more information on this setting when used for Torque Control.

## RR Frequency 2

Program $\Rightarrow$ Frequency Settings
This parameter is used to set the gain and bias of the $\mathbf{R R}$ input terminal when the RR terminal is used as the control input while operating in the Speed Control mode.

This parameter sets RR Frequency 2 and is the frequency that is associated with the setting of RR Reference 2 when operating in the Speed Control mode.
See RR Reference 1 (F210) for more information on this setting.

## Direct Access Number - F212

Parameter Type - Numerical
Factory Default - $\mathbf{1 0 0}$
Changeable During Run - Yes
Minimum - 0
Maximum - 100
Units - \%

## Direct Access Number - F213

Parameter Type - Numerical
Factory Default - $\mathbf{6 0 . 0 0}$
Changeable During Run - Yes
Minimum — 0.00
Maximum - Max. Freq. (F011)
Units - Hz

## RR Torque Reference 1

Program $\Rightarrow$ Frequency Settings
This parameter is used to set the gain and bias of the $\mathbf{R} \mathbf{R}$ input terminal when the RR terminal is used as the control input while operating in the Torque Control mode.

## RR Input Torque Control Setup

Perform the following setup to allow the system to receive Torque Control input at the $\mathbf{R R}$ input terminal:

- Program $\Rightarrow$ Utility Group $\Rightarrow$ Frequency Mode $1 \Rightarrow \mathbf{R R}$.
- Program $\Rightarrow$ Utility Group $\Rightarrow$ Command Mode $\Rightarrow$ Terminal Block.


## Torque Control

Perform the following setup to allow the system to perform Torque Control from the $\mathbf{R R}$ input terminal:

- Set RR Torque Reference 1 (F214).
- Set RR Reference 1 (F210) - the input analog signal level that corresponds to the torque setting at RR Torque Reference 1.
- Set RR Torque Reference 2 (F215).
- Set RR Reference 2 (F212) — the input analog signal level that corresponds to the frequency setting at RR Torque Reference 2.
- Provide a Run command (F and/or R).

Torque Control is accomplished by establishing an associated $\mathbf{V} / \mathbf{f}$ output pattern for a given $\mathbf{R R}$ input level.

Once set, as the $\mathbf{R R}$ input voltage changes, the output torque of the ASD will vary in accordance with the above settings.
This parameter sets RR Torque Reference 1 and is the output torque value that is associated with the setting of RR Reference 1 when operating in the Torque Control mode.
This value is entered as $0 \%$ to $250 \%$ of the rated torque.

## RR Torque Reference 2

## Program $\Rightarrow$ Frequency Settings

This parameter is used to set the gain and bias of the $\mathbf{R} \mathbf{R}$ input terminal when the $\mathbf{R R}$ terminal is used as the control input while operating in the Torque Control mode.
Torque Control is accomplished by establishing an associated $\mathbf{V} / \mathbf{f}$ output pattern for a given $\mathbf{R R}$ input level.
This parameter sets RR Torque Reference 2 and is the output torque value that is associated with the setting of RR Reference 2 when operating in the Torque Control mode.
This value is entered as $0 \%$ to $250 \%$ of the rated torque.
See RR Torque Reference 1 for more information on this setting.

## Direct Access Number - F214

Parameter Type - Numerical
Factory Default - $\mathbf{0 . 0 0}$
Changeable During Run - Yes
Minimum - 0.00
Maximum - 250.00
Units - \%

Torque Settings


Direct Access Number - F215
Parameter Type - Numerical
Factory Default - $\mathbf{1 0 0 . 0 0}$
Changeable During Run - Yes
Minimum - 0.00
Maximum - 250.00
Units - \%

## RX Reference 1

Program $\Rightarrow$ Frequency Settings

This parameter is used to set the gain and bias of the $\mathbf{R X}$ input terminal when the $\mathbf{R X}$ terminal is used as the control input while operating in the Speed Control mode or the Torque Control mode.

This parameter sets the $\mathbf{R X}$ input level that is associated with RX Frequency 1 when operating in the Speed Control mode or is associated with the RX Torque Reference 1 when operating in the Torque Control mode.

## RX Input Speed Control Setup

Perform the following setup to allow the system to receive Speed control input at the $\mathbf{R X}$ input terminal:

- Program $\Rightarrow$ Utility Group $\Rightarrow$ Frequency Mode $1 \Rightarrow \mathbf{R X}$.
- Program $\Rightarrow$ Utility Group $\Rightarrow$ Command Mode $\Rightarrow$ Terminal Block.


## Speed Control

Perform the following setup to allow the system to perform Speed control from the $\mathbf{R X}$ input terminal:

- Set RX Frequency 1 (F217).
- Set RX Reference 1 (F216) - the input analog signal level that corresponds to the speed setting at RX Frequency 1.
- Set RX Frequency 2 (F219).
- Set RX Reference 2 (F218) - the input analog signal level that corresponds to the speed setting at RX Frequency 2.
- Provide a Run command (F and/or R).

Once set, as the $\mathbf{R X}$ input voltage changes, the ASD output speed and/or torque will vary in accordance with the above settings.

This parameter value is entered as $-100 \%$ to $+100 \%$ of the $\mathbf{R X}$ input signal range.
See parameter F474 and F475 for information on fine-tuning this terminal response.

## RX Frequency 1

Program $\Rightarrow$ Frequency Settings
This parameter is used to set the gain and bias of the $\mathbf{R X}$ input terminal when the $\mathbf{R X}$ terminal is used as the control input while operating in the Speed Control mode.

This parameter sets RX Frequency 1 and is the frequency that is associated with the setting of RX Reference 1 when operating in the Speed Control mode.

See RX Reference 1 (F216) for more information on this setting.

## Direct Access Number - F216

Parameter Type - Numerical
Factory Default - $\mathbf{0}$
Changeable During Run - Yes
Minimum - - 100
Maximum - +100
Units - \%


## Direct Access Number - F217

Parameter Type - Numerical
Factory Default - $\mathbf{0 . 0 0}$
Changeable During Run - Yes
Minimum - 0.00
Maximum — Max. Freq. (F011)
Units - Hz

## RX Reference 2

Program $\Rightarrow$ Frequency Settings
This parameter is used to set the gain and bias of the $\mathbf{R X}$ input terminal when the $\mathbf{R X}$ terminal is used as the control input while operating in the Speed Control mode or the Torque Control mode.

This parameter sets the $\mathbf{R X}$ input level that is associated with RX Frequency 2 when operating in the Speed control mode or is associated with the RX Torque Reference 2 when operating in the Torque Control mode.

This value is entered as $-100 \%$ to $+100 \%$ of the $\mathbf{R X}$ input signal range.
See RX Reference 1 (F216) for more information on this setting when used for Speed control.
See RX Torque Reference 1 (F220) for more information on this setting when used for Torque Control.

## RX Frequency 2

Program $\Rightarrow$ Frequency Settings
This parameter is used to set the gain and bias of the $\mathbf{R X}$ input terminal when the $\mathbf{R X}$ terminal is used as the control input while operating in the Speed Control mode.

This parameter sets RX Frequency 2 and is the frequency that is associated with the setting of RX Reference 2 when operating in the Speed Control mode.
See RX Reference 1 (F216) for more information on this setting.

## Direct Access Number - F218

Parameter Type - Numerical
Factory Default - +100
Changeable During Run - Yes
Minimum - - 100.0
Maximum - +100.0
Units - \%

## Direct Access Number - F219

Parameter Type - Numerical
Factory Default - $\mathbf{6 0 . 0 0}$
Changeable During Run - Yes
Minimum - 0.00 .
Maximum - Max. Freq. (F011)
Units - Hz

## RX Torque Reference 1

Program $\Rightarrow$ Frequency Settings
This parameter is used to set the gain and bias of the $\mathbf{R X}$ input terminal when the $\mathbf{R X}$ terminal is used as the control input while operating in the Torque Control mode.

## RX Input Torque Control Setup

Perform the following setup to allow the system to receive Torque Control input at the $\mathbf{R X}$ input terminal:

- Program $\Rightarrow$ Utility Group $\Rightarrow$ Frequency Mode $1 \Rightarrow \mathbf{R X}$.
- Program $\Rightarrow$ Utility Group $\Rightarrow$ Command Mode $\Rightarrow$ Terminal Block.


## Torque Control

Perform the following setup to allow the system to perform Torque Control from the $\mathbf{R X}$ input terminal:

- Set RX Torque Reference 1 (F220).
- Set RX Reference 1 (F216) - the input analog signal level that corresponds to the torque setting at RX Torque Reference 1.
- Set RX Torque Reference 2 (F221).
- Set RX Reference 2 (F218) - the input analog signal level that corresponds to the speed setting at RX Torque Reference 2.
- Provide a Run command (F and/or R).

Torque Control is accomplished by establishing an associated V/f output pattern for a given $\mathbf{R X}$ input level.

Once set, as the $\mathbf{R X}$ input voltage changes, the ASD output speed and/or torque will vary in accordance with the above settings.
This parameter sets RX Torque Reference 1 and is the output torque value that is associated with the setting of RX Reference 1 when operating in the Torque Control mode.
This value is entered as $-250 \%$ to $+250 \%$ of the rated torque.

## RX Torque Reference 2

Program $\Rightarrow$ Frequency Settings
This parameter is used to set the gain and bias of the $\mathbf{R X}$ input terminal when the $\mathbf{R X}$ terminal is used as the control input while operating in the Torque Control mode.

Torque Control is accomplished by establishing an associated $\mathbf{V} / \mathbf{f}$ output pattern for a given $\mathbf{R X}$ input level.
This parameter sets RX Torque Reference 2 and is the output torque value that is associated with the setting of RX Reference 2 when operating in the Torque Control mode.
This value is entered as $-250 \%$ to $+250 \%$ of the rated torque.
See RX Torque Reference 1 (F220) for more information on this setting.

## Direct Access Number - F220

Parameter Type - Numerical
Factory Default - $\mathbf{0 . 0 0}$
Changeable During Run - Yes
Minimum - 250.00
Maximum - +250.00
Units - \%

Torque Settings


Direct Access Number — F221
Parameter Type - Numerical
Factory Default - $\mathbf{1 0 0 . 0 0}$
Changeable During Run - Yes
Minimum - 250.00
Maximum — + 250.00
Units - \%

## RX2 (Al1) Reference 1

Program $\Rightarrow$ Frequency Settings
This parameter is used to set the gain and bias of the RX2 (AI1) input terminal when the RX2 (AI1) terminal is used as the control input while operating in the Speed Control mode or the Torque Control mode.

Note: $\quad$ The Expansion IO Card Option 1 Option Board (P/N ETB003Z) is required to use this terminal.

This parameter sets the RX2 (AI1) input level that is associated with RX2 (AI1) Frequency 1 when operating in the Speed Control mode.

## RX2 (Al1) Input Speed Control Setup

Perform the following setup to allow the system to receive Speed control input at the RX2 (AI1) input terminal:

- Program $\Rightarrow$ Utility Group $\Rightarrow$ Frequency Mode $1 \Rightarrow \mathbf{R X 2}$.
- Program $\Rightarrow$ Utility Group $\Rightarrow$ Command Mode $\Rightarrow$ Terminal Block.


## Speed Control

Perform the following setup to allow the system to perform Speed control from the RX2 (AI1) input terminal:

- Set RX2 (AI1) Frequency 1 (F223).
- Set RX2 (AI1) Reference 1 (F222) - the input analog signal level that corresponds to the speed setting at RX2 (AI1) Frequency 1.
- Set RX2 (AI1) Frequency 2 (F225).
- Set RX2 (AI1) Reference 2 (F224) - the input analog signal level that corresponds to the speed setting at RX Frequency 2.
- Provide a Run command (F and/or R).

Once set, as the RX2 (AI1) input voltage changes, the ASD output speed and/or torque will vary in accordance with the above settings.

This parameter value is entered as $-100 \%$ to $+100 \%$ of the RX2 (AI1) input signal range.
See the Expansion IO Card Option 1 Instruction Manual (P/N 58685) for more information on the function of this terminal. See parameter F476 and F477 for information on fine-tuning this terminal response.

## RX2 (Al1) Frequency 1

Program $\Rightarrow$ Frequency Settings
This parameter is used to set the gain and bias of the RX2 (AI1) input terminal when the RX2 (AI1) terminal is used as the control input while operating in the Speed Control mode.
This parameter sets RX2 (AI1) Frequency 1 and is the frequency that is associated with the setting of RX2 (AI1) Reference 1 when operating in the Speed Control mode.
See RX2 (AI1) Reference 1 (F222) for more information on this setting.

Direct Access Number - F222
Parameter Type - Numerical
Factory Default - 0
Changeable During Run - Yes
Minimum - -100
Maximum - +100
Units - \%


Direct Access Number - F223
Parameter Type - Numerical
Factory Default - $\mathbf{0 . 0 0}$
Changeable During Run - Yes
Minimum - 0.00
Maximum - Max. Freq. (F011)
Units - Hz

## RX2 (Al1) Reference 2

Program $\Rightarrow$ Frequency Settings
This parameter is used to set the gain and bias of the RX2 (AI1) input terminal when the RX2 (AI1) terminal is used as the control input while operating in the Speed Control mode or the Torque Control mode.

This parameter sets the RX2 (AI1) input level that is associated with RX2 (AI1) Frequency 2 when operating in the Speed control mode.
This value is entered as $-100 \%$ to $+100 \%$ of the RX2 (AI1) input signal range.
See RX2 (AI1) Reference 1 (F222) for more information on this setting when used for Speed control.

## RX2 (Al1) Frequency 2

Program $\Rightarrow$ Frequency Settings
This parameter is used to set the gain and bias of the RX2 (AI1) input terminal when the RX2 (AI1) terminal is used as the control input while operating in the Speed Control mode.

This parameter sets RX2 (AI1) Frequency 2 and is the frequency that is associated with the setting of RX2 (AI1) Reference 2 when operating in the Speed Control mode.

See RX2 (AI1) Reference 1 (F222) for more information on this setting.

## Direct Access Number - F224

Parameter Type - Numerical
Factory Default — +100
Changeable During Run - Yes
Minimum - -100
Maximum — +100
Units - \%

Direct Access Number - F225
Parameter Type - Numerical
Factory Default - $\mathbf{6 0 . 0 0}$
Changeable During Run - Yes
Minimum - 0.00
Maximum - Max. Freq. (F011)
Units - Hz

## BIN Reference 1

Program $\Rightarrow$ Frequency Settings

This parameter is used to set the gain and bias of the BIN input terminals when the BIN terminals are used as the control input while operating in the Speed Control mode.

The discrete input terminals of the Terminal Board are used as the BIN terminals.

## BIN Input Speed Control Setup

Perform the following setup to allow the system to receive Speed control input at the BIN input terminals:

- Program $\Rightarrow$ Utility Group $\Rightarrow$ Frequency Mode $1 \Rightarrow$ Binary/BCD.
- Program $\Rightarrow$ Utility Group $\Rightarrow$ Command Mode $\Rightarrow$ Terminal Block.
- Program $\Rightarrow$ Input Terminals; select and set the desired discrete input terminals to Binary Bit(s) $\mathbf{0 - 7}$ (or $0-\mathrm{MSB}$ ). The binary input byte will control the speed of the motor.
- Program $\Rightarrow$ Input Terminals; select and set a discrete input terminal to Binary Write. Activation of the Binary Write terminal will transfer the status of the Binary Bit(s) 0-7 (or 0-MSB) to the control board for speed control.


## Speed Control

Perform the following setup to allow the system to perform Speed control from the BIN input terminals:

- Set BIN Frequency 1 (F229).
- Set the BIN input value (\% of $255_{\mathrm{D}}$ ) (F228) that represents BIN Frequency 1.
- Set BIN Frequency 2 (F231).
- Set the BIN input value (\% of $255_{\mathrm{D}}$ ) (F230) that represents BIN Frequency 2.
- Provide a Run command (F and/or R).

Note: $\quad 255_{D}$ is the decimal equivalent of the 8 -bit BIN byte with all input terminals set to one ( 255 decimal $=11111111$ binary).

Once set, as the BIN input signal changes are transferred to the control board, the output frequency of the ASD will vary in accordance with the above settings.

This parameter sets BIN Reference 1 and is entered as $0 \%$ to $100 \%$ of the of the range represented by the BIN binary input byte $11111111\left(255_{\mathrm{D}}\right)$ or the binary bit(s) 0 - MSB.

## BIN Frequency 1

## Program $\Rightarrow$ Frequency Settings

This parameter is used to set the speed of the BIN input terminals when the BIN terminals are used as the control input.
This parameter sets BIN Frequency 1 and is the frequency that is associated with the setting of BIN Reference 1.
See BIN Reference 1 (F228) for further information on this setting.

Direct Access Number - F228
Parameter Type - Numerical
Factory Default - $\mathbf{0}$
Changeable During Run - Yes
Minimum - 0
Maximum - 100
Units - \%


## BIN Reference 2

Program $\Rightarrow$ Frequency Settings
This parameter is used to set the speed of the BIN input terminals when the BIN terminals are used as the control input.
This parameter sets the BIN input signal that is associated with BIN Frequency 2.
This value is entered as $0 \%$ to $+100 \%$ of the $\mathbf{B I N}$ input signal range.
See BIN Reference 1 (F228) for further information on this setting.

## BIN Frequency 2

Program $\Rightarrow$ Frequency Settings
This parameter is used to set the speed of the BIN input terminals when the BIN terminal are used as the control input.

This parameter sets BIN Frequency 2 and is the frequency that is associated with the setting of BIN Reference 2.

See BIN Reference 1 (F228) for further information on this setting.

## PG Reference 1

Program $\Rightarrow$ Frequency Settings
This parameter is used to set the gain and bias of the PG input terminal of the option board when a shaft-mounted encoder is used as the control input while operating in the Speed Control mode.

## Note: $\quad$ See the PG Option Board Instruction Manual P/N 58687 for more information.

## PG Input Speed Control Setup

Perform the following setup to allow the system to receive Speed control input at the PG input terminal:

- Program $\Rightarrow$ Utility Group $\Rightarrow$ Command Mode $\Rightarrow$ Option Board.
- Program $\Rightarrow$ Utility Group $\Rightarrow$ Frequency Mode $1 \Rightarrow$ Pulse (Option).
- Provide a Run command (F and/or R).


## Speed Control

Perform the following setup to allow the system to perform Speed control from the $\mathbf{P G}$ input terminals:

- Set PG Frequency 1 (F235).
- Set the PG input value (F234) that represents PG Frequency 1.
- Set PG Frequency 2 (F237).
- Set the PG input value (F236) that represents PG Frequency 2.

Once set, as the PG input pulse count rate changes, the output frequency of the ASD will vary in accordance with the above settings.
This parameter sets the PG input pulse count that represents PG Frequency 1. The range of values for this parameter is $0 \%$ to $100 \%$ of the $\mathbf{P G}$ input pulse count range.

Note: Further application-specific PG settings may be performed from the following path: Program $\Rightarrow$ Feedback Setting $\Rightarrow \boldsymbol{P G}$ Settings.

Direct Access Number - F230
Parameter Type - Numerical
Factory Default - 100
Changeable During Run - Yes
Minimum - 0
Maximum - 100
Units - \%

## Direct Access Number - F231

Parameter Type - Numerical
Factory Default - $\mathbf{6 0 . 0 0}$
Changeable During Run - Yes
Maximum - 0.00
Maximum - Max. Freq. (F011)
Units - Hz
Direct Access Number - F234
Parameter Type - Numerical
Factory Default - $\mathbf{0 . 0}$
Changeable During Run - Yes
Minimum - 0
Maximum - 100.0
Units - \%

Frequency Settings


## PG Frequency 1

Program $\Rightarrow$ Frequency Settings
This parameter is used to set the speed of the PG input terminals when the PG terminal is used as the control input.
This parameter sets PG Frequency 1 and is the frequency that is associated with the setting of PG Reference 1.
See PG Reference 1 (F234) for further information on this setting.
PG Reference 2
Program $\Rightarrow$ Frequency Settings
This parameter is used to set the direction and speed of the $\mathbf{P G}$ input terminals when the PG terminals are used as the control input.
This parameter sets the PG input signal that is associated with PG Frequency 2.
This value is entered as $0 \%$ to $100 \%$ of the PG input signal range.
See PG Reference 1 (F234) for further information on this setting.

PG Frequency 2
Program $\Rightarrow$ Frequency Settings
This parameter is used to set the direction and speed of the PG input terminals when the PG terminal are used as the control input.
This parameter sets PG Frequency 2 and is the frequency that is associated with the setting of PG Reference 2.
See PG Reference 1 (F234) for further information on this setting.

## Startup Frequency

Program $\Rightarrow$ Special Controls
The output of the ASD will remain at 0.0 Hz until the programmed speed value exceeds this setting during startup. Once exceeded during startup, the output frequency of the ASD will accelerate to the programmed setting.
Output frequencies below the Startup Frequency will not be output from the ASD during startup. However, once reaching the Startup Frequency, speed values below the Startup Frequency may be output from the ASD.
If the setting of this parameter results in an over-current condition at startup, reduce the setting of this parameter to a value less than the rated slippage of the motor.
If zero-speed torque is required, set this parameter and F243 to 0.0 Hz .
This setting will override the setting of F244 if this setting has a higher value.
This parameter setting is used during a Jog as the Lower-Limit Frequency (see F260).

Direct Access Number - F235
Parameter Type - Numerical
Factory Default - $\mathbf{0 . 0 0}$
Changeable During Run - Yes
Minimum - 0.00
Maximum - Max. Freq. (F011)
Units - Hz
Direct Access Number - F236
Parameter Type - Numerical
Factory Default - $\mathbf{1 0 0}$
Changeable During Run - Yes
Minimum - 0
Maximum - 100
Units - \%
Direct Access Number - F237
Parameter Type - Numerical
Factory Default - $\mathbf{6 0 . 0 0}$
Changeable During Run - Yes
Minimum - 0.00
Maximum - Max. Freq. (F011)
Units - Hz
Direct Access Number - F240
Parameter Type - Numerical
Factory Default — $\mathbf{0 . 1 0}$
Changeable During Run - Yes
Minimum - 0.00
Maximum - Max. Freq. (F011)
Units - Hz

## Run Frequency

Program $\Rightarrow$ Special Controls
This parameter establishes a center frequency (Run Frequency) of a frequency band.
Parameter F242 provides a plus-or-minus value for the Run Frequency; thus, establishing a frequency band.
During acceleration, the ASD will not output a signal to the motor until the lower level of the band is reached.

During deceleration, the ASD will continue to output the programmed deceleration signal to the motor until the lower level of the band is reached; at which time the output will go to 0.0 Hz .

## Run Frequency Hysteresis

Program $\Rightarrow$ Special Controls

This parameter provides a plus-or-minus value for the Run Frequency setting (F241).

Program $\Rightarrow$ Special Controls
This parameter sets the lowest frequency that the ASD will recognize during deceleration before the ASD goes to 0.0 Hz .

## Direct Access Number - F241

Parameter Type - Numerical
Factory Default - $\mathbf{0 . 0 0}$
Changeable During Run - Yes
Minimum - 0.00
Maximum - Max. Freq. (F011)
Units - Hz

Direct Access Number - F242
Parameter Type - Numerical
Factory Default - $\mathbf{0 . 0 0}$
Changeable During Run - Yes
Minimum - 0.00
Maximum - 30.0
Units - Hz

| Direct Access Number - F243 |
| :---: |
| Parameter Type - Numerical |
| Factory Default - $\mathbf{0 . 0 0}$ |
| Changeable During Run - Yes |
| Minimum - 0.00 |
| Maximum - 30.0 |
| Units - Hz |
| Direct Access Number - F244 |
| Parameter Type - Numerical |
| Factory Default - $\mathbf{0 . 0 0}$ |
| Changeable During Run - Yes |
| Minimum - 0.00 |
| Maximum - 5.00 |
| Units - Hz |

Factory Default - $\mathbf{0 . 0 0}$
Changeable During Run - Yes
Minimum - 0.00

Units - Hz

Direct Access Number - F244
Parameter Type - Numerical
Factory Default - $\mathbf{0 . 0 0}$
Changeable During Run - Yes
Minimum - 0.00

Units - Hz

## 0 Hz Dead Band Signal

No Path — Direct Access Only
This parameter sets an output frequency threshold that, until the commanded frequency surpasses this setting, the ASD will output 0 Hz to the motor.
This setting will override the Startup Frequency setting (F240) if this setting has a higher value.

## DC Injection Braking Start Frequency

Program $\Rightarrow$ Special Controls
During deceleration this is the frequency at which DC Injection braking will start.

## DC Injection Braking

DC Injection Braking is a braking system used with three-phase motors. Unlike conventional brakes, there is no physical contact between the rotating shaft and a stationary brake pad or drum. When braking is required, the ASD outputs a DC current that is applied to the windings of the motor to quickly brake the motor. The braking current is discontinued when the time entered in F252 times out.
The intensity of the DC current used while braking determines how fast the motor will come to a stop and may be set at F251. The intensity setting is entered as a percentage of the full load current of the ASD.
DC Injection Braking is also used to preheat the motor or to keep the rotor from spinning freely when the motor is off by providing a pulsating DC current into the motor at the Carrier Frequency (Zero Speed). This feature may be enabled at F254.

## DC Injection Braking Current

Program $\Rightarrow$ Special Controls
This parameter sets the percentage of the rated current of the ASD that will be used for DC Injection braking. A larger load will require a higher setting.

## DC Injection Braking Time

Program $\Rightarrow$ Special Controls
This parameter setting is used to set the on-time duration of the DC Injection Braking.

## Direct Access Number - F250

Parameter Type - Numerical
Factory Default - $\mathbf{0 . 0 0}$
Changeable During Run - Yes
Minimum - 0.00
Maximum - 120.00
Units - Hz

Direct Access Number - F251
Parameter Type - Numerical
Factory Default - $\mathbf{5 0}$
Changeable During Run - Yes
Minimum - 0
Maximum - 100
Units - \%
Direct Access Number - F252
Parameter Type - Numerical
Factory Default - $\mathbf{1 . 0}$
Changeable During Run - Yes
Minimum - 0.0
Maximum - 20.0
Units - Seconds

## DC Injection On During Direction Change

Program $\Rightarrow$ Special Controls
This parameter setting determines if DC Injection braking is to be used during a change in the direction of the motor.

Direct Access Number - F253
Parameter Type - Selection List
Factory Default - Disabled
Changeable During Run - Yes

## Settings:

0 — Disabled
1 - Enabled

## Shaft Stationary

Program $\Rightarrow$ Special Controls
This parameter Enables/Disables a continuous DC injection at half of the amperage setting of F251 into a stopped motor. This feature is useful in preheating the motor or to keep the rotor from spinning freely.

Shaft Stationary control starts after the DC injection brake stops the motor and continues until ST - CC is opened, power is turned off, an Emergency Off command is received, or this parameter is changed.

Enabling this feature will also require a non-zero entry at F250.
Settings:
0 - Disabled
1 - Enabled

## 0 Hz Command Output

No Path — Direct Access Only
This parameter is used to set the go-to-zero method to be used by the ASD in the event that the ASD is commanded to go to zero Hz .

Settings:
0 - Standard (DC Injection Braking)
$1-0 \mathrm{~Hz}$ Command
Low Output Disable Time
Program $\Rightarrow$ PID Setup
This parameter sets the time that the ASD is allowed to operate below the LowerLimit setting before an alarm and subsequent fault is incurred.

## Direct Access Number - F254

Parameter Type - Selection List
Factory Default - Disabled
Changeable During Run - Yes

Direct Access Number - F255
Parameter Type - Selection List
Factory Default - Standard (DC
Injection Braking)
Changeable During Run - No

Direct Access Number - F256
Parameter Type - Numerical
Factory Default - $\mathbf{0 . 0}$
Changeable During Run - Yes
Minimum - 0.0
Maximum - 600.0
Units - Seconds

## Jog Run Frequency

Program $\Rightarrow$ Frequency Settings
This parameter sets the output frequency of the drive during a Jog. Jog is the term used to describe turning on the motor for discrete increments of time and may be required when precise positioning of motor-driven equipment is required.

The Jog function may be initiated from the Terminal Board or using Communications (for more information on using Communications for Jogging, see the Communications manual P/N 53840).

The $\mathbf{J o g}$ function can be activated from zero Hz or from any frequency below the Jog Run Frequency setting (Jog can only increase the speed). A Jog command will not be recognized when the running frequency is above the Jog Run
Frequency setting. The Jog command has priority over other Run commands and is not limited by the Upper-Limit setting of parameter F012.
Jog commands received for the opposite direction of the commanded frequency will follow the programmed stopping method of F261 until reaching zero Hz and will then ramp to the programmed Jog Frequency and direction.

## Jog Setup and Execution

To initiate a Jog Run from the EOI perform the following:

1. Set the Command Mode Selection (F003) to Panel Keypad. This setting places the ASD in the Remote mode.
2. Set the Frequency Mode Selection (F004) to Panel Keypad.
3. Enable the Jog function (F262).
4. Set the Input Terminal Priority (F106) function to Enable to receive Jog commands.
5. Assign the Jog Run setting to any unused discrete input terminal (Select from Table 4 on pg. 186).
6. Set the Jog Frequency at F260.
7. Set up a Jog Stop Pattern at F261.
8. Press the Run key and the ASD will output the commanded frequency (as programmed; not the Jog frequency).
9. Activate the Jog Run terminal (from step 5). The ASD will output the frequency setting of F260 (from step 6).
10. Stop the Jog by either providing a Stop command, or by terminating the Jog Run terminal activation. Providing a Stop command will terminate the commanded frequency and the Jog function. Terminating the Jog Run terminal activation will terminate the Jog function only and will resume the commanded frequency of step 8 .

## Direct Access Number - F260

Parameter Type - Numerical
Factory Default - $\mathbf{5 . 0 0}$
Changeable During Run - Yes
Minimum - F240 Setting
Maximum - 20.00
Units - Hz

## Jog Stop Control

Program $\Rightarrow$ Frequency Settings
This parameter sets the stopping method used while operating in the Jog mode.
Note: $\quad$ This parameter setting is used for the Jog operation only. The Emergency Off stopping method setting of parameter F603 has priority over this setting and changes made here do not affect the function or setting of parameter F603.

Settings:
0 - Deceleration
1 - Coast
2 - DC Injection Braking

| Panel Operation Jog Mode | Direct Access Number - F262 |
| :--- | :--- |
| No Path — Direct Access Only | Parameter Type — Selection List |
| This parameter Enables/Disables the Jog command. When disabled the Jog <br> command is ignored. | Factory Default — Disabled <br> Changeable During Run — Yes |
| Settings: |  |
| 0 — Disabled |  |
| 1 — Enabled |  |

## UP/DOWN Frequency (UP) Response Time

No Path — Direct Access Only
This parameter functions in conjunction with the parameter settings of F265, F266, F267, F268, and F269. The purpose of these settings is to setup the ASD to allow an externally-supplied discrete input signal to control the output frequency of the ASD.

This method uses the discrete input terminal settings UP/DOWN Frequency (UP) and UP/DOWN Frequency (DOWN) to change the ASD speed. Activation of either terminal increases or decreases the output frequency at the Accel $\mathbf{1}$ or Decel 1 rates, respectively.
Depending on the Delay setting, the UP/DOWN Frequency (UP/DOWN) terminal may perform the increase/decrease function for the duration of the activation or may act as a momentary contact that loads a new commanded frequency upon activation.
In either case, to activate-and-hold will continue the up or down function until reaching the Upper-Limit Frequency or the Lower-Limit Frequency, respectively. At which point further activation will be ignored.
See Figure 26 on pg. 105 for more information on the UP/DOWN Frequency function.

## Setup Requirements

F003 - Selects the Command control source; set to Terminal Block.
F004 - Selects the Frequency Control Mode 1 control source; set to UP/DOWN Frequency.

F207 - Selects the Frequency Control Mode 2 control source: set to UP/DOWN Frequency if used.

Set one unused discrete input terminal to UP/DOWN Frequency (UP) and one unused discrete input terminal to UP/DOWN Frequency (DOWN).

F264 - Sets the system-response delay to the initial activation of the discrete input terminal UP/DOWN Frequency (UP). Also sets the response delay of subsequent terminal activations of the UP/DOWN Frequency (UP) terminal during an activate-and-hold.

F265 - Sets the frequency increase amount for each activation of the UP/ DOWN Frequency (UP) terminal activation. The rate of the frequency increase is set at Acceleration Time 1 (F009).

F266 - Sets the system-response delay to the initial activation of the discrete input terminal UP/DOWN Frequency (DOWN). Also sets the activation delay of subsequent terminal activations of the UP/DOWN Frequency (DOWN) terminal during an activate-and-hold.

F267 -Sets the frequency decrease amount for each activation of the UP/ DOWN Frequency (DOWN) terminal activation. The rate of the frequency decrease is set at Deceleration Time 1 (F010).

F268 - At power up or after a reset, this parameter setting is used to provide a starting frequency for the UP/DOWN Frequency function.

F269 - At power down while running, and when enabled, this parameter writes the running frequency into the F268 location and, upon a system restart, uses this setting as the startup frequency.

Provide a Run command (F or R). The motor will run at the F268 setting.

## Direct Access Number - F264

Parameter Type - Numerical
Factory Default - $\mathbf{0 . 1}$
Changeable During Run - Yes
Minimum - 0.0
Maximum - 10.0
Units - Seconds


Up/Down Frequency (DOWN) Mode


## UP/DOWN Frequency (UP) Frequency Step

No Path — Direct Access Only
This parameter sets the frequency increase amount for each activation of the UP/ DOWN Frequency (UP) terminal activation. The rate of the frequency increase is set at Acceleration Time 1 (F009).

See F264 for more information on this parameter.

## UP/DOWN Frequency (DOWN) Response Time

No Path — Direct Access Only
This parameter sets the system-response delay to the initial activation of the discrete input terminal UP/DOWN Frequency (DOWN). Also sets the activation delay of subsequent terminal activations of the UP/DOWN Frequency (DOWN) terminal during an activate-and-hold.

See F264 for more information on this parameter.
UP/DOWN Frequency (DOWN) Frequency Step
No Path — Direct Access Only
This parameter sets the frequency decrease amount for each activation of the UP/ DOWN Frequency (DOWN) terminal activation. The rate of the frequency decrease is set at Deceleration Time 1 (F010).

See F264 for more information on this parameter.

Direct Access Number - F265
Parameter Type - Numerical
Factory Default - $\mathbf{0 . 1 0}$
Changeable During Run - Yes
Minimum - 0.00
Maximum - Max. Freq. (F011)
Units - Hz
Direct Access Number - F266
Parameter Type - Numerical
Factory Default - $\mathbf{0 . 1}$
Changeable During Run - Yes
Minimum - 0.0
Maximum - 10.0
Units - Seconds
Direct Access Number - F267
Parameter Type - Numerical
Factory Default - $\mathbf{0 . 1 0}$
Changeable During Run - Yes
Minimum - 0.00
Maximum - Max. Freq. (F011)
Units - Hz

## Initial UP/DOWN Frequency

No Path — Direct Access Only
At power up or after a reset, this parameter setting is used to provide a starting frequency for the UP/DOWN Frequency function.
See F269 for more information on this parameter setting.

## Initial UP/DOWN Frequency Rewriting

No Path - Direct Access Only
At power down, and when enabled, this parameter writes the running frequency into the F268 location and, upon a system restart, uses this setting as the startup frequency.

Disable this parameter and set parameter F268 to the desired startup frequency if the same starting frequency is required at each startup.

Note: $\quad$ This parameter setting may be different at each startup when enabled.

Settings:
0 - Disabled
1 - Enabled (Overwrite F268 at Power Off or Reset)

Direct Access Number - F268
Parameter Type - Numerical
Factory Default - $\mathbf{0 . 0 0}$
Changeable During Run - Yes
Minimum — Lower-Limit (F013)
Maximum - Upper-Limit (F012)
Units - Hz
Direct Access Number - F269
Parameter Type - Selection List
Factory Default - Enabled
Changeable During Run - Yes

Figure 26. Up/Down Frequency Operation Control Timing Diagram.


## Jump Frequency 1

## Program $\Rightarrow$ Special Controls

In conjunction with parameter F271, this parameter establishes a user-defined frequency range: the Jump Frequency and a plus-or-minus value.

During acceleration, the output frequency of the drive will hold at the lower level of the Jump Frequency range until the programmed acceleration ramp reaches the upper level of the Jump Frequency range. At which time the output frequency of the drive will accelerate to the upper level of the Jump Frequency range and continue upward as programmed.

During deceleration, the output frequency of the drive will hold at the upper level of the Jump Frequency range until the programmed deceleration ramp reaches the lower level of the Jump Frequency range. At which time the output frequency of the drive will decelerate to the lower level of the Jump Frequency range and continue downward as programmed.

Once set up and enabled, it is on in all control modes.
User-selected frequencies may be jumped to avoid the negative effects of mechanical resonance.

## Direct Access Number - F270

Parameter Type - Numerical
Factory Default - $\mathbf{0 . 0 0}$
Changeable During Run - Yes
Minimum — 0.00
Maximum - Max. Freq. (F011)
Units - Hz

## Jump Frequency 1 Bandwidth

Program $\Rightarrow$ Special Controls

This parameter establishes a plus-or-minus value for Jump Frequency 1 (see F270 for more information on this parameter).

## Jump Frequency 2

Program $\Rightarrow$ Special Controls

Same as Jump Frequency 1 (F270) and is used when multiple frequencies are to be jumped (see the plus-or-minus value setting at F273). When multiple jump frequencies overlap, the system will recognize the lowest and the highest frequencies as one jump range.

Jump Frequency 2 Bandwidth
Program $\Rightarrow$ Special Controls
This parameter establishes a plus-or-minus value for Jump Frequency 2 (F272).

Direct Access Number - F271
Parameter Type - Numerical
Factory Default $-\mathbf{0 . 0 0}$
Changeable During Run - Yes
Minimum -0.00
Maximum -30.00
Units - Hz
Direct Access Number - F272
Parameter Type - Numerical
Factory Default - $\mathbf{0 . 0 0}$
Changeable During Run - Yes
Minimum - 0.00
Maximum - Max. Freq. (F011)
Units - Hz

Direct Access Number - F273
Parameter Type - Numerical
Factory Default - $\mathbf{0 . 0 0}$
Changeable During Run - Yes
Minimum - 0.00
Maximum - 30.0
Units - Hz

## Jump Frequency 3 <br> Program $\Rightarrow$ Special Controls <br> Same as Jump Frequency 1 (F270) and is used when multiple frequencies are to be jumped (see the plus-or-minus value setting at F275).

When multiple jump frequencies overlap, the system will recognize the lowest and the highest frequencies as one jump range.

Jump Frequency 3 Bandwidth
Program $\Rightarrow$ Special Controls
This parameter establishes a plus-or-minus value for Jump Frequency 3 (F274).
Direct Access Number - F274
Parameter Type - Numerical
Factory Default - $\mathbf{0 . 0 0}$
Changeable During Run - Yes
Minimum — 0.00
Maximum - Max. Freq. (F011)
Units - Hz
Direct Access Number - F275
Parameter Type - Numerical
Factory Default - $\mathbf{0 . 0 0}$
Changeable During Run - Yes
Minimum - 0.00
Maximum - 30.0
Units - Hz
Preset Speed 8
Program $\Rightarrow$ Preset Speeds
This parameter assigns an output frequency to binary number 1000 and is identified as Preset Speed 8. The binary number is applied to $\mathbf{S 1}-\mathbf{S 4}$ of the Terminal Board to output the Preset Speed (see F018 for more information on this parameter).

Direct Access Number - F287
Parameter Type - Numerical
Factory Default - $\mathbf{0 . 0 0}$
Changeable During Run - Yes
Minimum - Lower-Limit (F013)
Maximum - Upper-Limit (F012)
Units - Hz

## Preset Speed 9

Program $\Rightarrow$ Preset Speeds

This parameter assigns an output frequency to binary number 1001 and is identified as Preset Speed 9. The binary number is applied to $\mathbf{S 1} \mathbf{- S 4}$ of the Terminal Board to output the Preset Speed (see F018 for more information on this parameter).

## Preset Speed 10

Program $\Rightarrow$ Preset Speeds
This parameter assigns an output frequency to binary number 1010 and is identified as Preset Speed 10. The binary number is applied to $\mathbf{S 1} \mathbf{- S 4}$ of the Terminal Board to output the Preset Speed (see F018 for more information on this parameter).

Direct Access Number — F288
Parameter Type - Numerical
Factory Default - $\mathbf{0 . 0}$
Changeable During Run - Yes
Minimum - Lower-Limit (F013)
Maximum - Upper-Limit (F012)
Units - Hz
Direct Access Number - F289
Parameter Type - Numerical
Factory Default - $\mathbf{0 . 0 0}$
Changeable During Run - Yes
Minimum - Lower-Limit (F013)
Maximum - Upper-Limit (F012)
Units - Hz
Preset Speed 11
Direct Access Number - F290
Parameter Type - Numerical
Factory Default - $\mathbf{0 . 0 0}$
Changeable During Run - Yes
Minimum — Lower-Limit (F013)
Maximum - Upper-Limit (F012)
Units - Hz

| Preset Speed 12 | Direct Access Number - F291 |
| :---: | :---: |
| Program $\Rightarrow$ Preset Speeds | Parameter Type - Numerical |
|  | Factory Default - 0.00 |
| This parameter assigns an output frequency to binary number 1100 and is identified as Preset Speed 12. The binary number is applied to $\mathbf{S 1} \mathbf{- S 4}$ of the Terminal Board to output the Preset Speed (see F018 for more information on this parameter). | Changeable During Run - Yes |
|  | Minimum - Lower-Limit (F013) |
|  | Maximum - Upper-Limit (F012) |
|  | Units - Hz |
| Preset Speed 13 | Direct Access Number - F292 |
| Program $\Rightarrow$ Preset Speeds | Parameter Type - Numerical |
|  | Factory Default - $\mathbf{0 . 0 0}$ |
| This parameter assigns an output frequency to binary number 1101 and is identified as Preset Speed 13. The binary number is applied to $\mathbf{S 1} \mathbf{- S 4}$ of the Terminal Board to output the Preset Speed (see F018 for more information on this parameter). | Changeable During Run - Yes |
|  | Minimum - Lower-Limit (F013) |
|  | Maximum - Upper-Limit (F012) |
|  | Units - Hz |
| Preset Speed 14 | Direct Access Number - F293 |
| Program $\Rightarrow$ Preset Speeds | Parameter Type - Numerical |
|  | Factory Default - $\mathbf{0 . 0 0}$ |
| This parameter assigns an output frequency to binary number 1110 and is identified as Preset Speed 14. The binary number is applied to $\mathbf{S 1} \mathbf{- S 4}$ of the Terminal Board to output the Preset Speed (see F018 for more information on this parameter). | Changeable During Run - Yes |
|  | Minimum - Lower-Limit (F013) |
|  | Maximum - Upper-Limit (F012) |
|  | Units - Hz |

## Preset Speed 15

Program $\Rightarrow$ Preset Speeds
This parameter assigns an output frequency to binary number 1111 and is identified as Preset Speed 15. The binary number is applied to $\mathbf{S 1} \mathbf{-} \mathbf{S 4}$ of the Terminal Board to output the Preset Speed (see F018 for more information on this parameter).

This parameter setting is also used when commanded by the Fire Speed activation of a discrete input terminal (see Table 4 on pg. 186).
Remote/Local OTF Switching
No Path — Direct Access Only
This parameter Enables/Disables On-The-Fly switching. OTF Switching is used when switching from Remote to Local while running and a seamless Remote-toLocal transfer is required.

With this parameter enabled and while operating in the Remote mode, press the Local/Remote key to transfer control to the Local mode and maintain the same running speed of the Remote mode of operation.

Settings:
0 - Disabled
1 - Enabled

## PWM Carrier Frequency

Program $\Rightarrow$ Utility Group
This parameter sets the frequency of the pulse width modulation signal applied to the motor.

Note: When operating in the Vector Control mode the carrier frequency should be set to 2.2 kHz or above.

## Speed Search Selection

Program $\Rightarrow$ Protection
This parameter Enables/Disables the ability of the drive to start into a spinning motor when the ST-CC connection opens momentarily and is then closed (Break/Make ST) or after a power interruption (momentary power failure).

Settings:
0 - Off
1 - Enabled (At Power Failure)
2 - Enabled (At Make-Break ST-CC)
3 - Enabled (At Make-Break ST-CC or Power Failure)
4 - Enabled (At Run)

## Direct Access Number - F294

Parameter Type - Numerical
Factory Default - $\mathbf{6 0 . 0 0}$
Changeable During Run - Yes
Minimum - Lower-Limit (F013)
Maximum - Upper-Limit (F012)
Units - Hz

## Direct Access Number - F295

Parameter Type - Selection List
Factory Default - Disabled
Changeable During Run - Yes

Direct Access Number - F300
Parameter Type - Numerical
Factory Default - ASD-Dependent
Changeable During Run - No
Minimum - 1.0
Maximum - (ASD-Dependent)
Units - kHz
Direct Access Number - F301
Parameter Type - Selection List
Factory Default - Off
Changeable During Run - No

## Ridethrough Mode

Direct Access Number - F302
Program $\Rightarrow$ Protection
This parameter determines the motor-control response of the drive in the event of a momentary power outage or an under-voltage condition.
During a Ridethrough, regenerative energy is used to maintain the control circuitry settings for the duration of the Ridethrough; it is not used to drive the motor. The motor(s) of the system are stopped and then restarted automatically if so configured.

Note: If used to restart the motors, the Retry setup of F301 is required.
Settings:
0 - Off
1 - Ridethrough On
2 - Decel Stop

## Ridethrough Setup Requirements

1. Select the Ridethrough Mode at F302.
2. Select the Ridethrough Time at F310.

Parameter Type - Selection List
Factory Default - Off
Changeable During Run - Yes

## Number of Retries

Program $\Rightarrow$ Protection
After a trip has occurred, this parameter sets the number of times that an automatic system restart is attempted for a qualified trip.
The trip conditions listed below will not initiate the automatic Retry/Restart function:

- Input Phase Loss (Input Phase Failure)
- Output Phase Loss (Output Phase Failure)
- Output Current Protection Fault
- Output Current Detector error
- Load Side Over-Current At Start
- Earth Fault (Ground Fault)
- Over-Current During Acceleration
- Arm Over-Current at start-up
- Low-Current
- Voltage Drop In Main Circuit
- EEPROM Data Fault (EEPROM Fault)
- Flash Memory/Gate Array/RAM-ROM Fault
- CPU Fault
- Emergency Off (EMG)
- Communication Error
- Option Fault
- Sink/Source Setting Error
- Overspeed Error
- Over-Torque
- Key Error
- External Thermal Error
- Externally-Controlled Interrupt

See the section titled System Setup Requirements on pg. 8 for more information on this setting.

Direct Access Number - F303
Parameter Type - Numerical
Factory Default - $\mathbf{0 0}$
Changeable During Run - Yes
Minimum - 00
Maximum - 10

## Dynamic Braking (Not Used)

Program $\Rightarrow$ Protection
This parameter Enables/Disables the Dynamic Braking system.
Note: Dynamic Braking is not available on the Q9 ASD.
Settings:
0 - Off
1 - On with Overload Detection
2 - On without Overload Detection

## Dynamic Braking

Dynamic Braking is used to prevent over-voltage faults during rapid deceleration or constant speed run on cyclic overhauling applications.

Dynamic Braking dissipates regenerated energy in the form of heat. When using a DBR use thermal protection.

The resistive load is connected across terminals PA and PB (non-polarized). Using a low-value, high-wattage resistance as a load for the generated current, the resistive load dissipates the induced energy.

Dynamic Braking helps to slow the load quickly; it cannot act as a holding brake.
The Dynamic Braking function may be setup and enabled by connecting a braking resistor from terminal $\mathbf{P A}$ to $\mathbf{P B}$ of the drive and providing the proper information at F304, F308, and F309.

## Over-Voltage Stall Enable

Program $\Rightarrow$ Protection
This parameter enables the Over-Voltage Limit function. This feature is used to set the upper DC bus voltage threshold that, once exceeded, will cause an OverVoltage Stall.
An Over-Voltage Stall increases the output frequency of the drive during deceleration for a specified time in an attempt to prevent an Over-Voltage Trip.
If the over-voltage threshold level setting of parameter F626 is exceeded for more than 4 ms , an Over-Voltage Trip will be incurred.

Note: $\quad$ This parameter setting may increase deceleration times.
Note: Over-voltage alarms will display OP to convey Over-Potential.
Settings:
0 - Enabled (Over-Voltage Stall)
1 - Disabled
2 - Enabled (Forced Shorted Deceleration)
3 - Enabled (Forced Dynamic Braking Deceleration - Not Used)

## Direct Access Number - F304

Parameter Type - Selection List
Factory Default - Off
Changeable During Run - No

Direct Access Number - F305
Parameter Type - Selection List
Factory Default - (ASD-Dependent)
Changeable During Run - Yes

## Voltage Compensation

Program $\Rightarrow$ Fundamental 1
This parameter Enables/Disables the Voltage Compensation function.
When Enabled, this function provides a constant V/f ratio during periods of input voltage fluctuations.

Settings:
0 — Disabled (Output Voltage Unlimited)
1 - Enabled (Supply Voltage Compensation)
2 - Disabled (Output Voltage Limited)
3 - Enabled (Supply Voltage Compensation w/Output Voltage Limited)

## Dynamic Braking Resistance (Not Used)

Program $\Rightarrow$ Protection
This parameter is used to input the resistive value of the Dynamic Braking Resistor being used.
Light-duty and heavy-duty resistors vary from a few ohms to several hundred ohms. The appropriate resistance size will be typeform- and application-specific.

Note: Using a resistor value that is too low may result in system damage.
Note: Dynamic Braking is not available on the Q9 ASD.

## Dynamic Braking Capacity (Not Used)

Program $\Rightarrow$ Protection

This parameter is used to input the wattage of the Dynamic Braking Resistor.
Note: Using a resistor with a wattage rating that is too low may result in system damage.

Note: Dynamic Braking is not available on the Q9 ASD.
Ridethrough Time
Program $\Rightarrow$ Protection
In the event of a momentary power outage, this parameter determines the length of the Ridethrough time.

The Ridethrough will be maintained for the number of seconds set using this parameter.

See parameter F302 for more information on the Ridethrough function.
Note: The actual Ridethrough Time is load-dependent.

## Direct Access Number - F307

Parameter Type - Selection List
Factory Default - Disabled (Output
Voltage Unlimited)
Changeable During Run - No

## Direct Access Number - F308

Parameter Type - Numerical
Factory Default - (ASD-Dependent)
Changeable During Run - No
Minimum - 0.5
Maximum - 1000.0
Units $-\Omega$

Direct Access Number - F309
Parameter Type - Numerical
Factory Default - (ASD-Dependent)
Changeable During Run - No
Minimum - 0.01
Maximum - 600.00
Units - kW

Direct Access Number - F310
Parameter Type - Numerical
Factory Default - $\mathbf{2 . 0}$
Changeable During Run - Yes
Minimum - 0.1
Maximum - 320.0
Units - Seconds

## Disable Forward Run/Reverse Run

Program $\Rightarrow$ Fundamental 1
This parameter Enables/Disables the Forward Run or Reverse Run mode.
If either direction is disabled, commands received for the disabled direction will not be recognized.
If both directions are disabled, the received direction command will determine the direction of the motor rotation.

Settings:

> 0 - Permit All
> 1 - Disable Reverse Run
> 2 - Disable Forward Run

## Random Mode

No Path — Direct Access Only
This parameter adjusts the carrier frequency randomly. This feature is effective in minimizing the negative effects of mechanical resonance.

Settings:
0 - Disabled
1 - Enabled

| Carrier Frequency Control Mode | Direct Access Number - F316 |
| :---: | :---: |
| No Path - Direct Access Only | Parameter Type - Selection List |
| This parameter provides for the automatic decrease of the carrier frequency. | Factory Default - Valid Decrease and No Limit |
| Select $\mathbf{1}$ to decrease the Carrier Frequency setting as a function of an increased current requirement. | Changeable During Run - Yes |
| Selection $\mathbf{2}$ or $\mathbf{3}$ may also include an output voltage drop as a function of an increased current requirement. The Carrier Frequency should be set below 4 kHz . |  |
| Settings: |  |
| 0 - Disabled - (No Decrease and No Limit) <br> 1 - Valid Decrease and No Limit <br> 2 - No Decrease and Limit Small Pulse <br> 3 - Valid Decrease and Limit Small Pulse |  |

Direct Access Number - F311
Parameter Type - Selection List
Factory Default - Off
Changeable During Run - No

Direct Access Number - F312
Parameter Type - Selection List
Factory Default - Disabled
Changeable During Run - No

## Direct Access Number - F316 <br> Parameter Type - Selection List <br> Factory Default - Valid Decrease and No Limit

Changeable During Run - Yes

## Drooping Gain

No Path - Direct Access Only
This parameter sets the effective $100 \%$ output torque level while operating in the Drooping Control mode. This value is the upper torque limit of the motor being driven by a given ASD while operating in the Drooping Control mode.

Note: $\quad$ The maximum frequency output is not limited by the setting of F011 while operating in the Drooping Control mode.

## Drooping

Drooping Control, also called Load Share, is used to share the load among two or more mechanically coupled motors. Unlike Stall, which reduces the output frequency in order to limit the load once the load reaches a preset level, Drooping can decrease or increase the V/f setting of a motor to maintain a balance between the output torque levels of mechanically coupled motors.

Because of variances in gearboxes, sheaves, belts, motors, and since the speed of the motor is constrained by the mechanical system, one motor may experience more load than its counterpart and may become overloaded. Drooping Control allows the overloaded motor to slow down, thus shedding load and encouraging a lightly-loaded motor to pick up the slack.
The goal of Drooping Control is to have the same torque ratios for mechanically coupled motors.

## Speed at 0\% Drooping Gain

No Path - Direct Access Only
This parameter sets the motor speed when at the $0 \%$ output torque gain while operating in the Drooping Control mode. This function determines the lowest speed that Drooping will be in effect for motors that share the same load.

## Speed at F320 Drooping Gain

No Path — Direct Access Only
This parameter sets the motor speed when at the $100 \%$ output torque gain while operating in the Drooping Control mode. This function determines the speed of the individual motors at the $100 \%$ Drooping Gain setting for motors that share the same load.

## Direct Access Number - F320

Parameter Type - Numerical
Factory Default - $\mathbf{0 . 0}$
Changeable During Run - Yes
Minimum — 0.00
Maximum - 100.0
Units - \%

Direct Access Number - F321
Parameter Type - Numerical
Factory Default - $\mathbf{0 . 0 0}$
Changeable During Run - Yes
Minimum - 0.00
Maximum - 299.0
Units - Hz
Direct Access Number - F322
Parameter Type - Numerical
Factory Default $-\mathbf{0 . 0 0}$
Changeable During Run - Yes
Minimum -0.00
Maximum -299.0
Units — Hz
Direct Access Number - F323
Parameter Type - Numerical
Factory Default - $\mathbf{1 0 . 0 0}$
Changeable During Run - Yes
Minimum - 0.00
Maximum - 100.0
Units - \%

## Drooping Output Filter

No Path - Direct Access Only

This parameter is used to set the rate of output change allowed when operating in the Drooping Control mode.
Jerky operation may be reduced by increasing this setting.

## Power Switching

Program $\Rightarrow$ Special Controls
This parameter Enables/Disables the Commercial Power-to-ASD Output Switching function.

When enabled, the system may be set up to discontinue using the output of the drive and to switch to the commercial power in the event that 1) a trip is incurred, 2 ) a user-set frequency is reached, or 3 ) if initiated by a discrete input terminal.

Once set up with the proper switching frequency and hold times, the system will switch to commercial power upon reaching the F355 frequency criterion.
Switching may also be accomplished manually by activating the discrete input terminal Line Bypass. Terminal activation forces the ASD output speed to accelerate to the F355 switching frequency, resulting in the ASD-to-commercial power switching.

Deactivation of the discrete input terminal starts the hold-time counter setting (F356) for ASD-to-commercial power switching. Once timed out the motor resumes normal commercial power operation.

## Settings:

0 - Off
1 - Switch at Signal Input and Trip
3 - Switch at Signal Input with Switching Frequency
4 - Switch at Signal Input and Trip with Switching Frequency

## Switching Setup Requirements

F354 - Enable the switching function.
F355 - Set the switching frequency.
F356 - (Speed) Hold-time before applying ASD output after the switching criteria has been met.

F357 - (Speed) Hold-time before applying commercial power after the switching criteria has been met.
F358 - (Speed) Hold-time of applying commercial power after the switching criteria have been met.
Set a discrete input terminal to Commercial Power ASD Switching.
Set OUT1 and OUT2 to Commercial Power/ASD Switching 1 and 2, respectively.

Note: Ensure that the ASD/Commercial Power switching directions are the same and that F311 is set to Permit All.

Note: The OUT1 and OUT2 outputs assigned to Commercial Power/ ASD Switching Output are used to actuate the re-routing contactors.

Direct Access Number - F324
Parameter Type - Numerical
Factory Default - $\mathbf{1 0 0 . 0}$
Changeable During Run - Yes
Minimum - 0.1
Maximum - 200.0
Units - Radians/Second

## Direct Access Number - F354

Parameter Type - Selection List
Factory Default - Off
Changeable During Run - No


Switch-to-drive command

## Power Switching Frequency

Program $\Rightarrow$ Special Controls

When enabled at F354 and with a properly configured discrete output terminal, this parameter sets the frequency at which the At Frequency Powerline Switching function engages.

The At Frequency Powerline Switching function commands the system to discontinue using the output of the drive and to switch to commercial power once reaching the frequency set at this parameter.

See parameter F 354 for more information on this setting.

## ASD Switching Wait Time <br> Program $\Rightarrow$ Special Controls <br> This parameter determines the amount of time that the drive will wait before outputting a signal to the motor once the switch-to-drive-output criteria has been met.

See parameter F354 for more information on this setting.

## Commercial Power Switching Wait Time

Program $\Rightarrow$ Special Controls
This parameter determines the amount of time that the drive will wait before allowing commercial power to be applied to the motor once the switch-to-commercial-power criteria has been met.
See parameter F354 for more information on this setting.

## Commercial Power Switching Freq. Hold Time

Program $\Rightarrow$ Special Controls
This parameter determines the amount of time that the connection to commercial power is maintained once the switch-to-drive-output criteria has been met.
See parameter F354 for more information on this setting.

## PID Control Switching

Program $\Rightarrow$ Feedback Settings
This parameter Enables/Disables PID feedback control.
Selecting Process PID uses the upper and lower-limit settings of parameters F367 and F368.
Selecting Speed PID uses the upper and lower-limit settings of parameters F370 and F371.

Settings:

[^1]Direct Access Number - F355
Parameter Type - Numerical
Factory Default - $\mathbf{6 0 . 0 0}$
Changeable During Run - Yes
Minimum - 0.00
Maximum - Max. Freq. (F011)
Units - Hz
Direct Access Number - F356
Parameter Type - Numerical
Factory Default - (ASD-Dependent)
Changeable During Run - Yes
Minimum - 0.10
Maximum - 10.00
Units - Seconds

Direct Access Number - F357
Parameter Type - Numerical
Factory Default - $\mathbf{0 . 6 2}$
Changeable During Run - Yes
Minimum - (ASD-Dependent)
Maximum - 10.00
Units - Seconds
Direct Access Number - F358
Parameter Type - Numerical
Factory Default - $\mathbf{2 . 0 0}$
Changeable During Run - Yes
Minimum - 0.10
Maximum - 10.00
Units - Seconds
Direct Access Number - F359
Parameter Type - Selection List
Factory Default - PID Off
Changeable During Run - No

## PID Feedback Selection

Program $\Rightarrow$ Feedback Settings
This parameter is used to select the source of the feedback control. When enabled at parameter F359, this parameter determines the source of the motor-control feedback or it may be set to the fixed value of zero.

Settings:
$0-$ Feedback Value $=$ Zero
1 - V/I
2 -RR
3 - RX
4 - RX2 (AI1)
5 - Option V/I (AI2)
6 - PG Feedback
Proportional-Integral-Derivative (PID) — A closed-loop control technique that seeks error minimization by reacting to three values: One that is proportional to the error, one that is representative of the error, and one that is representative of the rate of change of the error.

## PID Feedback Delay Filter

Program $\Rightarrow$ Feedback Settings
This parameter determines the delay in the ASD output response to the motorcontrol feedback signal (Signal source is selected at F360).

## Direct Access Number - F360

Parameter Type - Selection List
Factory Default - Feedback Value = Zero

Changeable During Run - Yes

Direct Access Number - F361
Parameter Type - Numerical
Factory Default - $\mathbf{0 . 1}$
Changeable During Run - Yes
Minimum - 0.0
Maximum - 25.0
Direct Access Number - F362
Parameter Type - Numerical
Factory Default - $\mathbf{0 . 1 0}$
Changeable During Run - Yes
Minimum — 0.01
Maximum - 100.0

## PID Feedback Integral (I) Gain

Program $\Rightarrow$ Feedback Settings
This parameter determines the degree that the Integral function affects the output signal. The smaller the value here, the more pronounced the effect of the integral function on the output signal.

Direct Access Number - F363
Parameter Type - Numerical
Factory Default - $\mathbf{0 . 1 0}$
Changeable During Run - Yes
Minimum - 0.01
Maximum - 100.00

## PID Deviation Upper-Limit

Program $\Rightarrow$ Feedback Settings
This parameter determines the maximum amount that the feedback may increase the output signal.

Direct Access Number - F364
Parameter Type - Numerical
Factory Default - $\mathbf{6 0 . 0 0}$
Changeable During Run - Yes
Minimum - 0.00
Maximum - 60.00
Units - Hz

## PID Deviation Lower-Limit <br> Program $\Rightarrow$ Feedback Settings

This parameter determines the maximum amount that the feedback may decrease the output signal.

## PID Feedback Differential (D) Gain

Program $\Rightarrow$ Feedback Settings
This parameter determines the degree that the Differential function affects the output signal. The larger the value entered here, the more pronounced the affect of the differential function for a given feedback signal level.

## Process Upper-Limit

Program $\Rightarrow$ Feedback Settings
Selecting Process PID at parameter F359 allows for this parameter setting to function as the Upper-Limit while operating in the PID Control mode.

Direct Access Number - F365
Parameter Type - Numerical
Factory Default - $\mathbf{6 0 . 0 0}$
Changeable During Run - Yes
Minimum - 0.00
Maximum - 60.00
Units - Hz
Direct Access Number - F366
Parameter Type - Numerical
Factory Default - $\mathbf{0 . 0 0}$
Changeable During Run - Yes
Minimum - 0.00
Maximum - 2.55
Direct Access Number - F367
Parameter Type - Numerical
Factory Default - $\mathbf{6 0 . 0 0}$
Changeable During Run - No
Minimum - Lower-Limit (F013)
Maximum - Upper-Limit (F012)
Units - Hz
Process Lower-Limit
Direct Access Number - F368
Parameter Type - Numerical
Factory Default - $\mathbf{0 . 0 0}$
Changeable During Run - No
Minimum — Lower-Limit (F013)
Maximum - Upper-Limit (F012)
Units - Hz

## PID Control Wait Time

Program $\Rightarrow$ Feedback Settings

This parameter is used to delay the start of PID Control at start up. During the wait time set here, the ASD will follow the frequency control input of the process value and the feedback input will be ignored until this setting times out. At which time the PID setup assumes control.

Direct Access Number - F369
Parameter Type - Numerical
Factory Default - $\mathbf{0}$
Changeable During Run - Yes
Minimum — 0
Maximum - 2400
Units - Seconds

## PID Output Upper-Limit

Program $\Rightarrow$ Feedback Settings

Selecting Speed PID at parameter F359 allows for this parameter setting to function as the Upper-Limit while operating in the PID Control mode.

Direct Access Number - F370
Parameter Type - Numerical
Factory Default - $\mathbf{6 0 . 0 0}$
Changeable During Run - No
Minimum — Lower-Limit (F013)
Maximum - Upper-Limit (F012)
Units - Hz

## PID Output Lower-Limit

Program $\Rightarrow$ Feedback Settings
Selecting Speed PID at parameter F359 allows for this parameter setting to function as the Lower-Limit while operating in the PID Control mode.
Process Increasing Rate
Program $\Rightarrow$ Feedback Settings
This parameter is used to limit the rate that the output of the ASD may increase
for a given difference in the speed reference and the PID feedback value.

Process Decreasing Rate
Program $\Rightarrow$ Feedback Settings
This parameter is used to limit the rate that the output of the ASD may decrease for a given difference in the speed reference and the PID feedback value.

Direct Access Number - F371
Parameter Type - Numerical
Factory Default — Lower-Limit (F013)
Changeable During Run - Yes
Minimum - Lower-Limit (F013)
Maximum - Upper-Limit (F012)
Units - Hz
Direct Access Number - F372
Parameter Type - Numerical
Factory Default - $\mathbf{1 0 . 0}$
Changeable During Run - Yes
Minimum - 0.1
Maximum - 600.0
Units - Seconds

## Feedback Reach Detection Band

No Path — Direct Access Only
While operating in the PID mode, this parameter reads the feedback frequency and when the frequency read is within F374 Hz of the frequency command a properly configured output terminal is activated.

Available output terminal settings for this parameter include: $\mathbf{F C}=\mathbf{R R}$, $\mathbf{F C}=\mathbf{R X}$, and $\mathbf{F C}=\mathbf{V I}$ (see Table 7 on pg. 190).

Direct Access Number - F374
Parameter Type - Numerical
Factory Default - $\mathbf{2 . 5 0}$
Changeable During Run - Yes
Minimum — 0.00
Maximum - Max. Freq. (F011)
Units - Hz

Where $\mathbf{F C}$ is the frequency command and $\mathbf{R R}, \mathbf{R X}$, and $\mathbf{V I}$ are the input terminals of the received feedback.

| Number of PG Input Pulses | Direct Access Number - F375 |
| :--- | :--- |
| No Path — Direct Access Only | Parameter Type — Numerical |
|  | Factory Default - (ASD-Dependent) |
| This parameter is used to set the number of pulses output from a shaft-mounted <br> encoder that is used to indicate one revolution of rotation $\left(360^{\circ}\right)$ of the motor or of <br> the motor-driven equipment. | Changeable During Run — No |
|  | Minimum — 12 |
|  | Maximum — 9999 |

## No Path — Direct Access Only encoder. <br> Settings: <br> 1 - Single Phase <br> 2 - Two Phase

Number of PG Input Phases

This parameter determines the type of information that is supplied by the phase

PG Disconnection Detection
No Path — Direct Access Only
This parameter Enables/Disables the system's monitoring of the PG connection status when using encoders with line driver outputs.

Note: The PG Vector Feedback Board option is required to use this feature.

Settings:
0 - Disabled
1 - Enabled with Filter
3 - Enabled (Detect Momentary Power Fail)

## PG Pulses Per Revolution

No Path — Direct Access Only

This parameter is used to set the number of pulses per revolution of the shaft-mounted encoder.

Note: The PG Vector Feedback Board option is required to use this feature.

## Autotuning Control

Program $\Rightarrow$ Motor Settings

This parameter sets the Autotune command status.
Selecting Reset Motor Defaults for this parameter sets parameters F410, F411, F412, and F413 to the factory default settings.

If selecting Autotune on Run Command, Autotune Initiated by Input Terminal, or Autotune of Detail Parameters for this parameter set the Base Frequency, Base Frequency Voltage, and the Motor Rated Revolutions to the name-plated values of the motor to achieve the best possible Autotune precision.

## Settings:

0 - Autotune Disabled
1 - Reset Motor Defaults
2 - Enable Autotune on Run Command
3 - Autotuning by Input Terminal Signal (see Table 4 on pg. 186)
4 - Motor Constant Auto Calculation

## Direct Access Number - F376

Parameter Type - Selection List
Factory Default - (ASD-Dependent)
Changeable During Run - Yes

Direct Access Number - F377
Parameter Type - Selection List
Factory Default - (ASD-Dependent)
Changeable During Run - Yes

Direct Access Number - F378
Parameter Type - Selection List
Factory Default - (ASD-Dependent)
Changeable During Run - Yes
Minimum - 12
Maximum - 9999
Units - Seconds
Direct Access Number - F400
Parameter Type - Selection List
Factory Default - Autotune Disabled
Changeable During Run - No

## Motor Slip Gain

Program $\Rightarrow$ Motor Settings
This parameter provides a degree of slip compensation for a given load. A higher setting here decreases the slip allowed for a given load/ASD output ratio.

## Autotuning 2

Program $\Rightarrow$ Motor Settings

This parameter is used to set the degree that the system automatically adjust the Autotune parameter values as a function of increases in the temperature of the motor.

Settings:

$$
\begin{aligned}
& 0-\text { Off } \\
& 1 \text { - Self-Cooled Motor Tuning } \\
& 2 \text { - Forced Air Cooled Motor Tuning }
\end{aligned}
$$

| Motor Rated Capacity | Direct Access Number - F405 |
| :---: | :---: |
| Program $\Rightarrow$ Motor Settings <br> This parameter is used to set the (name-plated) rated capacity of the motor being used. | Parameter Type - Numerical <br> Factory Default - $\mathbf{0 . 7 5}$ <br> Changeable During Run - Yes <br> Minimum — 0.1 <br> Maximum - 500.00 <br> Units - kW |
| Motor Rated Current <br> Program $\Rightarrow$ Motor Settings <br> This parameter is used to set the (name-plated) current rating of the motor being used. | Direct Access Number - F406 <br> Parameter Type - Numerical <br> Factory Default - ASD Dependent <br> Changeable During Run - Yes <br> Minimum - 0.1 <br> Maximum - 2000.0 <br> Units - Amps |
| Motor Rated RPM <br> Program $\Rightarrow$ Motor Settings <br> This parameter is used input the (name-plated) rated speed of the motor. | $\begin{aligned} & \text { Direct Access Number - F407 } \\ & \text { Parameter Type - Numerical } \\ & \text { Factory Default — } \mathbf{1 7 3 0} \\ & \text { Changeable During Run — Yes } \\ & \text { Minimum - } 100 \\ & \text { Maximum — } 60000 \end{aligned}$ |

## Base Frequency Voltage 1

Program $\Rightarrow$ Motor Settings
The Base Frequency Voltage $\mathbf{1}$ is the ASD output voltage level at the Base Frequency (F014). Regardless of the programmed value, the output voltage cannot be higher than the input voltage.

The actual output voltage will be influenced by the input voltage of the ASD and the Voltage Compensation setting (F307).

Motor Constant 1 (Torque Boost)
Program $\Rightarrow$ Motor Settings
This parameter sets the primary resistance of the motor. Increasing this value can prevent a drop in the torque of the motor at low speeds. Increasing this value excessively can result in nuisance overload tripping.

## Direct Access Number - F409

Parameter Type - Numerical
Factory Default - (ASD-Dependent)
Changeable During Run - Yes
Minimum - 50.0
Maximum - 660.0
Units - Volts
Direct Access Number - F410
Parameter Type - Numerical
Factory Default - (ASD-Dependent)
Changeable During Run - Yes
Minimum - 0.0
Maximum - 30.0
Units - \%

## Motor Constant 2 (No-Load Current)

Program $\Rightarrow$ Motor Settings
This parameter is used to set the current level required to excite the motor. Specifying a value that is too high for this parameter may result in hunting (erratic motor operation).

Direct Access Number - F411
Parameter Type - Numerical
Factory Default - (ASD-Dependent)
Changeable During Run - No
Minimum - 10
Maximum - 90
Units - \%

## Motor Constant 3 (Leak Inductance)

Program $\Rightarrow$ Motor Settings
This parameter is used to set the leakage inductance of the motor.
A larger setting here results in higher output torque at high speeds.

Direct Access Number - F412
Parameter Type - Numerical
Factory Default - (ASD-Dependent)
Changeable During Run - Yes
Minimum — 0
Maximum - 200
Units - \%

Motor Constant 4 (Rated Slip)
Program $\Rightarrow$ Motor Settings
This parameter is used to set the secondary resistance of the motor.
An increase in this parameter setting results in an increase of compensation for motor slip.

Direct Access Number - F413
Parameter Type - Numerical
Factory Default - (ASD-Dependent)
Changeable During Run - Yes
Minimum - 0.01
Minimum - 25.00
Units - \%

## Exciting Strengthening Coefficient

No Path — Direct Access Only
This parameter is used to increase the magnetic flux of the motor at low-speeds. This feature is useful when increased torque at low speeds is required.

Direct Access Number - F415
Parameter Type - Numerical
Factory Default - $\mathbf{1 0 0}$
Changeable During Run - Yes
Minimum - 100
Maximum - 130
Units - \%

## Stall Prevention Factor 1

No Path - Direct Access Only
This parameter is to be adjusted in the event that the motor stalls when operated above the base frequency.
If a momentary heavy-load condition occurs the motor may stall before the load current reaches the stall prevention level setting of F601.
A drop in the supply voltage may cause fluctuations of the load current or may cause motor vibration. A gradual adjustment of this parameter may alleviate this condition.
Start with a setting of 85 at these parameters and gradually adjust them from there one at a time until the desired results are produced.
Adjustments to this parameter may increase the load current of the motor and subsequently warrant an adjustment at the Motor Overload Protection Level setting.

[^2]If F441 is selected, the value set at F441 is used as the Power Running Torque Limit input.

Settings:
1 - V/I
2 -RR
3 - RX
4 - F441 (Setting)

## Power Running Torque Limit Level

No Path — Direct Access Only
This parameter provides a value for the Power Running Torque Limit setting if Setting is selected at parameter F440.
This value provides the positive torque upper-limit for the number $\mathbf{1}$ motor.
Set this parameter to $\mathbf{2 5 0 \%}$ to disable this function.

## Regenerative Braking Torque Limit

No Path — Direct Access Only
This parameter determines the source of the Regenerative Torque Limit control signal.

If F443 is selected, the value set at F443 is used for this parameter setting.
Settings:
1 - V/I
2 - RR
3 - RX
4-F443 (Setting)

Direct Access Number - F416
Parameter Type - Numerical
Factory Default - $\mathbf{1 0 0}$
Changeable During Run - No
Minimum - 10
Maximum - 250

Direct Access Number - F440
Parameter Type - Selection List
Factory Default -F441 Setting
Changeable During Run - Yes

## Direct Access Number - F441

Parameter Type - Numerical
Factory Default - 250.0 (Disabled)
Changeable During Run - Yes
Minimum - 0.00
Maximum - 250.0 (Disabled)
Units - \%

Direct Access Number - F442
Parameter Type - Selection List
Factory Default - F443 Setting
Changeable During Run - Yes

## Regenerative Braking Torque Limit Setting

No Path — Direct Access Only

This parameter provides a value to be used as the Regeneration Torque Limit 1 if F443 (Setting) is selected at parameter F442.
Set this parameter to $\mathbf{2 5 0 \%}$ to disable this function.

## Speed Loop Proportional Gain

No Path — Direct Access Only
During closed-loop operation, this parameter sets the response sensitivity of the drive when monitoring the output speed for control.

The larger the value entered here, the larger the change in the output speed for a given received feedback signal.

## Speed Loop Stabilization Coefficient

No Path — Direct Access Only
During closed-loop operation, this parameter sets the response sensitivity of the drive when monitoring the output speed for control.
The larger the value entered here, the quicker the response to changes in the received feedback.

## Load Moment of Inertia 1

No Path — Direct Access Only
This parameter is used for calculating accel/decel torque when compensating for load inertia while operating in the Drooping Control mode.

V/I Input Bias
No Path — Direct Access Only
This parameter is used to fine-tune the bias of the $\mathbf{V} / \mathbf{I}$ input terminals.
Note: See note on pg. 40 for more information on the V/I terminal.
This setting may be used to ensure that the zero level of the input source (pot, pressure transducer, flow meter, etc.) is also the zero level setting of the ASD system.

This is accomplished by setting the input source to zero and adjusting this setting to provide an output of zero from the ASD.

Direct Access Number - F443
Parameter Type - Numerical
Factory Default - $\mathbf{2 5 0 . 0}$ (Disabled)
Changeable During Run - Yes
Minimum - 0.00
Maximum - 250.0
Units - \%
Direct Access Number - F460
Parameter Type - Numerical
Factory Default - (ASD-Dependent)
Changeable During Run - No
Minimum - 1
Maximum - 9999
Direct Access Number - F461
Parameter Type — Numerical
Factory Default - $\mathbf{1 0 0}$
Changeable During Run — Yes
Minimum - 1
Maximum — 9999
Direct Access Number — F462

Parameter Type - Numerical
Factory Default - 35
Changeable During Run - Yes
Minimum — 0
Maximum - 100

Parameter Type - Numerical
Factory Default - 128
Changeable During Run - Yes
Minimum - 0
Maximum - 255

## V/I Input Gain

No Path — Direct Access Only

This parameter is used to fine tune the gain of the $\mathbf{V} / \mathbf{I}$ input terminals.
Note: See note on pg. 40 for more information on the V/I terminal.
This setting may be used to ensure that the $100 \%$ level of the input source (pot, pressure transducer, flow meter, etc.) is also the $100 \%$ level setting of the ASD system.
This is accomplished by setting the input source to $100 \%$ and adjusting this setting to provide an output of $100 \%$ from the ASD.

## RR Input Bias

No Path — Direct Access Only
This parameter is used to fine tune the bias of the $\mathbf{R} \mathbf{R}$ input terminal when this terminal is used as the control input while operating in the Speed Control mode or the Torque Control mode.
This setting may be used to ensure that the zero level of the input source (pot, pressure transducer, flow meter, etc.) is also the zero level setting of the ASD system.

This is accomplished by setting the input source to zero and adjusting this setting to provide an output of zero from the ASD.

## RR Input Gain

No Path — Direct Access Only
This parameter is used to fine tune the gain of the $\mathbf{R R}$ input terminal when this terminal is used as the control input while operating in the Speed Control mode or the Torque Control mode.
This setting may be used to ensure that the $100 \%$ level of the input source (pot, pressure transducer, flow meter, etc.) is also the $100 \%$ level setting of the ASD system.
This is accomplished by setting the input source to $100 \%$ and adjusting this setting to provide an output of $100 \%$ from the ASD.

## RX Input Bias <br> No Path — Direct Access Only

This parameter is used to fine tune the bias of the $\mathbf{R X}$ input terminal when this terminal is used as the control input while operating in the Speed Control mode or the Torque Control mode.
This setting may be used to ensure that the zero level of the input source (pot, pressure transducer, flow meter, etc.) is also the zero level setting of the ASD system.
This is accomplished by setting the input source to zero and adjusting this setting to provide an output of zero from the ASD.

## Direct Access Number - F471

Parameter Type - Numerical
Factory Default - 124
Changeable During Run - Yes
Minimum - 0
Maximum - 255

## Direct Access Number — F472

Parameter Type - Numerical
Factory Default - $\mathbf{1 2 8}$
Changeable During Run - Yes
Minimum - 0
Maximum - 255

Direct Access Number - F473
Parameter Type - Numerical
Factory Default - $\mathbf{1 5 4}$
Changeable During Run - Yes
Minimum — 0
Maximum - 255

Direct Access Number - F474
Parameter Type - Numerical
Factory Default - 127
Changeable During Run - Yes
Minimum — 0
Maximum - 255

## RX Input Gain

No Path — Direct Access Only

This parameter is used to fine tune the gain of the $\mathbf{R X}$ input terminal when this terminal is used as the control input while operating in the Speed Control mode or the Torque Control mode.
This setting may be used to ensure that the $100 \%$ level of the input source (pot, pressure transducer, flow meter, etc.) is also the $100 \%$ level setting of the ASD system.
This is accomplished by setting the input source to $100 \%$ and adjusting this setting to provide an output of $100 \%$ from the ASD.

## RX2 (Al1) Input Bias <br> No Path — Direct Access Only

This parameter is used to fine tune the bias of the RX2 (AI1) input terminal when this terminal is used as the control input while operating in the Speed Control mode or the Torque Control mode.
This setting may be used to ensure that the zero level of the input source (pot, pressure transducer, flow meter, etc.) is also the zero level setting of the ASD system.
This is accomplished by setting the input source to zero and adjusting this setting to provide a zero output from the ASD.

## RX2 (Al1) Input Gain <br> No Path — Direct Access Only

This parameter is used to fine tune the gain of the RX2 (AI1) input terminal when this terminal is used as the control input while operating in the Speed Control mode or the Torque Control mode.
This setting may be used to ensure that the $100 \%$ level of the input source (pot, pressure transducer, flow meter, etc.) is also the $100 \%$ level setting of the ASD system.
This is accomplished by setting the input source to $100 \%$ and adjusting this setting to provide an output of $100 \%$ from the ASD.

## Al2 (Option V/I) Input Bias

No Path — Direct Access Only
This parameter is used to fine tune the gain of the Optional AI2 input terminal when this terminal is used as the control input while operating in the Speed Control mode or the Torque Control mode.

This setting may be used to ensure that the $100 \%$ level of the input source (pot, pressure transducer, flow meter, etc.) is also the $100 \%$ level setting of the ASD system.
This is accomplished by setting the input source to $100 \%$ and adjusting this setting to provide an output of $100 \%$ from the ASD.

Direct Access Number - F475
Parameter Type - Numerical
Factory Default - $\mathbf{1 2 7}$
Changeable During Run - Yes
Minimum - 0
Maximum - 255

Direct Access Number - F476
Parameter Type - Numerical
Factory Default - 128
Changeable During Run - Yes
Minimum - 0
Maximum - 255
Direct Access Number - F477
Parameter Type - Numerical
Factory Default - $\mathbf{1 2 8}$
Changeable During Run — Yes
Minimum - 0
Maximum — 255

Direct Access Number - F478
Parameter Type - Numerical
Factory Default - $\mathbf{1 2 8}$
Changeable During Run - Yes
Minimum — 0
Maximum - 255

## Al2 (Option V/I) Input Gain

No Path - Direct Access Only
This parameter is used to fine tune the gain of the Optional AI2 input terminal when this terminal is used as the control input while operating in the Speed Control mode or the Torque Control mode.

This setting may be used to ensure that the $100 \%$ level of the input source (pot, pressure transducer, flow meter, etc.) is also the $100 \%$ level setting of the ASD system.
This is accomplished by setting the input source to $100 \%$ and adjusting this setting to provide an output of $100 \%$ from the ASD.

## Permanent Magnet (PM) Motor Constant 1

No Path — Direct Access Only
This parameter is used with synchronous motor applications only.
Contact the Toshiba Customer Support Center for information on this parameter.

## Permanent Magnet (PM) Motor Constant 2

No Path — Direct Access Only
This parameter is used with synchronous motor applications only.
Contact the Toshiba Customer Support Center for information on this parameter.

## Acceleration Time 2

Program $\Rightarrow$ Fundamental 2
This parameter specifies the time in seconds for the output of the ASD to go from 0.0 Hz to the Maximum Frequency for the Acceleration 2 profile. The Accel/ Decel Pattern may be set using F502.

This setting is also used to determine the acceleration rate of the UP/DOWN Frequency Functions.

Note: An acceleration time shorter than the load will allow may cause nuisance tripping and mechanical stress to loads. Automatic Accel/Decel, Stall, and Ridethrough settings may lengthen the acceleration times.

## Deceleration Time 2

Program $\Rightarrow$ Fundamental 2
This parameter specifies the time in seconds for the output of the ASD to go from the Maximum Frequency to 0.0 Hz for the Deceleration 2 profile. The Accel/ Decel Pattern may be set using F502.
This setting is also used to determine the deceleration rate of the UP/DOWN Frequency Functions.
Note: A deceleration time shorter than the load will allow may cause nuisance tripping and mechanical stress to loads. Automatic Accel/Decel, Stall, and Ridethrough settings may lengthen the deceleration times.

Direct Access Number - F479
Parameter Type - Numerical
Factory Default - $\mathbf{1 2 8}$
Changeable During Run - Yes
Minimum - 0
Maximum - 255

Direct Access Number - F498
Parameter Type - Numerical
Factory Default - (ASD-Dependent)
Changeable During Run - Yes
Minimum - 0
Maximum - 100
Units - \%
Direct Access Number - F499
Parameter Type - Numerical
Factory Default - (ASD-Dependent)
Changeable During Run - Yes
Minimum - 0
Maximum - 100
Units - \%

## Direct Access Number - F500

Parameter Type - Numerical
Factory Default - (ASD-Dependent)
Changeable During Run - Yes
Minimum - 0.1
Maximum — 6000.0
Units - Seconds

## Direct Access Number - F501

Parameter Type - Numerical
Factory Default - (ASD-Dependent)
Changeable During Run - Yes
Minimum - 0.1
Maximum - 6000
Units - Seconds

## Acc/Dec Pattern 1

Program $\Rightarrow$ Fundamental 1
This parameter enables a user-selected preprogrammed output profile that controls the acceleration and deceleration pattern for the Accel/Decel 1 parameter.

Direct Access Number - F502
Parameter Type - Selection List
Factory Default - Linear
Changeable During Run - Yes

Settings:
0 - Linear
1-S-Pattern 1
2 -S-Pattern 2

The figures below provide a profile of the available accel/decel patterns.

Linear acceleration and deceleration is the default pattern and is used on most applications.

S-Pattern 1 is used for applications that require quick acceleration and deceleration. This setting is also popular for applications that require shock absorption at the start of acceleration or deceleration.

S-Pattern 2 acceleration and deceleration rate decreases above the base frequency.




## Acc/Dec Pattern 2

Program $\Rightarrow$ Fundamental 2
This parameter enables a user-selected preprogrammed output profile that controls the acceleration and deceleration patterns for the Accel/Decel 2 parameter. See F502 for more information on this parameter.

Direct Access Number - F503
Parameter Type - Selection List
Factory Default - Linear
Changeable During Run - Yes

Settings:
0 - Linear
1-S-Pattern 1
2 -S-Pattern 2

## Panel Acc/Dec Selection

Program $\Rightarrow$ Panel Control
Two Accel/Decel profiles may be set up and run individually.
Accel/Decel Time $\mathbf{1}$ or $\mathbf{2}$ may be selected using this parameter setting. The system may also be configured to switch between the number $\mathbf{1}$ and the number $\mathbf{2}$ profiles under user-set conditions.
Switching may be accomplished manually via a properly configured discrete input terminal or automatically via a threshold frequency setting.
This parameter is used to manually select one of the configured accel/decel profiles to be used.
Settings:
1 - Acc/Dec 1
2 - Acc/Dec 2
Each Accel/Decel selection is comprised of an Acceleration Time, Deceleration Time, and a Pattern selection.
Accel/Decel 1 includes a Switching Frequency setting (F505). The Switching Frequency is used as a threshold frequency that, once reached (during accel or decel), the ASD switches to the other profile.
Acc/Dec 1 is set up using parameters F009 (Acc Time), F010 (Dec Time), F502 (Pattern), and F505 (Switching Frequency).
Acc/Dec 2 is set up using parameters F500 (Acc Time), F501 (Dec Time), and F503 (Pattern).

To switch using a discrete input terminal, assign the function A/D 1/2 to an unused discrete input terminal. Activating or deactivating the A/D 1/2 terminal toggles to and from the Accel/Decel profiles $\mathbf{1}$ and $\mathbf{2}$ and will override the setting of this parameter.
Figure 27 shows the setup requirements and the resulting output frequency response when using Switching Frequency settings to control the Acc/Dec profile of the ASD output.

## Accel/Decel Switching Frequency 1

Program $\Rightarrow$ Fundamental 2
This parameter sets the frequency at which the acceleration/deceleration control is switched from the Accel $\mathbf{1}$ profile to the Accel $\mathbf{2}$ profile or from the Decel $\mathbf{2}$ to the Decel 1 during a multiple-acceleration/deceleration profile configuration.
See F504 for more information on this parameter.

## Direct Access Number - F504 <br> Parameter Type - Selection List <br> Factory Default — Acc/Dec 1 <br> Changeable During Run - Yes.

Figure 27. Using Acc/Dec Switching.


1 - Accel time 1 (F009 setting)
2 - Accel time 2 (F500 setting)
3 - Decel time 2 (F501 setting)
4 - Decel time 1 (F010 setting)
F505 - Frequency threshold setting at which the 1 -to- 2 and the 3 -to- 4 switch
Direct Access Number - F505
Parameter Type — Numerical
Factory Default - $\mathbf{0 . 0 0}$
Changeable During Run - Yes
Minimum - 0.00
Maximum - Max. Freq. (F011)
Units — Hz

Direct Access Number - F505
Parameter Type - Numerical
Factory Default - $\mathbf{0 . 0 0}$
Changeable During Run - Yes
Minimum - 0.00

Units - Hz

## Electronic Thermal Protection 1

Program $\Rightarrow$ Motor Settings

This parameter specifies the motor overload current level for motor number 1. This value is entered as either a percentage of the full load rating of the ASD or as a percentage of the FLA of the motor.

The unit of measurement for this parameter may be set to $\mathbf{A} / \mathbf{V}$ (Amps) or it may be set as a percentage of the ASD rating. The name-plated FLA of the motor may be entered directly when Amps is selected as the unit of measurement (see F701 to change the display unit).
Electronic Thermal Protection 1 settings will be displayed in Amps if the EOI display units are set to $\mathbf{A} / \mathbf{V}$ rather than $\%$.

## Over-Current Stall Level

Program $\Rightarrow$ Protection
This parameter specifies the output current level at which the output frequency is reduced in an attempt to prevent a trip. The over-current level is entered as a percentage of the maximum rating of the drive.

Note: $\quad$ The Motor Overload Protection parameter must enabled at F017 to use this feature.
Trip Save at Power Down
Program $\Rightarrow$ Protection
This parameter Enables/Disables the Trip Save setting. When enabled, this feature logs the trip event and retains the trip information when the system powers down. The trip information may be viewed from the Monitor screen.

When disabled, the trip information will be cleared when the system powers down.

Settings:
0 — Disabled
1 - Enabled
Emergency Off Mode Selection
Program $\Rightarrow$ Protection
This parameter determines the method used to stop the motor in the event that an Emergency Off command is received and the system is configured to use this feature.

This setting may also be associated with the FL terminals to allow the FL relay to change states when an EOFF condition occurs by setting the FL terminal to Fault FL (all) (see F132).

Note: A supplemental emergency stopping system should be used with the ASD. Emergency stopping should not be a task of the ASD alone.

## Direct Access Number - F600

Parameter Type - Numerical
Factory Default - 100
Changeable During Run - Yes
Minimum - 10
Maximum - 100.0
Units - \% (or F701 setting)

Direct Access Number - F601
Parameter Type - Numerical
Factory Default - (ASD-Dependent)
Changeable During Run - Yes
Minimum - 10
Maximum - 165
Units - \%

## Direct Access Number - F602

Parameter Type - Selection List
Factory Default - Disabled
Changeable During Run - Yes

## Direct Access Number - F603

Parameter Type - Selection List
Factory Default - Coast Stop
Changeable During Run - No

## Emergency Off DC Injection Time

Program $\Rightarrow$ Protection

This parameter determines the time that the DC Injection braking is applied to the motor if DC Injection is selected at F603.

## Output Phase Failure Detection

Program $\Rightarrow$ Protection
This parameter Enables/Disables the monitoring of each phase of the 3-phase output signal ( $\mathrm{U}, \mathrm{V}$, or W ) of the ASD. If either line is missing, inactive, or not of the specified level for one second or more, the ASD incurs a trip.

Note: Autotune checks for phase failures regardless of this setting.

## Settings:

0 - No Detection (Disabled)
1 - First Start (Enabled at Startup and Retry)
2 - Every Start (Enabled at Run Command and Retry)
3 - During Run (Enabled During Run)
4 - Start + Run (Enabled at Startup and During Run)
5 - Auto-Restart (Enabled Detects an ALL-PHASE Failure ONLY - Will Not Trip, Restarts At Reconnect)

## Overload Reduction Starting Frequency

Program $\Rightarrow$ Protection
This parameter is primarily used with V/f motors. It is used to reduce the starting frequency at which the Overload Reduction function begins and, thus, overloads at a lower current level. This function is useful during extremely low-speed motor operation.
This function is useful when used on loads such as fans, pumps, and blowers that follow the square reduction torque characteristic.
The default overload time is 300 seconds at $150 \%$ ASD output; this time may vary as a function of the magnitude of the overload.

## ASD Input Phase Failure Detection

Program $\Rightarrow$ Protection
This parameter enables the 3-phase input power phase loss detection feature. A loss of either input phase ( $\mathrm{R}, \mathrm{S}$, or T ) results in a trip.

## Settings:

0 - Disabled
1-Enabled

Direct Access Number - F604
Parameter Type - Numerical
Factory Default - $\mathbf{1 . 0}$
Changeable During Run - Yes
Minimum - 0.0
Maximum - 20.0
Units - Seconds

## Direct Access Number - F605

Parameter Type - Selection List
Factory Default - No Detection (Disabled)
Changeable During Run - No

## Direct Access Number - F606

Parameter Type - Numerical
Factory Default - $\mathbf{6 . 0 0}$
Changeable During Run - Yes
Minimum - 0.00
Maximum - 30.00
Units - Hz

Direct Access Number - F608
Parameter Type - Selection List
Factory Default - Enabled
Changeable During Run - No

## Low-Current Detection Hysteresis Width

Program $\Rightarrow$ Protection
During a momentary low-current condition, this parameter provides a current threshold level to which the low-current condition must return within the time setting of F612 or a Low-Current Trip will be incurred.

## Low-Current Trip

Program $\Rightarrow$ Protection
This parameter Enables/Disables the low-current trip feature.
When enabled, the drive will trip on a low-current fault if the output current of the drive falls below the level defined at F611 and remains there for the time set at F612.

Settings:
0 - Disabled
1-Enabled

## Low-Current Detection Threshold

Program $\Rightarrow$ Protection
With the Low-Current Trip (F610) parameter enabled, this function sets the lowcurrent trip threshold.
The threshold value is entered as a percentage of the maximum rating of the drive.

## Low-Current Trip Threshold Time

Program $\Rightarrow$ Protection
With the Low-Current Trip (F610) parameter enabled, this function sets the time
that the low-current condition must exist to cause a trip.

Short Circuit Detection At Start
Program $\Rightarrow$ Protection
This parameter determines when the system will perform an Output Short Circuit test.

Note: Selection 3 is recommended for high-speed motor applications. Because of the low impedance of high-speed motors the standardpulse setting may result in a motor malfunction.

## Direct Access Number - F609

Parameter Type - Numerical
Factory Default - $\mathbf{1 0}$
Changeable During Run - Yes
Minimum - 1
Maximum - 20
Units - \%
Direct Access Number - F610
Parameter Type - Selection List
Factory Default - Disabled
Changeable During Run - No

Direct Access Number - F611
Parameter Type - Numerical
Factory Default - $\mathbf{0}$
Changeable During Run - Yes
Minimum - 0
Maximum - 100
Units - \%
Direct Access Number - F612
Parameter Type - Numerical
Factory Default - $\mathbf{0}$
Changeable During Run - Yes
Minimum - 0
Maximum - 255
Units - Seconds
Direct Access Number - F613
Parameter Type - Selection List
Factory Default — Every Start (standard pulse)
Changeable During Run - No

Settings:
0 - Every Start (Standard Pulse)
1 - Power On or Reset (Standard Pulse)
2 - Every Start ( $25 \mu$ S Pulse)
3 - Power On or Reset ( $25 \mu$ S Pulse)
4 - Every Start ( $10 \mu \mathrm{~S}$ pulse)
5 - Power On or Reset ( $10 \mu$ S Pulse)

## Over-Torque Trip

Program $\Rightarrow$ Protection

This parameter Enables/Disables the Over-Torque Tripping function.
When enabled, the ASD trips if an output torque value greater than the setting of F616 or F617 exists for a time longer than the setting of F618.
When disabled, the ASD does not trip due to over-torque conditions.

Note: $\quad$ A discrete output terminal may be activated when an over-torque alarm occurs if so configured (see F130).

Settings:
0 - Disabled
1 - Enabled

## Over-Torque Level (Positive Torque)

Program $\Rightarrow$ Protection
This parameter sets the torque threshold level that is used as a setpoint for overtorque tripping during positive torque. This setting is a percentage of the maximum rated torque of the drive.
This function is enabled at F615.

## Over-Torque Detection Level (Negative Torque)

Program $\Rightarrow$ Protection
This parameter sets the torque threshold level that is used as a setpoint for overtorque tripping during negative torque (Regen). This setting is a percentage of the maximum rated torque of the drive.

This function is enabled at F615.

## Over-Torque Detection Time

Program $\Rightarrow$ Protection
This parameter sets the amount of time that the over-torque condition may exceed the tripping threshold level set at F616 and F617 before a trip occurs.
This function is enabled at F615.

## Over-Torque Detection Hysteresis

Program $\Rightarrow$ Protection
During a momentary over-torque condition, this parameter provides a torque threshold level to which the over-torque condition must return within the time setting of F618 or an Over-Torque Trip will be incurred.

Direct Access Number - F615
Parameter Type - Selection List
Factory Default - Disabled
Changeable During Run - No

Direct Access Number - F616
Parameter Type - Numerical
Factory Default - $\mathbf{2 5 0 . 0 0}$
Changeable During Run - No
Minimum - 0.00
Maximum - 250.00
Units - \%

Parameter Type - Numerical
Factory Default - $\mathbf{2 5 0 . 0 0}$
Changeable During Run - No
Minimum - 0.00
Maximum - 250.00
Units - \%
Direct Access Number — F618
Parameter Type - Numerical
Factory Default $-\mathbf{0 . 5 0}$
Changeable During Run — No
Minimum — 0.00
Maximum — 10.0
Units — Seconds
Direct Access Number - F619
Parameter Type - Numerical
Factory Default - $\mathbf{1 0 . 0 0}$
Changeable During Run - Yes
Minimum - 0.00
Maximum - 100.00
Units - \%

## Cooling Fan Control

Program $\Rightarrow$ Protection
This parameter sets the cooling fan run-time command.
Settings:
0 - Automatic
1 - Always On

## Run-Time Alarm Setting

Program $\Rightarrow$ Protection
This parameter sets a run-time value that, once exceeded, closes a discrete output contact. The output signal may be used to control external equipment or used to engage a brake.
Associate the Total-Operation-Hours Alarm setting of Table 7 on pg. 190 to a discrete output contactor.

Note: $\quad$ The time displayed is $1 / 10 \mathrm{th}$ of the actual time ( $0.1 \mathrm{hr} .=1.0 \mathrm{hr}$.).

## Abnormal Speed Time

Program $\Rightarrow$ Protection
This parameter sets the time that an overspeed condition (speed drifts outside of the F623 and F624 range) must exist to cause a trip.
This parameter functions in conjunction with the settings of F623 and F624.
Abnormal Speed Upper Band
Program $\Rightarrow$ Protection
This parameter sets the upper level of the Abnormal Speed range that, once
exceeded, will cause an Overspeed Detected alert.
This parameter functions in conjunction with the settings of F622 and F624.

Direct Access Number - F620
Parameter Type - Selection List
Factory Default - Automatic
Changeable During Run - Yes
Direct Access Number - F621
Parameter Type - Numerical
Factory Default - $\mathbf{6 1 0 . 0}$

Changeable During Run - Yes
Minimum - 0.0
Maximum - 999.9
Units - Hours (X 10)

Direct Access Number - F622
Parameter Type - Numerical
Factory Default - $\mathbf{0 . 0 1}$
Changeable During Run - Yes
Minimum - 0.01
Maximum - 100.00
Units - Seconds
Direct Access Number - F623
Parameter Type - Numerical
Factory Default - $\mathbf{0 . 0}$ (Disabled)
Changeable During Run - Yes
Minimum - 0.0 (Disabled)
Maximum - 30.00
Units - Hz

## Abnormal Speed Lower Band

Program $\Rightarrow$ Protection
This parameter sets the lower level of the Abnormal Speed range that, once the output speed falls below this setting, will cause a Speed Drop Detected alert.
This parameter functions in conjunction with the settings of F622 and F623.

Direct Access Number - F624
Parameter Type - Numerical
Factory Default - $\mathbf{0 . 0 0}$ (Disabled)
Changeable During Run - Yes
Minimum - 0.00 (Disabled)
Maximum - 30.00
Units - Hz

## Over-Voltage Stall Level

Program $\Rightarrow$ Protection
This parameter sets the upper DC bus voltage threshold that, once exceeded, will cause an Over-Voltage Stall. An Over-Voltage Stall increases the output frequency of the drive during deceleration for a specified time in an attempt to prevent an Over-Voltage Trip.
If the Over-Voltage condition persists for more than 4 ms , an Over-Voltage Trip will be incurred.

This parameter is enabled at F305.
Note: This parameter setting may increase deceleration times.

## Under-Voltage Trip

Program $\Rightarrow$ Protection
This parameter Enables/Disables the Under-Voltage Trip function.
With this parameter Enabled, the ASD will trip in the event of an under-voltage condition.
A user-selected contact may be actuated if so configured.
If Disabled the ASD will stop and not trip; the FL contact is not activated.

## Settings:

0 - Disabled
1 - Enabled
ASD Overload
No Path — Direct Access Only
This parameter is used to protect the ASD from an over-current condition. The standard overload rating of the Q9 ASD is $110 \%$ operation for 60 seconds.

This setting allows for the overload protection to be switched from the standard overload detection means (Thermal Detection and Overload) to thermal detection only.

Settings:
0 - Thermal Detection + Overload
1 - Thermal Detection Only

The Thermal Detection Only selection is used when multiple devices are installed horizontally as described on pg. 13.

## V/I Input-Loss Detection Level

Program $\Rightarrow$ Special Controls
This parameter is enabled by providing a non-zero value here. This function monitors the $\mathbf{V} / \mathbf{I}$ input signal and if the $\mathbf{V} / \mathbf{I}$ input signal falls below the level specified here and remains there for a period of 0.3 seconds or more a trip will be incurred (E-18).

This value is entered as $0 \%$ to $100 \%$ of the $\mathbf{V} / \mathbf{I}$ input signal range.

## Direct Access Number - F626

Parameter Type - Numerical
Factory Default - (ASD-Dependent)
Changeable During Run - Yes
Minimum - 100
Maximum - 150
Units - \%

## Direct Access Number - F627

Parameter Type - Selection List
Factory Default - Disabled
Changeable During Run - No

Direct Access Number - F631
Parameter Type - Selection List
Factory Default - Thermal Detection + Overload

Changeable During Run - No

Direct Access Number - F633
Parameter Type - Numerical
Factory Default - 0 (Disabled)
Changeable During Run - No
Minimum — 1
Maximum - 100
Units - \%

## Annual Average Ambient Temperature

No Path — Direct Access Only
This parameter is used in conjunction with a discrete output terminal setting to notify the operator of the remaining useful life of critical components of the ASD system.

With a discrete output terminal set to Part Replacement Alarm (see Table 7 on pg. 190) and the calculation derived from the parameter setting, maintenance scheduling may be enhanced.

## Settings:

1 - Under $10^{\circ} \mathrm{C}\left(50^{\circ} \mathrm{F}\right)$
2 - Under $20^{\circ} \mathrm{C}\left(68^{\circ} \mathrm{F}\right)$
3 - Under $30^{\circ} \mathrm{C}\left(86^{\circ} \mathrm{F}\right)$
4 - Under $40^{\circ} \mathrm{C}\left(104^{\circ} \mathrm{F}\right)$
5 - Under $50^{\circ} \mathrm{C}\left(122^{\circ} \mathrm{F}\right)$
6 - Under $60^{\circ} \mathrm{C}\left(140^{\circ} \mathrm{F}\right)$

## Rush Relay Current Activation Time

No Path — Direct Access Only
At system startup, this parameter sets a time-delay for the start of the Rush Relay activation in an attempt to allow the DC bus voltage to reach the normal operating level before outputting a signal to the motor.

Direct Access Number - F634
Parameter Type - Selection List
Factory Default — Under $\mathbf{3 0}^{\circ}$
Changeable During Run - No

Direct Access Number - F635
Parameter Type - Numerical
Factory Default - $\mathbf{0 . 0}$
Changeable During Run - No
Minimum - 0.0
Maximum - 2.5
Units - Seconds

## PTC1 Thermal Selection

No Path — Direct Access Only
This parameter Enables/Disables the optional external thermal detection circuit of the Expansion IO Card Option 1. A thermistor is connected from TH1+ to TH1- of TB3 on the Expansion IO Card Option 1.
Should the thermistor resistance reading fall below $50 \Omega$ because of an overtemperature condition or exceed $3000 \Omega$ because of an open circuit an External Thermal Fault (OH2) will be incurred.

Note: While this parameter is Enabled, the system cannot be restarted until the thermistor value recovers to the level of $1.8 k \Omega$ from an over-temperature condition. An Auto-Restart will not be initiated subsequent to an External Thermal Trip (OH2). A manual restart will be required in the event of an $\mathbf{O H 2}$ trip.

## Direct Access Number - F637

Parameter Type - Selection List
Factory Default - Disabled
Changeable During Run - No

## PTC2 Thermal Selection

No Path — Direct Access Only

This parameter Enables/Disables the optional external thermal detection circuit of the Expansion IO Card Option 2. A thermistor is connected from TH1+ to TH1- of TB4 on the Expansion IO Card Option 2.

Should the thermistor resistance reading fall below $50 \Omega$ because of an overtemperature condition or exceed $3000 \Omega$ because of an open circuit an External Thermal Fault (OH2) will be incurred.

Note: While this parameter is Enabled, the system cannot be restarted until the thermistor value recovers to the level of $1.8 \mathrm{k} \Omega$ from an over-temperature condition. An Auto-Restart will not be initiated subsequent to an External Thermal Trip (OH2). A manual restart will be required in the event of an $\mathbf{O H 2}$ trip.

Settings:
0 - Disabled
1 - Detect Disconnect

## Braking Resistance Overload Time (10x rated torque)

No Path — Direct Access Only
This parameter sets the time that the braking resistor is allowed to sustain and overload condition before a trip is incurred.
This feature is useful for applications that have a fluctuating load or for loads that require a long deceleration time.

## Step-Out Current Detection Level

Program $\Rightarrow$ Protection
This parameter is used with synchronous motor applications only.
Contact the Toshiba Customer Support Center for information on this parameter.

## Step-Out Current Detection Time

Program $\Rightarrow$ Protection
This parameter is used with synchronous motor applications only.
Contact the Toshiba Customer Support Center for information on this parameter.

Direct Access Number - F638
Parameter Type - Selection List
Factory Default - Disabled
Changeable During Run - No

Direct Access Number - F639
Parameter Type - Numerical
Factory Default - $\mathbf{5 . 0}$
Changeable During Run - No
Minimum - 0.1
Maximum - 600.0
Units - Seconds
Direct Access Number - F640
Parameter Type - Numerical
Factory Default - $\mathbf{1 0 0}$
Changeable During Run - Yes
Minimum - 10
Maximum - 150
Units - \%
Direct Access Number - F641
Parameter Type - Numerical
Factory Default - $\mathbf{0 0}$
Changeable During Run - Yes
Minimum — 0.00
Maximum - 25.0
Units - Seconds

## Restart Wait Time

Program $\Rightarrow$ Protection
This parameter is used with synchronous motor applications only.
Contact the Toshiba Customer Support Center for information on this parameter.
Settings:
$0-10 \mathrm{~Hz}$ Over
$1-20 \mathrm{~Hz}$ Over

## V/I Input Loss Response

Program $\Rightarrow$ Special Controls
This parameter is used to provide a system disposition in the event of the loss of the $\mathbf{V} / \mathbf{I}$ input signal.

The system will either trip or run the speed set at Preset Speed 14.
Note: $\quad$ Preset Speed 14 must be configured to use the preset speed selection.

Settings:
Trip
Preset Speed 14

## PTC Thermal Detection Disposition

No Path — Direct Access Only
This parameter sets the ASD disposition in the event that the PTC resistance exceeds the setting of parameter F646.
The RR input terminal becomes the PTC Thermal Input terminal when Alarm or Trip is selected at this parameter.
This parameter setting overrides the Frequency Mode 1 and Frequency Mode 2 settings.

Settings:
0 - Do Nothing
1 - Alarm
2 - Trip

## PTC Thermal Detection Level

No Path — Direct Access Only
This parameter provides a user-set resistance threshold for the thermal sensor that, once exceeded, will activate the selection of F645.

## Direct Access Number - F643

Parameter Type - Numerical
Factory Default - 0
Changeable During Run - Yes

## Direct Access Number - F644

Parameter Type - Selection List
Factory Default - Trip
Changeable During Run - No

## Direct Access Number - F645

Parameter Type - Selection List
Factory Default — Do Nothing
Changeable During Run - No

Direct Access Number - F646
Parameter Type - Numerical
Factory Default - $\mathbf{3 0 0 0}$
Changeable During Run - No
Minimum - 100
Maximum -9999.0
Units $-\Omega$

## Backup Option Selection

No Path — Direct Access Only
This parameter sets the ASD disposition in the event that an Under-torque condition exists for longer than the time setting of F654.

Direct Access Number - F647
Parameter Type - Selection List
Factory Default - Do Nothing
Changeable During Run - No

Settings:
0 - Do Nothing
1 - Alarm
2 - Trip

Forced Fire Speed
Program $\Rightarrow$ Special Controls
This parameter is used to enable the Forced Fire Speed function. The Forced Fire Speed function runs Preset Speed 15 in the event of an emergency.

Preset Speed 15 must be configured to use the Forced Fire Speed function.
Settings:
0 — Enabled
1 - Disabled

No Path - Direct Access Only
This parameter sets the ASD disposition in the event that an Under-Torque condition exists for longer than the time setting of F654.

## Direct Access Number - F651

Parameter Type - Selection List
Factory Default - Do Nothing
Changeable During Run - No

## Settings:

0 - Do Nothing
1 - Alarm
2 - Trip

## Under-Torque Level While ASD-Driven

No Path — Direct Access Only
When enabled at parameter F651 and while the motor is being driven by the ASD, this setting is used to set a low-torque threshold minimum level that must exist for the duration of the time setting of parameter F654 to activate the Under-Torque disposition of the parameter F651 setting.

Direct Access Number - F652
Parameter Type - Numerical
Factory Default - $\mathbf{0 . 0 0}$
Changeable During Run - Yes
Minimum - 0.00
Maximum - 250.0
Units - \%

## Under-Torque Detection Time

No Path — Direct Access Only
When enabled at parameter F651, this setting is used to set the time that the lowtorque condition must exist to activate the Under-Torque disposition of the parameter F651 setting.

## Under-Torque Hysteresis

No Path — Direct Access Only
When enabled at parameter F651 by selecting Alarm, this setting is used to set the hysteresis threshold of the low-torque condition for which the system must return to deactivate the Under-Torque Alarm setting of the parameter F651 setting and to return to normal system operation.
If Trip is selected at parameter F651, the same threshold applicables are in effect with the addition that operator intervention will be required to return the system to the normal operating condition. Remove the source of the trip condition and/or perform a system reset.

## Adding Input Selection

Program $\Rightarrow$ Protection
This parameter Enables/Disables the feature that allows for the external adjustment of the Output Frequency.
Selecting either of the input methods listed enables this feature. The selected input is used as a modifier of the programmed Output Frequency.

## Direct Access Number - F654

Parameter Type - Numerical
Factory Default - $\mathbf{0 . 5 0}$
Changeable During Run - No
Minimum - 0.00
Maximum - 10.0
Units - Seconds
Direct Access Number - F655
Parameter Type - Numerical
Factory Default - $\mathbf{1 0 . 0 0}$
Changeable During Run - No
Minimum — 0.00
Maximum - 100.0
Units - \%

Settings:
0 - Disabled
1 - V/I
$2-\mathrm{RR}$
$3-\mathrm{RX}$
4 - Panel Keypad
5 - RS485 (2-Wire)
6 - RS485 (4-Wire)
7 - Communication Option Board
8 - RX2 (AI1)
9 - Option V/I
10 - UP/DOWN Frequency (Terminal Board)
11 - Pulse Input (Option)
12 - Pulse Input (Motor CPU)
13 - Binary/BCD Input (Option)

## Multiplying Input Selection

Program $\Rightarrow$ Protection
This parameter Enables/Disables the feature that allows for the external adjustment of the Output Frequency.
Selecting either of the input methods listed enables this feature. The selected input is used as a multiplier of the programmed Output Frequency.
If operating using the LED Keypad Option and Setting is selected, the value entered at parameter A729 is used as the multiplier.

Settings:
0 — Disabled
1 - V/I
2 - RR
3 - RX
4 - A729 Setting (Contact Toshiba to use this setting)
5 - RX2 (AI1)

## AM Output Terminal Assignment

Program $\Rightarrow$ AM/FM
This parameter is used to set the output function of the AM analog output terminal. The AM analog output terminal produces an output current that is proportional to the magnitude of the function assigned to this terminal. The available assignments for this output terminal are listed in Table 6 on pg. 189.

The AM analog output has a maximum resolution of $1 / 1024$ and a maximum load rating of 750 ohms.

Connect an ammeter to the $\mathbf{A M}(+)$ and the $\mathbf{C C}(-)$ terminals to read the output current.

## AM Terminal Setup Parameters

F670 - Terminal Assignment
F671 - Terminal Adjustment
F685 - Output Gradient Characteristic
F686 - Bias Adjustment

## AM Terminal Adjustment

Program $\Rightarrow A M / F M$
This parameter is used to calibrate the AM analog output.
To calibrate the AM analog output, connect an ammeter to terminals AM (+) and CC (-).
With the drive is running at a known value (e.g., Output Frequency), adjust this parameter until the associated function of parameter F670 produces the desired DC level output at the AM output terminal.
See F670 for more information on this setting.

Direct Access Number - F661
Parameter Type - Selection List
Factory Default - Disabled
Changeable During Run - No

Direct Access Number - F670<br>Parameter Type - Selection List<br>Factory Default - Output Current<br>Changeable During Run - Yes

Parameter Type - Numerical
Factory Default - $\mathbf{1 5 4}$
Changeable During Run - Yes
Minimum - 1
Maximum - 1280

## MON1 Terminal Meter Selection

No Path — Direct Access Only
This parameter is used to set the output function of the MON1 analog output terminal. The available assignments for this output terminal are listed in Table 6 on pg. 189.

The MON1 analog output terminal produces an output voltage or current that is proportional to the magnitude of the function assigned to this terminal.

Note: The Expansion IO Card Option 2 Option Board (P/N ETB004Z) is required to use this terminal.

See the Expansion IO Card Option 2 Instruction Manual (P/N 58686) for more information on the function of this terminal.

## MON1 Terminal Setup Parameters

> F672 - Output Function
> F673 - Terminal Meter Adjustment
> F688 - Voltage/Current Output Switching
> F689 - Output Gradient Characteristic
> F690 - Bias Adjustment

## MON1 Terminal Adjustment

No Path — Direct Access Only
This parameter is used to set the gain of the MON1 output terminal and is used in conjunction with the settings of parameter F672.

See parameter F672 for more information on this setting.

## MON2 Terminal Meter Assignment

No Path — Direct Access Only
This parameter is used to set the output function of the MON2 analog output terminal. The available assignments for this output terminal are listed in Table 6 on pg. 189.

The MON2 analog output terminal produces an output voltage or current that is proportional to the magnitude of the function assigned to this terminal.

Note: The Expansion IO Card Option 2 Option Board (P/N ETB004Z) is required to use this terminal.

See the Expansion IO Card Option 2 Instruction Manual (P/N 58686) for more information on the function of this terminal.

## MON2 Terminal Setup Parameters

F674 - Terminal Meter Assignment
F675 - Terminal Meter Adjustment
F691 - Voltage/Current Output Switching
F692 - Output Gradient Characteristic
F693 - Bias Adjustment Set Zero Level

Direct Access Number - F672
Parameter Type - Selection List
Factory Default - Output Voltage
Changeable During Run - Yes

Direct Access Number - F673
Parameter Type - Numerical
Factory Default - $\mathbf{6 8 2}$
Changeable During Run - Yes
Minimum - 1
Maximum - 1280

## Direct Access Number - F674

Parameter Type - Selection List
Factory Default - Comp. Frequency
Changeable During Run - Yes

## MON2 Terminal Meter Adjustment

No Path — Direct Access Only
This parameter is used to set the gain of the MON2 output terminal and is used in conjunction with the settings of parameter F674.

See parameter F674 for more information on this setting.
FP Terminal Assignment
Program $\Rightarrow$ Output Terminals
This parameter sets the functionality of the $\mathbf{F P}$ output terminal to any of the userselectable functions listed in Table 6 on pg. 189.
As the assigned function changes in magnitude or frequency, the pulse count of the $\mathbf{F P}$ output terminal pulse train changes in direct proportion to changes in the assigned function.

Note: $\quad$ The duty cycle of the output pulse train remains at $65 \pm 5.0 \mu \mathrm{~S}$.
This parameter is used in conjunction with parameter F677.

Direct Access Number - F675
Parameter Type - Numerical
Factory Default - $\mathbf{6 8 2}$
Changeable During Run - Yes
Minimum - 1
Maximum - 1280
Direct Access Number - F676
Parameter Type - Selection List
Factory Default - Output Frequency
Changeable During Run - Yes

Direct Access Number - F676
Parameter Type - Selection List
Factory Default - Output Frequency
Changeable During Run - Yes

## FP Terminal Scaling

Program $\Rightarrow$ Output Terminals
This parameter scales the FP output terminal by setting the pulses-per-second output signal for a given assigned input value.
See F676 for more information on this parameter.

FP Terminal Scaling
No Path — Direct Access Only
This parameter is used to select the degree of filtering to be applied to the DC bus voltage and the output DC voltage.

Direct Access Number - F677
Parameter Type - Numerical
Factory Default - $\mathbf{3 . 8 4}$
Changeable During Run - Yes
Minimum - 1.00
Maximum - 43.20
Units - Pulses/Second
Direct Access Number - F678
Parameter Type - Numerical
Factory Default - 64
Changeable During Run - Yes
Minimum - 4
Maximum - 100
Units - ms

## FM Voltage/Current Output Switching

Program $\Rightarrow A M / F M$
This parameter is used to select the type of output signal provided at the FM terminal (i.e., Voltage or Current).
The output voltage and current range is $0-10 \mathrm{VDC}$ and $0-20 \mathrm{~mA}$, respectively.
See F005 for more information on this setting.
Settings:
$0-0-10 \mathrm{~V}$
$1-0-20 \mathrm{~mA}$

Direct Access Number - F681
Parameter Type - Selection List
Factory Default - 0-20 mA
Changeable During Run - No

## FM Output Gradient Characteristic

Program $\Rightarrow$ AM/FM
This parameter sets the output response polarity of the FM output terminal. The FM output terminal response may be set to respond inversely ( - ) or directly ( + ) to the input signal.

See F005 for more information on this setting.
Settings:
0 - Minus (Negative Gradient)
1 - Plus (Positive Gradient)
FM Bias Adjustment Direct Access Number - F683

Program $\Rightarrow A M / F M$
This parameter setting is used to ensure that a zero-level input signal produces a zero-level output at the FM terminal.
Set the assigned function of F005 to zero and then set this parameter to zero for proper operation.
See F005 for more information on this setting.
FM Output Filtering
No Path — Direct Access Only
Analog filtering is applied after the analog reference signal is converted to a digital signal. The type of filtering used is Rolling Average over time.
Select the sampling rate from the list below.
Settings:
0 - None ( 1 ms )
1 - Small ( 8 ms )
2 - Medium ( 16 ms )
3 - Large ( 32 ms )
4 - Huge ( 64 ms )
An increased value here may eliminate false responses to electrical noise with no loss in bandwidth because the value used by the ASD is the average value of a number of samples.
See F005 for more information on this setting.

## AM Output Gradient Characteristic

Program $\Rightarrow$ AM/FM
This parameter sets the output response polarity of the AM output terminal.
The AM output terminal response may be set to respond inversely (-) or directly $(+)$ to the input signal.
See F670 for more information on this setting.
Settings:
0 - Minus (Negative Gradient)
1 - Plus (Positive Gradient)

Direct Access Number - F682
Parameter Type - Selection List
Factory Default - Plus (Positive Gradient)

Changeable During Run - Yes

Direct Access Number - F683
Parameter Type - Numerical
Factory Default - $\mathbf{0 . 0}$
Changeable During Run - Yes
Minimum - - 10.0
Maximum — + 100.0
Units - \%

## Direct Access Number - F684

Parameter Type - Selection List
Factory Default - None ( 1 ms )
Changeable During Run - Yes

Direct Access Number - F685
Parameter Type - Selection List
Factory Default - Plus (Positive Gradient)
Changeable During Run - Yes

## AM Bias Adjustment

Program $\Rightarrow$ AM/FM

This parameter setting is used to ensure that a zero-level input signal produces a zero-level output at the AM terminal.
Set the function set at F670 to zero and then set this parameter to zero for proper operation.
See F670 for more information on this setting.

## MON 1 Voltage/Current Output Switching

No Path — Direct Access Only
This parameter is used to set the output signal type of the MON1 output terminal.
Settings

$$
\begin{aligned}
& 0--10 \mathrm{~V}-+10 \mathrm{~V} \\
& 1-0-10 \mathrm{~V} \\
& 2-0-20 \mathrm{~mA}
\end{aligned}
$$

MON 1 Output Gradient Characteristic
No Path — Direct Access Only
This parameter sets the output response polarity of the MON1 output terminal. The MON1 output terminal response may be set to respond inversely $(-)$ or directly ( + ) to the input signal.
See parameter F672 for more information on this setting.
Settings:
0 - Minus (Negative Gradient)
1 - Plus (Positive Gradient)

## MON 1 Bias Adjustment

No Path — Direct Access Only
This parameter setting is used to ensure that a zero-level input signal produces a zero-level output at the MON1 terminal.
Set the assigned function of parameter F672 to zero and then set this parameter to a zero output.
See parameter F672 for more information on this setting.
MON 2 Voltage/Current Output Switching
No Path — Direct Access Only
This parameter is used to set the output signal type of the MON2 output terminal.
See parameter F674 for more information on this setting.
Settings
$0--10 \mathrm{~V}-+10 \mathrm{~V}$
$1-0-10 \mathrm{~V}$
$2-0-20 \mathrm{~mA}$

## Direct Access Number - F686

Parameter Type - Numerical
Factory Default - $\mathbf{0 . 0}$
Changeable During Run - Yes
Minimum - -10.0
Maximum - +100.0
Units - \%
Direct Access Number - F688
Parameter Type - Selection List
Factory Default - 0-10 V
Changeable During Run - Yes
Direct Access Number - F689
Parameter Type — Selection List
Factory Default — Plus (Positive
Gradient)
Changeable During Run — Yes

Direct Access Number - F690
Parameter Type - Numerical
Factory Default - $\mathbf{0 . 0}$
Changeable During Run - Yes
Minimum - -10.0
Maximum - 100.0
Units - \%
Direct Access Number - F691
Parameter Type - Selection List
Factory Default - 0-10 V
Changeable During Run - Yes

## MON 2 Output Gradient Characteristic

No Path — Direct Access Only

This parameter sets the output response polarity of the MON2 output terminal. The MON2 output terminal response may be set to respond inversely $(-)$ or directly (+) to the input signal.

See parameter F672 for more information on this setting.
Settings:
0 - Minus (Negative Gradient)
1 - Plus (Positive Gradient)

## MON 2 Bias Adjustment

No Path — Direct Access Only
This parameter setting is used to ensure that a zero-level input signal produces a zero-level output at the MON2 terminal.

Set the assigned function of parameter F674 to zero and then set this parameter to a zero output.

See parameter F674 for more information on this setting.
Parameter Write Lockout
No Path — Direct Access Only
This parameter Enables/Disables the Run and Stop keys.
Settings:
0 — Enabled
1 - Disabled

## Display Units for Voltage and Current

Program $\Rightarrow$ Utility Group
This parameter sets the unit of measurement for current and voltage values displayed on the EOI.

Settings:
$0-\%$
1 - A/V
Frequency Display Multiplier
Program $\Rightarrow$ Utility Group
This parameter provides a multiplier for the displayed speed value shown on the front panel display of the ASD.
This parameter may be used to display the rate that a commodity is being processed by the driven load in process units (i.e., Units/Time).

Example: An output frequency of 100 Hz would be displayed as 50 Hz if using a multiplier of 0.5 for this parameter.

Note: PID frequency-limiting parameters are not affected by this setting (i.e., F364, F365, F367, and F368).

Direct Access Number - F692
Parameter Type - Selection List
Factory Default - Plus (Positive Gradient)

Changeable During Run - Yes

Direct Access Number - F693
Parameter Type - Numerical
Factory Default - $\mathbf{0 . 0}$
Changeable During Run - Yes
Minimum - -10.0
Maximum — 100.0
Units - \%

Direct Access Number - F700
Parameter Type - Selection List
Factory Default — Enabled
Changeable During Run - Yes

Direct Access Number - F701
Parameter Type - Selection List
Factory Default - \%
Changeable During Run - Yes

Direct Access Number - F702
Parameter Type - Numerical
Factory Default - $\mathbf{0 . 0 0}$ ( $\mathbf{O F F}$ )
Changeable During Run - Yes
Minimum — 0.00
Maximum - 200.00

## User Unit Type

Program $\Rightarrow$ Utility Group
This parameter is used in conjunction with F702 to set the method in which the frequency is displayed on the front panel.
The multiplier setting of F702 will be applied to the display of all frequencies if All Frequencies are selected at this parameter.
The multiplier setting of F702 will be applied to parameters F364, F365, F367, and F368 ONLY if PID Process Data is selected at this parameter.

Settings:
0 - All Frequencies
1 - PID Process Data

## Display Bias

No Path — Direct Access Only
In conjunction with the setting of F702, this parameter sets the bias of the front panel speed display.
The frequency entered here will be multiplied by the setting of F702 and then displayed as the zero value on the front panel display.
Change Step Selection 1
No Path — Direct Access Only
In conjunction with the parameter setting of F708, this parameter sets the amount
that the output speed will increase or decrease for each speed command change entered from the front panel using the Rotary Encoder.


## Change Step Selection 2

No Path — Direct Access Only
The parameter is used to modify the degree that the setting of F707 affects the output speed changes that are input from the front panel using the Rotary Encoder.

Selecting a zero value here disables this parameter and the resulting non-zero value of parameter setting F707 is output from the ASD.
Selecting a non-zero value here provides a dividend that will be used in the following equation resulting in the actual output frequency applied to the motor.

$$
\text { OutputFrequencyDisplayed }=\text { InternallyCommandedFrequency } \times \frac{F 708}{F 707}
$$

Direct Access Number - F703
Parameter Type - Selection List
Factory Default - All Frequencies
Changeable During Run - Yes

Direct Access Number - F706
Parameter Type - Numerical
Factory Default - $\mathbf{0 . 0 0}$
Changeable During Run - Yes
Minimum - 0.00
Maximum - Max. Freq. (F011)
Units - Hz

Direct Access Number - F707
Parameter Type - Numerical
Factory Default - $\mathbf{0 . 0 0}$
Changeable During Run - Yes
Minimum - 0.00
Maximum - Max. Freq. (F011)
Units - Hz
Direct Access Number - F708
Parameter Type - Numerical
Factory Default - $\mathbf{0}$ (Disabled)
Changeable During Run - Yes
Minimum - 0
Maximum - 255

## Panel Stop Pattern

Program $\Rightarrow$ Panel Control
While operating in the Local mode this parameter determines the method used to stop the motor when the stop command is issued via the EOI.

The Decel Stop setting enables the Dynamic Braking system that is setup at F304 or the DC Injection Braking system that is setup at F250, F251, and F252.
The Coast Stop setting allows the motor to stop at the rate allowed by the inertia of the load.

Settings:
0 - Deceleration Stop (Not Used)
1 - Coast Stop
Note: $\quad$ The Stop Pattern setting has no effect on the Emergency Off settings of F603. This parameter may also be accessed by pressing the ESC key from the Frequency Command screen.

## Panel Frequency Lockout

Program $\Rightarrow$ Utility Group
While operating using the LED Keypad Option this parameter Enables/Disables the ability to change the frequency command value.

Note: $\quad$ The LED keypad is unavailable at the time of this release.
Settings:
0 - Unlocked
1 - Locked

Panel Emergency Off Lockout
No Path — Direct Access Only
While operating using the LED Keypad Option this parameter Enables/Disables the ability to provide an Emergency Off command.

Direct Access Number - F721
Parameter Type - Selection List
Factory Default - Deceleration Stop
Changeable During Run - Yes

## Direct Access Number - F730

Parameter Type - Selection List
Factory Default - Unlocked
Changeable During Run - Yes

Settings:
0 - Unlocked
1 - Locked

## Panel Reset Lockout

No Path — Direct Access Only
While operating using the LED Keypad Option this parameter Enables/Disables the ability to initiate a Reset.

Direct Access Number - F734
Parameter Type - Selection List
Factory Default - Unlocked
Changeable During Run - No

Settings:
0 - Unlocked
1 - Locked

## Command Mode/Frequency Mode Change Lockout

No Path — Direct Access Only

This parameter Enables/Disables the ability to change the Command Mode and the Frequency Mode settings on the panel during Run.

Settings:
0 - Unlocked
1 - Locked

## Lockout All Keys

No Path — Direct Access Only
This parameter Enables/Disables EOI keypad operation. Select Locked to disable all keypad entries.
Cycle the power to the ASD to activate the changes made to this parameter.
To unlock EOI keypad for normal operation, press and hold the Rotary Encoder for (greater than) 5 seconds. This unlocks the keypad for the current session ONLY. Upon a trip or power off, the Locked status of this parameter setting will be re-asserted and the keypad will be locked out.
This setting may also be changed via communications.
Settings:
0 - Unlocked
1 - Locked

Direct Access Number - F736
Parameter Type - Selection List
Factory Default - Unlocked
Changeable During Run - Yes

Direct Access Number - F737
Parameter Type - Selection List
Factory Default - Unlocked
Changeable During Run - Yes

## Trace Selection

No Path — Direct Access Only
In conjunction with parameter F741-F745, this parameter is used to monitor and store 4 ASD output waveform data points. The data may be read and stored as a function of a trip (At Trip) or it may be initiated by the activation of a discrete terminal activation (At Trigger).

The table below lists the items that may selected for the data read/store function.
Select At Trip at this parameter to read/store the value of the item selected from the table below in the event of a trip.
Select At Trigger at this parameter and set and activate a discrete input terminal to Trace Back Trigger Signal to initiate the At Trigger read/store of the item selected from the table below.
The duration of the read/store cycle for the selected data is set at parameter F741.
A communications device is required to use this parameter and a PC is used to store the acquired data. The Q9 ASD supports the following communications protocols: RS485 (MODBUS-RTU) Toshiba Protocol, USB Toshiba Protocol, CC-Link, ProfiBus, and DeviceNet (Refer to the manual of each protocol type for more information).

## Settings:

0 - None
1 - At Trip
2 - At Trigger
Once enabled at this parameter, the following monitored items (data points) may be selected for the read/store function at F742 - F745.

| Output Frequency | PID Feedback Value | FM Output |
| :--- | :--- | :--- |
| Frequency Reference | Motor Overload Ratio | AM Output |
| Output Current | ASD Overload Ratio | $100 \%$ Meter Adjust Value |
| DC Bus Voltage | DBR Overload Ratio <br> (Not Used) | Data From Communication |
| Output Voltage | DBR Load Ratio (Not <br> Used) | $250 \%$ Meter Adjust Value |
| Compensated Frequency | Input Power | Input Watt Hour |
| Speed Feedback (Realtime) | Output Power | Output Watt Hour |
| Speed Feedback (1 Sec Filter) | Option V/I Input | Gain Display |
| Torque | RR Input | My Function Monitor 1 <br> Without Sign |
| Torque Command | V/I Input | My Function Monitor 2 <br> Without Sign |
| Torque Current | RX Input | My Function Monitor 3 <br> With Sign |
| Excitation Current | RX2 (AI1) Input | My Function Monitor 4 <br> With Sign |

## Trace Cycle

No Path — Direct Access Only
This parameter sets the record time for the Trace Data events selected at F742-F745.

## Direct Access Number - F741

Parameter Type - Selection List
Factory Default - $\mathbf{1 0 0} \mathbf{~ m s}$
Changeable During Run - Yes

Settings:
$0-4 \mathrm{~ms}$
$1-20 \mathrm{~ms}$
$2-100 \mathrm{~ms}$
3-1 Second
$4-10$ Seconds
Trace Data $1 \quad$ Direct Access Number - F742

No Path — Direct Access Only
This parameter is used to select the Trace Data 1 item to be read and stored from the setup of parameters F740 and F741.
See F740 for more information on this parameter setting.

## Trace Data 2

No Path — Direct Access Only
This parameter is used to select the Trace Data 2 item to be read and stored from the setup of parameters F740 and F741.
See F740 for more information on this parameter setting.

## Trace Data 3

No Path — Direct Access Only
This parameter is used to select the Trace Data 3 item to be read and stored from the setup of parameters F740 and F741.
See F740 for more information on this parameter setting.

## Trace Data 4

No Path — Direct Access Only4
This parameter is used to select the Trace Data 4 item to be read and stored from the setup of parameters F740 and F741.

See F740 for more information on this parameter setting.
kWH Memory Set
Program $\Rightarrow$ Special Controls
This parameter is used to set the disposition of the kWH meter reading at power off.

Direct Access Number - F744
Parameter Type - Selection List
Factory Default — Output Current
Changeable During Run - Yes

## Direct Access Number - F745

Parameter Type - Selection List
Factory Default - DC Voltage
Changeable During Run - Yes

## Direct Access Number - F748

Parameter Type - Selection List
Factory Default - Save at Power Off
Changeable During Run - No

Settings:
Save at Power Off
Clear at Power Off

## kWH Memory Selection

Program $\Rightarrow$ Special Controls
This parameter sets the unit of measure for the power/time display.
Settings:
1 kW
10 kW
100 kW
1000 kW
10000 kW

## EASY Parameters

No Path — Direct Access Only
Parameters F750 - F782 are under development and are unavailable at the time of this release.

## LCD Contrast

Program $\Rightarrow$ Special Controls
This parameter sets the contrast of the LCD screen.
Settings:
0-7

## Baud Rate (RS485 2-Wire)

Program $\Rightarrow$ Communication Settings
This parameter plays a role in the setup of the communications network by establishing the Baud Rate of the communications link.
The communications network includes other ASDs and Host/Control computers that monitor the status of the $\operatorname{ASD}(\mathrm{s})$, transfers commands, and loads or modifies the parameter settings of the ASD.
Changes made to this parameter require that the power be cycled (off then on) for the changes to take effect.

Settings:
$0-9600$
1 - 19200
$2-38400$

Direct Access Number - F749
Parameter Type - Selection List
Factory Default — $\mathbf{1} \mathbf{k W}$
Changeable During Run - No

Direct Access Number - F750 - F782
Parameter Type - N/A
Factory Default — N/A
Changeable During Run - N/A

## Direct Access Number - F790

Parameter Type - Selection List
Factory Default - 4
Changeable During Run - No

## Direct Access Number - F800

Parameter Type - Selection List
Factory Default - 19200
Changeable During Run - Yes
Units - bps

## Parity (RS485 2- and 4-Wire)

Program $\Rightarrow$ Communication Settings
This parameter plays a role in the setup of the communications network by establishing the Parity setting of the communications link.

The communications network includes other ASDs and Host/Control computers that monitor the status of the ASD(s), transfers commands, and loads or modifies the parameter settings of the ASD.

Changes made to this parameter require that the power be cycled (off then on) for the changes to take effect.

## Settings:

0 - No Parity
1 - Even Parity
2 - Odd Parity

## ASD Number

## Program $\Rightarrow$ Communication Settings

This parameter plays a role in the setup of the communications network by assigning an identification (ID) number to each ASD in the communications network.

The communications network includes other ASDs and Host/Control computers that monitor the status of the ASD(s), transfers commands, and loads or modifies the parameter settings of the ASD.

Changes made to this parameter require that the power be cycled (off then on) for the changes to take effect.

## Communications Time Out Time (RS485 2- and 4-Wire)

## Program $\Rightarrow$ Communication Settings

This parameter plays a role in the setup of the communications network by setting the time that no activity may exist over the communications link before the link is severed (Timed Out).
The communications network includes other ASDs and Host/Control computers that monitor the status of the ASD(s), transfers commands, and loads or modifies the parameter settings of the ASD.
Changes made to this parameter require that the power be cycled (off then on) for the changes to take effect.

Parameter Type - Selection List
Factory Default - Even Parity
Changeable During Run - Yes

## Direct Access Number - F802

Parameter Type - Numerical
Factory Default - $\mathbf{0}$
Changeable During Run - Yes
Minimum - 0
Maximum - 247

## Direct Access Number - F803

Parameter Type - Numerical
Factory Default - 0 (Off)
Changeable During Run - Yes
Minimum - 0 (Off)
Maximum - 100
Units - Seconds

## Program $\Rightarrow$ Communication Settings the parameter settings of the drive. the changes to take effect. <br> Settings: <br> 0 - No Action/No Action <br> 1 - Alarm/No Action <br> 2 - Trip/No Action <br> 3 - No Action/Alarm <br> 4 - Alarm/Alarm <br> 5 - Trip/Alarm <br> 6 - No Action/Trip <br> 7 - Alarm/Trip <br> 8 - Trip/Trip

Communications Time-Out Action (RS485 2- and 4-Wire)

This parameter plays a role in the setup of the communications network by determining the action to be taken in the event of a time-out (Time-Out Action).

The communications network includes other ASDs and Host/Control computers that monitor the status of the ASD(s), transfers commands, and loads or modifies

Changes made to this parameter require that the power be cycled (off then on) for

## Send Wait Time (RS485 2-Wire)

Program $\Rightarrow$ Communication Settings
This parameter sets the RS485 response delay time.
Changes made to this parameter require that the power be cycled (off then on) for the changes to take effect.

Direct Access Number - F804
Parameter Type - Selection List
Factory Default - Trip/Trip
Changeable During Run - Yes
Direct Access Number - F805
Parameter Type - Numerical
Factory Default - $\mathbf{0 . 0 0}$
Changeable During Run — Yes
Minimum - 0.00
Maximum - 2.00
Units — Seconds

Factory Default - $\mathbf{0 . 0 0}$
Changeable During Run - Yes
Minimum - 0.00

Units - Seconds

## ASD-to-ASD Communications (RS485 2-Wire)

Program $\Rightarrow$ Communication Settings
The function of this parameter is 2-fold:

1) In a Master/Follower configuration and while communicating via RS485 2-Wire, this parameter sets the ASD as the Master or the Follower.
2) This parameter determines the function of the ASD while operating as the Master or the Follower. If operating as the Master ASD, an output parameter of the Master ASD is used to control the Follower ASDs and is set here. If operating as a Follower ASD and in the event of an error, the ASD response will be of the selection here.

Note: $\quad$ Select a Follower function here if F826 is configured as a Master Output controller for any other ASD in the system. Otherwise, an EOI failure will result.

Changes made to this parameter require that the power be cycled (off then on) for the changes to take effect.

Settings:
0 - Follower (Decel Stop - If Error Detected)
1 - Follower (Continue - Operation If Error Detected)
2 - Follower (Emergency Off - If Error Detected)
3 - Master (Output Frequency Command - If Error Detected)
4 - Master (Output Frequency - If Error Detected)
5 - Master (Output Torque Reference - If Error Detected)
6 - Master (Output Torque Command - If Error Detected)

## RS485 2-Wire Protocol Selection

No Path — Direct Access Only
This parameter sets the RS485 (2-Wire) communications protocol.

## Settings:

0 - Toshiba

## Communications Reference Selection

Program $\Rightarrow$ Communication Settings
This parameter is used to set the communications reference for scaling.
See F811 - F814 for more information on this setting.
Note: $\quad$ Scaling the communications signal is not required for all applications.

Changes made to this parameter require that the power be cycled (off then on) for the changes to take effect.

Settings:
0 - Disabled
1 - RS485 (2-Wire)
2 - RS485 (4-Wire)
3 - Communication Card

Parameter Type - Selection List
Factory Default - Follower (Decel Stop)
Changeable During Run - Yes

Direct Access Number - F807
Parameter Type - Fixed
Factory Default - Toshiba
Changeable During Run - Yes

Direct Access Number - F810
Parameter Type - Selection List
Factory Default - Disabled
Changeable During Run - Yes

## Communications Reference 1

Program $\Rightarrow$ Communication Settings
When enabled at F810, this parameter is used to allow the user to set the gain and bias of the speed control input to the drive when the speed control signal is received via the source selected at F810.

## Gain and Bias Settings

When operating in the Speed Control mode and using one of the control sources from Settings above, the settings that determine the gain and bias properties of the input signal are:

- Communications Speed 1 (frequency) (F812),
- the communications input signal value that represents Communications Speed 1 (frequency): F811,
- Communications Speed 2 (frequency) (F814), and
- the communications input signal value that represents Communications Speed 2 (frequency): F813.

Once set, as the input signal value changes, the output frequency of the drive will vary in accordance with the above settings.
This parameter sets the Communications Reference $\mathbf{1}$ input value that represents Communications Speed 1 (frequency). This value is entered as 0 to $100 \%$ of the Communications Reference 1 input value range.
Changes made to this parameter require that the power be cycled (off then on) for the changes to take effect.

## Communications Frequency 1

Program $\Rightarrow$ Communication Settings
This parameter is used to set the gain and bias of the Communications Speed 1 speed control input.
See F811 for more information on this setting.
Changes made to this parameter require that the power be cycled (off then on) for the changes to take effect.

## Communications Reference 2

Program $\Rightarrow$ Communication Settings
This parameter is used to set the gain and bias of the Communications Reference 2 speed control input.
See F811 for more information on this setting.
This parameter sets the Communications Reference $\mathbf{2}$ input value that represents Communications Speed 2 (frequency). This value is entered as 0 to $100 \%$ of the Communications Reference 2 input value range.
Changes made to this parameter require that the power be cycled (off then on) for the changes to take effect.

## Direct Access Number - F811

Parameter Type - Numerical
Factory Default - $\mathbf{0}$
Changeable During Run - Yes
Minimum - 0
Maximum - 100
Units - \%


Direct Access Number - F812
Parameter Type - Numerical
Factory Default - $\mathbf{0 . 0 0}$
Changeable During Run - Yes
Minimum - 0.00
Maximum - Max. Freq. (F011)
Units - Hz
Direct Access Number - F813
Parameter Type - Numerical
Factory Default - $\mathbf{1 0 0}$
Changeable During Run - Yes
Minimum - 0
Maximum - 100
Units - \%

## Communications Frequency 2

Program $\Rightarrow$ Communication Settings
This parameter is used to set the gain and bias of the Communications Speed 2 speed control input.
See F811 for more information on this setting.
Changes made to this parameter require that the power be cycled (off then on) for the changes to take effect.

## Baud Rate (RS485 4-Wire)

Program $\Rightarrow$ Communication Settings
This parameter sets the RS485 baud rate.
Changes made to this parameter require that the power be cycled (off then on) for the changes to take effect.

Settings:
0 - 9600 bps
1 - 19200 bps
2 - 38400 bps
RS485 Send Wait Time (RS485 4-Wire) Direct Access Number - F825
Program $\Rightarrow$ Communication Settings
This parameter sets the RS485 response delay time.
Changes made to this parameter require that the power be cycled (off then on) for the changes to take effect.

Direct Access Number - F814
Parameter Type - Numerical
Factory Default - $\mathbf{6 0 . 0 0}$
Changeable During Run - Yes
Minimum - 0.00
Maximum - Max. Freq. (F011)
Units - Hz
Direct Access Number - F820
Parameter Type - Selection List
Factory Default - 19200
Changeable During Run - Yes

Parameter Type - Numerical
Factory Default - 0.00
Changeable During Run - Yes
Minimum - 0.00
Maximum - 2.00
Units - Seconds

## ASD-to-ASD Communications (RS485 4-Wire)

Program $\Rightarrow$ Communication Settings
The function of this parameter is 2-fold:

1) In a Master/Follower configuration and while communicating via RS485 4-Wire, this parameter sets the ASD as the Master or the Follower.
2) This parameter determines the function of the ASD while operating as the Master or the Follower. If operating as the Master ASD, an output parameter of the Master ASD is used to control the Follower ASDs and is set here. If operating as a Follower ASD, the ASD response if an error is incurred is set here.

Note: $\quad$ Select a Follower function here if F806 is configured as a Master Output controller for any other ASD in the system. Otherwise, an EOI failure will result.

Changes made to this parameter require that the power be cycled (off then on) for the changes to take effect.

Settings:
0 - Follower (Decel Stop If Error Detected)
1 - Follower (Continues Operation If Error Detected)
2 - Follower (Emergency Off If Error Detected)
3 - Master (Output Frequency Command If Error Detected)
4 - Master (Output Frequency If Error Detected)
5 - Master (Output Torque Reference If Error Detected)
6 - Master (Output Torque Command If Error Detected)

## RS485 4-Wire Protocol Selection

No Path — Direct Access Only
This parameter sets the communications protocol for ASD-to-ASD communications.

Settings:
0 - Toshiba
1 - Modbus

## Communications Option (DeviceNet/Profibus) Setting 1

No Path — Direct Access Only
-FUNCTION NOT AVAILABLE WITH THE Q9 ASD-

While using the DeviceNet/Profibus communications protocol, this parameter allows the user to select the read and write information communicated between the ASD and the Host.
Read information may include the ASD fault status, ASD speed, ASD MAC ID, etc. Write information may include Enable/Disable DeviceNet commands, Forward run, ACC/DEC command, etc.
See the DeviceNet Option Instruction Manual (P/N 58683) for more information on this parameter.

## Settings:

$$
0-7
$$

Direct Access Number - F826
Parameter Type - Selection List
Factory Default - Follower (Decel Stop)
Changeable During Run - Yes

Direct Access Number - F829
Parameter Type - Selection List
Factory Default - Toshiba
Changeable During Run - Yes

## Direct Access Number - F830

Parameter Type - Selection List
Factory Default - $\mathbf{0}$
Changeable During Run - Yes

## Communications Option (DeviceNet/Profibus) Setting 2

No Path — Direct Access Only
—FUNCTION NOT AVAILABLE WITH THE Q9 ASD—
While using the DeviceNet/Profibus communications protocol, parameters F831 - F836 allow the user to select the ASD memory location that holds the Command/Frequency/Monitoring instructions to be applied to the ASD for Communications Option Settings 2-7, respectively.
See the DeviceNet Option Instruction Manual (P/N 58683) for more information on this parameter.

Settings:
0 - Disabled
1 - FA06 (ALCAN Command 1)
2 - FA23 (ALCAN Command 2)
3 - FA07 (ALCAN Frequency Command, 0.01 Hz )
4 - FA33 (Torque Command, 0.01\%)
5 - FA50 (Terminal Output)
6 - FA51 (Analog Output Data from Comm. [FM])
7 - FA52 (Analog Output Data from Comm. [AM])
8 - F601 (Stall Prevention Level, \%)
9 - F441 (Power Running Torque Limit Level, 0.01\%)
10 - F443 (Regen. Braking Torque Limit Level, $0.01 \%$ )
11 - F460 (Speed Loop Proportional Gain)
12 - F461 (Speed Loop Stabilization Coefficient)

Communications Option (DeviceNet/Profibus) Setting 3
No Path — Direct Access Only
—FUNCTION NOT AVAILABLE WITH THE Q9 ASD—

Direct Access Number - F831
Parameter Type - Selection List
Factory Default - Disabled
Changeable During Run - Yes

Direct Access Number - F832
Parameter Type - Selection List
Factory Default - $\mathbf{0}$
Changeable During Run - Yes

Same as F831. See F831 for information on this parameter

Communications Option (DeviceNet/Profibus) Setting 4
No Path — Direct Access Only
—FUNCTION NOT AVAILABLE WITH THE Q9 ASD—

Direct Access Number - F833
Parameter Type - Selection List
Factory Default - $\mathbf{0}$
Changeable During Run - Yes

Same as F831. See F831 for information on this parameter

| Communications Option (DeviceNet/Profibus) Setting 5 | Direct Access Number - F834 |
| ---: | :--- |
| No Path - Direct Access Only | Parameter Type - Selection List |
| -FUNCTION NOT AVAILABLE WITH THE Q9 ASD- | Factory Default - $\mathbf{0}$ <br> Changeable During Run - Yes |

Same as F831. See F831 for information on this parameter

## Communications Option (DeviceNet/Profibus) Setting 6

No Path — Direct Access Only
—FUNCTION NOT AVAILABLE WITH THE Q9 ASD-

Direct Access Number - F835
Parameter Type - Selection List
Factory Default - $\mathbf{0}$
Changeable During Run - Yes

[^3]
## Communications Option (DeviceNet/Profibus) Setting 7

No Path — Direct Access Only
—FUNCTION NOT AVAILABLE WITH THE Q9 ASD—

Same as F831. See F831 for information on this parameter

## Communications Option (DeviceNet/Profibus) Setting 8

No Path — Direct Access Only

## —FUNCTION NOT AVAILABLE WITH THE Q9 ASD—

While using the DeviceNet/Profibus communications protocol, parameters F841 - F846 allow the user to select the ASD memory location that holds the Command/Frequency/Monitoring instructions to be applied to the ASD for Communications Option Settings 8 -13, respectively.
See the DeviceNet Option Instruction Manual (P/N 58683) for more information on this parameter.

Settings:
0 - Disabled
1 - FD01 (ASD Status 1)
2 - FD00 (Output Frequency, 0.01 Hz )
3 - FD03 (Output Current, $0.01 \%$ )
4 - FD05 (Output Voltage, 0.01\%)
5 - FC91 (ASD Alarm)
6 - FD22 (PID Feedback Value, 0.01 Hz )
7 - FD06 (Input Terminal Status)
8 - FD07 (Output Terminal Status)
9 - FE36 (V/I Input)
10 - FE35 (RR Input)
11 - FE37 (RX Input)
12 - FD04 (Input Voltage [DC Detection], 0.01\%)
13 - FD16 (Real-Time Speed Feedback
14 - FD18 (Torque, 0.01\%)
15 - FE60 (My Monitor)
16 - FE61 (My Monitor)
17 - FE62 (My Monitor)
18 - FE63 (My Monitor)
19 - F880 (Free Notes)
20 - FD29 (Input Power, 0.01 kW )
21 - FD30 (Output Power, 0.01 kW )
22 - FE14 (Cumulative Operation Time, 0.01=1 Hour)
23 - FE40 (FM Terminal Output Monitor)
24 - FE41 (AM Terminal Output Monitor)

## Communications Option (DeviceNet/Profibus) Setting 9

No Path — Direct Access Only
—FUNCTION NOT AVAILABLE WITH THE Q9 ASD—

Direct Access Number - F836
Parameter Type - Selection List
Factory Default - $\mathbf{0}$
Changeable During Run - Yes

Direct Access Number - F841
Parameter Type - Selection List
Factory Default — Disabled
Changeable During Run - Yes

Direct Access Number - F842
Parameter Type - Selection List
Factory Default - $\mathbf{0}$
Changeable During Run - Yes

Same as F841. See F841 for information on this parameter.

## Communications Option (DeviceNet/Profibus) Setting 10

No Path — Direct Access Only
—FUNCTION NOT AVAILABLE WITH THE Q9 ASD—

Same as F841. See F841 for information on this parameter.

## Communications Option (DeviceNet/Profibus) Setting 11

No Path — Direct Access Only
—FUNCTION NOT AVAILABLE WITH THE Q9 ASD—
Same as F841. See F841 for information on this parameter.

## Communications Option (DeviceNet/Profibus) Setting 12

No Path — Direct Access Only
—FUNCTION NOT AVAILABLE WITH THE Q9 ASD-
Same as F841. See F841 for information on this parameter.

| Communications Option (DeviceNet/Profibus) Setting 13 | Direct Access Number - F846 |
| ---: | :--- |
| No Path — Direct Access Only | Parameter Type — Selection List |
| —FUNCTION NOT AVAILABLE WITH THE Q9 ASD— | Factory Default - 0 |
|  | Changeable During Run — Yes |

Same as F841. See F841 for information on this parameter.

Disconnection Detection Extended Time
No Path — Direct Access Only
This parameter is used to set the length of time that no communications activity may exist before the communications link is disconnected.

Direct Access Number - F843
Parameter Type - Selection List
Factory Default - 0
Changeable During Run - Yes

Direct Access Number - F844
Parameter Type - Selection List
Factory Default - $\mathbf{0}$
Changeable During Run - Yes

Direct Access Number - F850
Parameter Type - Numerical
Factory Default - 0.0
Changeable During Run - Yes
Minimum — 0.0
Maximum - 100.0
Units - Seconds
ASD Operation at Disconnect
No Path — Direct Access Only
This parameter is used to set the Q9 ASD action to be carried out in the event of the loss of communications.

Direct Access Number - F851
Parameter Type - Selection List
Factory Default - Stop, Release Communication
Changeable During Run - Yes

## Settings:

0 - Stop and Release (End) Communication
1 - Do Nothing (Continue Programmed Operation)
2 - Deceleration Stop
3 - Coast Stop
4 - Emergency Off
5 - Preset Speed (Setting of F852)

## Preset Speed Operation Selection

No Path — Direct Access Only

This parameter setting is used to set the Preset Speed selection to be used if Preset Speed is selected at parameter F851.

## Settings:

0 - Disabled
1-15 - Preset Speed Number

## Communications Option Station Address Monitor

No Path — Direct Access Only
This parameter is used in the setup of the communications network by reading the Media Access Code (MAC) address of the ASD that is connected to a node of the communications system.

The MAC Address is set via DIP switches of the optional device.
See the DeviceNet Option Instruction Manual (P/N 58683) for more information on this parameter.

## Communications Option Speed Switch Monitor DeviceNet/CCLink

## No Path — Direct Access Only

—FUNCTION NOT AVAILABLE WITH THE Q9 ASD—
This parameter is used in the setup of the communications network by reading the hardware-specific settings of the option card being used with the ASD.

If using the DEV002Z Devicenet card, this parameter reads the hardware switch SW300 setting of the Devicenet card. SW300 sets the baud rate and the MAC address of the option card that is connected to a node of the communications system.

See the DeviceNet Option Instruction Manual (P/N 58683) for more information on this parameter or see the instruction manual for the option being used with the Q9 ASD.

## Number of Poles of Motor

No Path — Direct Access Only
This parameter identifies the number of motor poles for the motor(s) being used.

Direct Access Number - F852
Parameter Type - Selection List
Factory Default - Disabled
Changeable During Run - Yes

Direct Access Number - F853
Parameter Type - Selection List
Factory Default - 0 (Disabled)
Changeable During Run - Yes
Minimum - 0
Maximum - 255

Direct Access Number - F854
Parameter Type - Hardware Selectable
Factory Default - Option-Specific
Changeable During Run - No
Minimum - 0
Maximum - 255
Direct Access Number - F856
Parameter Type - Numerical
Factory Default - $\mathbf{4}$
Changeable During Run - No
Minimum - 2
Maximum -16

Direct Access Number - F856
Parameter Type - Numerical
Factory Default - 4
Changeable During Run - No

Maximum - 16

## Block Write Data 1

No Path — Direct Access Only
This parameter plays a role in the setup of the communications network by establishing the type of data to be written to the ASD of the communications link.
The communications network includes other ASDs and Host/Control computers that monitor the status of the ASD(s), transfers commands, and loads or modifies the parameter settings of the ASD.
Changes made to this parameter require that the power be cycled (off then on) for the changes to take effect.

## Settings:

0 - None
1 - FA00 (Command 1)
2 - FA20 (Command 2)
3 - FA01 (Frequency)
4 - FA50 (TB Output)
5 - FA51 (Analog Output)
6 - FA13 (Speed)

## Block Write Data 2

## No Path — Direct Access Only

This parameter plays a role in the setup of the communications network by establishing the type of data to be written to the ASD of the communications link.
The communications network includes other ASDs and Host/Control computers that monitor the status of the ASD(s), transfers commands, and loads or modifies the parameter settings of the ASD.
Changes made to this parameter require that the power be cycled (off then on) for the changes to take effect.

## Settings:

0 - None
1 - FA00 (Command 1)
2 - FA20 (Command 2)
3 - FA01 (Frequency)
4 - FA50 (TB Output)
5 - FA51 (Analog Output)
6 - FA13 (Speed)

Direct Access Number - F870
Parameter Type - Selection List
Factory Default - None
Changeable During Run - Yes

Direct Access Number - F871
Parameter Type - Selection List
Factory Default - None
Changeable During Run - Yes

## Block Read Data 1

```
No Path — Direct Access Only
```

This parameter plays a role in the setup of the communications network by establishing the type of data to be read from the ASD using the communications link.

The communications network includes other ASDs and Host/Control computers that monitor the status of the ASD(s), transfers commands, and loads or modifies the parameter settings of the ASD.

Changes made to this parameter require that the power be cycled (off then on) for the changes to take effect.

Settings:
0 - None
1 - Status Information
2 - Output Frequency
3 - Output Current
4 - Output Voltage
5 - Alarm Information
6 - PID Feedback Value
7 - Input Terminal Status
8 - Output Terminal Status
9 - V/I
10 - RR
11 - RX
12 - DC Voltage
13 - PG Feedback
14 - Torque
15 - My Monitor 1
16 - My Monitor 2
17 - My Monitor 3
18 - My Monitor 4
19 - Free Memo
20 - Output Speed

## Block Read Data 2

No Path — Direct Access Only
This parameter plays a role in the setup of the communications network by establishing the type of data to be read from the ASD of the communications link.
See parameter F875 for more information on this setting.

## Block Read Data 3

No Path — Direct Access Only
This parameter plays a role in the setup of the communications network by establishing the type of data to be read from the ASD of the communications link.
See parameter F875 for more information on this setting.

## Block Read Data 4

No Path — Direct Access Only
This parameter plays a role in the setup of the communications network by establishing the type of data to be read from the ASD of the communications link.

Parameter Type - Selection List
Factory Default - None
Changeable During Run - Yes

Direct Access Number - F876
Parameter Type - Selection List
Factory Default - None
Changeable During Run - Yes

## Direct Access Number - F877

Parameter Type - Selection List
Factory Default - None
Changeable During Run - Yes

See parameter F875 for more information on this setting.

Direct Access Number - F878
Parameter Type - Selection List
Factory Default - None
Changeable During Run - Yes

## Block Read Data 5

No Path — Direct Access Only
This parameter plays a role in the setup of the communications network by establishing the type of data to be read from the ASD of the communications link.
See parameter F875 for more information on this setting.

Free Notes
No Path — Direct Access Only
This is an unused parameter that has allocated memory space.
The space may be used at the discretion of the user.This space may be used to store information or a note to be transferred using communications.

Ext. Comm. Cfg. 1
No Path — Direct Access Only
This parameter sets the RS485 protocol. An improper setting will result in an INVALID PROTOCOL error.

Settings:
0 — Modbus RTU
1 - Metasys N2
2 - Seimens FLM

Direct Access Number - F879
Parameter Type - Selection List
Factory Default - None
Changeable During Run - Yes

Direct Access Number - F880
Parameter Type - Numerical
Factory Default - 0
Changeable During Run - Yes
Minimum — 0
Maximum - 65535

## Direct Access Number - F882

Parameter Type - Numerical
Factory Default - Modbus RTU
Changeable During Run - Yes
Minimum — 0
Maximum - 255 (Only 0-2 Effective)

## Ext. Comm. Cfg. 2

No Path — Direct Access Only
This parameter sets the Modbus RTU network characteristics: Baud Rate, Parity, and Stop Bits. See the table below for the parameter settings.

| Setting | Baud Rate | Parity | Stop Bits |
| :---: | :---: | :---: | :---: |
| 0 |  | Odd |  |
| 1 | 2400 | Even |  |
| 2 |  | None |  |
| 3 |  | Odd |  |
| 4 | 4800 | Even |  |
| 5 |  | None |  |
| 6 |  | Odd |  |
| 7 | 9600 | Even | 1 |
| 8 |  | None |  |
| 9 |  | Odd |  |
| 10 | 19200 | Even |  |
| 11 |  | None |  |
| 12 |  | Odd |  |
| 13 | 38400 | Even |  |
| 14 |  |  |  |
| 15 | 2400 |  |  |
| 16 | 4800 |  |  |
| 17 | 9600 |  | 2 |
| 18 | 19200 |  |  |
| 19 | 38400 |  |  |
| $\begin{array}{ll}\text { Note: } & \begin{array}{l}\text { An improper parameter setting will result } \\ \text { in a Communication error. }\end{array}\end{array}$ |  |  |  |

## Ext. Comm. Cfg. 3

No Path - Direct Access Only
This parameter Enables/Disables the network time-out timer. The timer is enabled by setting this parameter to a non-zero value $(1-255)$. The timer is disabled by setting this value to zero.

Once started, the complete packet must be received before the timer expires or an error will be incurred.

## Direct Access Number - F883

Parameter Type - Numerical
Factory Default - $\mathbf{0}$
Changeable During Run - Yes
Minimum - 0
Maximum - 255 (only 0 - 19 effective)

## Direct Access Number - $\mathbf{F 8 8 4}$

Parameter Type - Numerical
Factory Default - $\mathbf{0}$
Changeable During Run - Yes
Minimum - 0
Maximum - 255
Units - Seconds

Ext. Comm. Cfg. 4
No Path — Direct Access Only
This parameter is read-only and is used to store and display the error codes that correlate to the returned initialization status number ( $0-5$ ).
The error codes are listed below along with their meaning:
0 - No Error (Normal Operation)
1 - Invalid Equipment
2 - Invalid Protocol
3 - Invalid Address
4 - Invalid Network Settings
5 - Resource Allocation Error
Ext. Comm. Cfg. 5-8
No Path — Direct Access Only
These parameters have protocol-specific functions. See the document $\boldsymbol{A S D}$
NANOCOM ICC 10572-2.100-000 located at www.ICCDESIGNS.com for more information on these parameter settings.

Direct Access Number - F885
Parameter Type - Numerical
Factory Default - No Error
Changeable During Run - Yes
Minimum - 0
Maximum - 255 (only $0-5$ effective)

Direct Access Number - F886-F889
Parameter Type - Numerical
Factory Default - $\mathbf{0}$
Changeable During Run - Yes
Minimum - 0
Maximum - 255
Network Option Reset Settings
Program $\Rightarrow$ Communication Settings
This parameter plays a role in the setup of the communications network by establishing the targets of a Reset command received via the communications link.

Direct Access Number - F899
Parameter Type - Selection List
Factory Default — Reset ASD only
Changeable During Run - Yes

Settings:
0 - Reset ASD only
1 - Reset Option Board and ASD
Input Function Target 1
Program $\Rightarrow$ My Function Unit 1
This parameter plays a role in the setup of the My Function feature by selecting the functionality of the programmable Input Function Target 1 terminal.
This setting assigns the function of the programmable Input Function Target 1 terminal to any of the user-selectable functions listed in Table 5 on pg. 188, Table 7 on pg. 190, or Table 8 on pg. 192.
From the listed tables select the corresponding Communications Number, Input Setting, or Input Setting.
See F977 for more information on this parameter.

## Input Function Command 1

Program $\Rightarrow$ My Function Unit 1
This parameter is used to assign a user-selected logical operator to two userselected Input Function Target variables, enable a counter/timer function, or perform a hold/reset function.
Table 9 on pg. 194 lists the available selections. Their use and selection requirements are described in an example at F977.

Direct Access Number - F900
Parameter Type - Selection List
Factory Default - 0 (Disabled)
Changeable During Run - Yes

## Input Function Target 2

Program $\Rightarrow$ My Function Unit 1
This parameter plays a role in the setup of the My Function feature by selecting the functionality of the programmable Input Function Target 2 terminal.

This setting assigns the function of the programmable Input Function Target 2 terminal to any of the user-selectable functions listed in Table 5 on pg. 188, Table 7 on pg. 190, or Table 8 on pg. 192.
See F977 for more information on this parameter.

## Input Function Command 2

Program $\Rightarrow$ My Function Unit 1
This parameter is used to assign a user-selected logical operator to two userselected Input Function Target variables, enable a counter/timer function, or perform a hold/reset function.

Table 9 on pg. 194 lists the available selections. Their use and selection requirements are described in an example at F977.

## Input Function Target 3

Program $\Rightarrow$ My Function Unit 1
This parameter plays a role in the setup of the My Function feature by selecting the functionality of the programmable Input Function Target $\mathbf{3}$ terminal.
This setting assigns the function of the programmable Input Function Target 3 terminal to any of the user-selectable functions listed in Table 5 on pg. 188, Table 7 on pg. 190, or Table 8 on pg. 192.
See F977 for more information on this parameter.

## Output Function Assigned

Program $\Rightarrow$ My Function Unit 1
This parameter plays a role in the setup of the My Function feature by selecting the functionality of the Output Function Assigned terminal.

This setting assigns the function of the programmable Output Function Assigned data location to 1 of the functions listed in the Input Setting field of Table 5 on pg. 188.

Settings:

$$
0-3099
$$

See the My Function Instruction Manual (P/N E6581335) and F977 for more information on this parameter.

## Input Function Target 1

Program $\Rightarrow$ My Function Unit 2
This parameter plays a role in the setup of the My Function feature by selecting the functionality of the programmable Input Function Target 1 terminal.
This setting assigns the function of the programmable Input Function Target 1 terminal to any of the user-selectable functions listed in Table 5 on pg. 188, Table 7 on pg. 190, or Table 8 on pg. 192.
See F977 for more information on this parameter.

Direct Access Number - F902
Parameter Type - Selection List
Factory Default - $\mathbf{0}$ (Disabled)
Changeable During Run - Yes

Direct Access Number - F903
Parameter Type - Selection List
Factory Default - 0 (NOP)

Direct Access Number - F904
Parameter Type - Selection List
Factory Default - $\mathbf{0}$ (Disabled)
Changeable During Run - Yes

## Direct Access Number - F905

Parameter Type - Selection List
Factory Default - $\mathbf{0}$ (Disabled)
Changeable During Run - Yes

Direct Access Number - F906
Parameter Type - Selection List
Factory Default - $\mathbf{0}$ (Disabled)
Changeable During Run - Yes

## Input Function Command 1

Direct Access Number - F907
Program $\Rightarrow$ My Function Unit 2
Parameter Type - Selection List
Factory Default - 0 (NOP)
This parameter is used to assign a user-selected logical operator to two userselected Input Function Target variables, enable a counter/timer function, or perform a hold/reset function.
Table 9 on pg. 194 lists the available selections. Their use and selection requirements are described in an example at F977.

| Input Function Target 2 | Direct Access Number - F908 |
| :--- | :--- |
| Program $\Rightarrow$ My Function Unit 2 | Parameter Type — Selection List |
| This parameter plays a role in the setup of the My Function feature by selecting | Factory Default — 0 (Disabled) | the functionality of the programmable Input Function Target 2 terminal.

This setting assigns the function of the programmable Input Function Target 2 terminal to any of the user-selectable functions listed in Table 5 on pg. 188, Table 7 on pg. 190, or Table 8 on pg. 192.
See F977 for more information on this parameter.
Input Function Command 2
Program $\Rightarrow$ My Function Unit 2
This parameter is used to assign a user-selected logical operator to two userselected Input Function Target variables, enable a counter/timer function, or perform a hold/reset function.

Table 9 on pg. 194 lists the available selections. Their use and selection requirements are described in an example at F977.

Input Function Target 3
Program $\Rightarrow$ My Function Unit 2
This parameter plays a role in the setup of the My Function feature by selecting the functionality of the programmable Input Function Target 3 terminal.
This setting assigns the function of the programmable Input Function Target 3 terminal to any of the user-selectable functions listed in Table 5 on pg. 188, Table 7 on pg. 190, or Table 8 on pg. 192.
See F977 for more information on this parameter.

## Output Function Assigned <br> Program $\Rightarrow$ My Function Unit 2

This parameter plays a role in the setup of the My Function feature by selecting the functionality of the Output Function Assigned terminal.
This setting assigns the function of the programmable Output Function Assigned data location to 1 of the functions listed in the Input Setting field of Table 7 on pg. 190.

Settings:

$$
0-3099
$$

See the My Function Instruction Manual (P/N E6581335) and F977 for more information on this parameter.

Direct Access Number - F910
Parameter Type - Selection List
Factory Default - 0 (Disabled)
Changeable During Run - Yes

Direct Access Number - F911
Parameter Type - Selection List
Factory Default - 0 (Disabled)
Changeable During Run - Yes

## Input Function Target 1

Program $\Rightarrow$ My Function Unit 3
This parameter plays a role in the setup of the My Function feature by selecting the functionality of the programmable Input Function Target 1 terminal.

This setting assigns the function of the programmable Input Function Target 1 terminal to any of the user-selectable functions listed in Table 5 on pg. 188, Table 7 on pg. 190, or Table 8 on pg. 192.
See F977 for more information on this parameter.

## Input Function Command 1

Program $\Rightarrow$ My Function Unit 3

This parameter is used to assign a user-selected logical operator to two userselected Input Function Target variables, enable a counter/timer function, or perform a hold/reset function.

Table 9 on pg. 194 lists the available selections. Their use and selection requirements are described in an example at F977.
Input Function Target 2
Program $\Rightarrow$ My Function Unit 3
This parameter plays a role in the setup of the My Function feature by selecting the functionality of the programmable Input Function Target 2 terminal.
This setting assigns the function of the programmable Input Function Target 2 terminal to any of the user-selectable functions listed in Table 5 on pg. 188, Table 7 on pg. 190, or Table 8 on pg. 192.
See F977 for more information on this parameter.

## Input Function Command 2

Program $\Rightarrow$ My Function Unit 3

This parameter is used to assign a user-selected logical operator to two userselected Input Function Target variables, enable a counter/timer function, or perform a hold/reset function.

Table 9 on pg. 194 lists the available selections. Their use and selection requirements are described in an example at F977.

## Input Function Target 3

Program $\Rightarrow$ My Function Unit 3
This parameter plays a role in the setup of the My Function feature by selecting the functionality of the programmable Input Function Target 3 terminal.
This setting assigns the function of the programmable Input Function Target 3 terminal to any of the user-selectable functions listed in Table 5 on pg. 188, Table 7 on pg. 190, or Table 8 on pg. 192.
See F977 for more information on this parameter.

Direct Access Number - F912
Parameter Type - Selection List
Factory Default - $\mathbf{0}$ (Disabled)
Changeable During Run - Yes

## Direct Access Number - F913

Parameter Type - Selection List
Factory Default - 0 (NOP)

Direct Access Number - F914
Parameter Type - Selection List
Factory Default - $\mathbf{0}$ (Disabled)
Changeable During Run - Yes

## Direct Access Number - F915

Parameter Type - Selection List
Factory Default - 0 (NOP)

Direct Access Number - F916
Parameter Type - Selection List
Factory Default - 0 (Disabled)
Changeable During Run - Yes

## Output Function Assigned

Program $\Rightarrow$ My Function Unit 3
This parameter plays a role in the setup of the My Function feature by selecting the functionality of the Output Function Assigned terminal.

This setting assigns the function of the programmable Output Function Assigned data location to 1 of the functions listed in the Input Setting field of Table 7 on pg. 190.

Settings:
$0-3099$

See the My Function Instruction Manual (P/N E6581335) and F977 for more information on this parameter.
My Function Percent Data 1
Program $\Rightarrow$ My Function Data
This parameter is used to set the trigger threshold level of the analog signal of the
My Function Percent Data 1.
The analog signal is selected using the Input Setting number from Table 7 on p
190.
Once the assigned output value reaches the threshold setting of this parameter the
output value is transferred to My Function Out $\mathbf{1}$.
See the My Function Instruction Manual (P/N E6581335) and F977 for more
information on this parameter.
My Function Percent Data 2
Program $\Rightarrow$ My Function Data

This parameter is used to set the trigger threshold level of the analog signal of the My Function Percent Data 2.
The analog signal is selected using the Input Setting number from Table 7 on pg. 190.

## My Function Percent Data 3

Program $\Rightarrow$ My Function Data
This parameter is used to set the trigger threshold level of the analog signal of the My Function Percent Data 3.
The analog signal is selected using the Input Setting number from Table 7 on pg. 190.

Direct Access Number - F917
Parameter Type - Selection List
Factory Default - $\mathbf{0}$ (Disabled)
Changeable During Run - Yes

$$
\begin{aligned}
& \text { Direct Access Number - F918 } \\
& \text { Parameter Type - Numerical } \\
& \text { Factory Default - } 0.00 \\
& \text { Changeable During Run - Yes } \\
& \text { Minimum — } 0.00 \\
& \text { Maximum - } 200.00 \\
& \text { Units - \% }
\end{aligned}
$$

Direct Access Number - F919
Parameter Type - Numerical
Factory Default - 0.00
Changeable During Run - Yes
Minimum - 0.00
Maximum - 200.00
Units - \%
Direct Access Number - F920
Parameter Type - Numerical
Factory Default - 0.00
Changeable During Run - Yes
Minimum - 0.00
Maximum - 200.00
Units - \%
Direct Access Number - F921
Parameter Type - Numerical
Factory Default - 0.00
Changeable During Run - Yes
Minimum — 0.00
Maximum - 200.00
Units - \%

|  | Direct Access Number - F922 |
| :---: | :---: |
| Program $\Rightarrow$ My Function Data <br> This parameter is used to set the trigger threshold level of the analog signal of the My Function Percent Data 5. <br> The analog signal is selected using the Input Setting number from Table 7 on pg. 190. | Parameter Type - Numerical <br> Factory Default - 0.00 <br> Changeable During Run - Yes <br> Minimum — 0.00 <br> Maximum - 200.00 <br> Units - \% |
| My Function Frequency Data 1 <br> Program $\Rightarrow$ My Function Data <br> This parameter is used to set the trigger threshold level of the analog signal of the My Function Frequency Data 1. <br> The analog signal is selected using the Input Setting number from Table 7 on pg. 190. | ```Direct Access Number - F923 Parameter Type - Numerical Factory Default - 0.00 Changeable During Run - Yes Minimum — 0.00 Maximum - 200.00 Units - \%``` |
| My Function Frequency Data 2 <br> Program $\Rightarrow$ My Function Data <br> This parameter is used to set the trigger threshold level of the analog signal of the My Function Frequency Data 2. <br> The analog signal is selected using the Input Setting number from Table 7 on pg. 190. | ```Direct Access Number - F924 Parameter Type - Numerical Factory Default - 0.00 Changeable During Run - Yes Minimum — 0.00 Maximum - 200.00 Units - \%``` |
| My Function Frequency Data 3 <br> Program $\Rightarrow$ My Function Data <br> This parameter is used to set the trigger threshold level of the analog signal of the My Function Frequency Data 1. <br> The analog signal is selected using the Input Setting number from Table 7 on pg. 190. | Direct Access Number - F925 <br> Parameter Type - Numerical <br> Factory Default - 0.00 <br> Changeable During Run - Yes <br> Minimum — 0.00 <br> Maximum - 200.00 <br> Units - \% |
| My Function Frequency Data 4 <br> Program $\Rightarrow$ My Function Data <br> This parameter is used to set the trigger threshold level of the analog signal of the My Function Frequency Data 4. <br> The analog signal is selected using the Input Setting number from Table 7 on pg. 190. | Direct Access Number - F926 <br> Parameter Type - Numerical <br> Factory Default - 0.00 <br> Changeable During Run - Yes <br> Minimum — 0.00 <br> Maximum - 200.00 <br> Units - \% |
| My Function Frequency Data 5 <br> Program $\Rightarrow$ My Function Data <br> This parameter is used to set the trigger threshold level of the analog signal of the My Function Frequency Data 5. <br> The analog signal is selected using the Input Setting number from Table 7 on pg. 190. | ```Direct Access Number - F927 Parameter Type - Numerical Factory Default - 0.00 Changeable During Run - Yes Minimum — 0.00 Maximum - 200.00 Units - \%``` |

## My Function Time Data 1

Program $\Rightarrow$ My Function Data
This parameter is used to set the response delay of the My Function Time Data 1 terminal.
The applied discrete input signal must be present at the input terminal of the Q9 ASD for the time setting here for a system response.
Discrete terminal input activation that does not equal or exceed this setting will be ignored.

## My Function Time Data 2

Program $\Rightarrow$ My Function Data
This parameter is used to set the response delay of the My Function Time Data 2 terminal.

The applied discrete input signal must be present at the input terminal of the Q9 ASD for the time setting here for a system response.
Discrete terminal input activation that does not equal or exceed this setting will be ignored.

## My Function Time Data 3

Program $\Rightarrow$ My Function Data
This parameter is used to set the response delay of the My Function Time Data 3 terminal.

The applied discrete input signal must be present at the input terminal of the Q9 ASD for the time setting here for a system response.
Discrete terminal input activation that does not equal or exceed this setting will be ignored.

## My Function Time Data 4 <br> Program $\Rightarrow$ My Function Data

This parameter is used to set the response delay of the My Function Time Data 4 terminal.
The applied discrete input signal must be present at the input terminal of the Q9 ASD for the time setting here for a system response.
Discrete terminal input activation that does not equal or exceed this setting will be ignored.

## My Function Time Data 5

Program $\Rightarrow$ My Function Data
This parameter is used to set the response delay of the My Function Time Data 5 terminal.
The applied discrete input signal must be present at the input terminal of the Q9 ASD for the time setting here for a system response.
Discrete terminal input activation that does not equal or exceed this setting will be ignored.

Direct Access Number - F928
Parameter Type - Numerical
Factory Default - 0.01
Changeable During Run - Yes
Minimum - 0.01
Maximum - 600.00
Units - Seconds

Direct Access Number - F929
Parameter Type - Numerical
Factory Default — 0.01
Changeable During Run - Yes
Minimum - 0.01
Maximum - 600.00
Units - Seconds

## Direct Access Number - F930

Parameter Type - Numerical
Factory Default — 0.01
Changeable During Run - Yes
Minimum — 0.01
Maximum — 600.00
Units - Seconds

Direct Access Number - F931
Parameter Type - Numerical
Factory Default - 0.01
Changeable During Run - Yes
Minimum — 0.01
Maximum - 600.00
Units - Seconds

## Direct Access Number - F932

Parameter Type - Numerical
Factory Default - 0.01
Changeable During Run - Yes
Minimum — 0.01
Maximum — 600.00
Units - Seconds

## My Function Count Data 1

Program $\Rightarrow$ My Function Data
This parameter is used to set the pulse-count threshold value used to trigger the discrete output COUNT1 (ON Timer).
COUNT1 (ON Timer) outputs a 1 upon reaching the threshold setting at this parameter.

## My Function Count Data 2

Program $\Rightarrow$ My Function Data
This parameter is used to set the pulse-count threshold value used to trigger the discrete output COUNT2 (ON Timer).

COUNT2 (ON Timer) outputs a 1 upon reaching the threshold setting at this parameter.

## Input Function Target 1

Program $\Rightarrow$ My Function Unit 4
This parameter plays a role in the setup of the My Function feature by selecting the functionality of the programmable Input Function Target 1 terminal.

This setting assigns the function of the programmable Input Function Target 1 terminal to any of the user-selectable functions listed in Table 5 on pg. 188, Table 7 on pg. 190, or Table 8 on pg. 192.
See F977 for more information on this parameter.

## Input Function Command 1

Program $\Rightarrow$ My Function Unit 4
This parameter is used to assign a user-selected logical operator to two userselected Input Function Target variables, enable a counter/timer function, or perform a hold/reset function.
Table 9 on pg. 194 lists the available selections. Their use and selection requirements are described in an example at F977.

## Input Function Target 2

Program $\Rightarrow$ My Function Unit 4
This parameter plays a role in the setup of the My Function feature by selecting the functionality of the programmable Input Function Target 2 terminal.
This setting assigns the function of the programmable Input Function Target 2 terminal to any of the user-selectable functions listed in Table 5 on pg. 188, Table 7 on pg. 190, or Table 8 on pg. 192.
See F977 for more information on this parameter.

## Input Function Command 2

Program $\Rightarrow$ My Function Unit 4
This parameter is used to assign a user-selected logical operator to two userselected Input Function Target variables, enable a counter/timer function, or perform a hold/reset function.
Table 9 on pg. 194 lists the available selections. Their use and selection requirements are described in an example at F977.

## Direct Access Number - F933

Parameter Type - Numerical
Factory Default - 0
Changeable During Run - Yes
Minimum - 0
Maximum - 9999
Units - Pulses
Direct Access Number - F934
Parameter Type - Numerical
Factory Default - 0
Changeable During Run - Yes
Minimum - 0
Maximum - 9999
Units - Pulses
Direct Access Number - F935
Parameter Type - Selection List
Factory Default - $\mathbf{0}$ (Disabled)
Changeable During Run - Yes

Direct Access Number - F937
Parameter Type - Selection List
Factory Default - 0 (Disabled)
Changeable During Run - Yes

## Input Function Target 3

Program $\Rightarrow$ My Function Unit 4
This parameter plays a role in the setup of the My Function feature by selecting the functionality of the programmable Input Function Target $\mathbf{3}$ terminal.

This setting assigns the function of the programmable Input Function Target 3 terminal to any of the user-selectable functions listed in Table 5 on pg. 188, Table 7 on pg. 190, or Table 8 on pg. 192.
See F977 for more information on this parameter.

## Output Function Assigned

Program $\Rightarrow$ My Function Unit 4
This parameter plays a role in the setup of the My Function feature by selecting the functionality of the Output Function Assigned terminal.

This setting assigns the function of the programmable Output Function Assigned data location to 1 of the functions listed in the Input Setting field of Table 7 on pg. 190.

Settings:

$$
0-3099
$$

See the My Function Instruction Manual (P/N E6581335) and F977 for more information on this parameter.

## Input Function Target 1

Program $\Rightarrow$ My Function Unit 5

This parameter plays a role in the setup of the My Function feature by selecting the functionality of the programmable Input Function Target 1 terminal.
This setting assigns the function of the programmable Input Function Target 1 terminal to any of the user-selectable functions listed in Table 5 on pg. 188, Table 7 on pg. 190, or Table 8 on pg. 192.
See F977 for more information on this parameter.

## Input Function Command 1

Program $\Rightarrow$ My Function Unit 5

This parameter is used to assign a user-selected logical operator to two userselected Input Function Target variables, enable a counter/timer function, or perform a hold/reset function.

Table 9 on pg. 194 lists the available selections. Their use and selection requirements are described in an example at F977.

## Input Function Target 2 <br> Program $\Rightarrow$ My Function Unit 5

This parameter plays a role in the setup of the My Function feature by selecting the functionality of the programmable Input Function Target 2 terminal.
This setting assigns the function of the programmable Input Function Target 2 terminal to any of the user-selectable functions listed in Table 5 on pg. 188, Table 7 on pg. 190, or Table 8 on pg. 192.
See F977 for more information on this parameter.

Direct Access Number - F939
Parameter Type - Selection List
Factory Default - $\mathbf{0}$ (Disabled)
Changeable During Run - Yes

## Direct Access Number - F940

Parameter Type - Selection List
Factory Default - $\mathbf{0}$ (Disabled)
Changeable During Run - Yes

Direct Access Number - F941
Parameter Type - Selection List
Factory Default - $\mathbf{0}$ (Disabled)
Changeable During Run - Yes

## Direct Access Number - F942

Parameter Type - Selection List
Factory Default - 0 (NOP)

Direct Access Number - F943
Parameter Type - Selection List
Factory Default - 0 (Disabled)
Changeable During Run - Yes

## Input Function Command 2

Program $\Rightarrow$ My Function Unit 5
This parameter is used to assign a user-selected logical operator to two userselected Input Function Target variables, enable a counter/timer function, or perform a hold/reset function.

Table 9 on pg. 194 lists the available selections. Their use and selection requirements are described in an example at F977.
Input Function Target $\mathbf{3}$
Program $\Rightarrow$ My Function Unit 5
This parameter plays a role in the setup of the My Function feature by selecting
the functionality of the programmable Input Function Target $\mathbf{3}$ terminal.
This setting assigns the function of the programmable Input Function Target $\mathbf{3}$
terminal to any of the user-selectable functions listed in Table 5 on pg. 188, Table
7 on pg. 190, or Table 8 on pg. 192.
. 1
See F977 for more information on this parameter.

## Output Function Assigned

Program $\Rightarrow$ My Function Unit 5
This parameter plays a role in the setup of the My Function feature by selecting the functionality of the Output Function Assigned terminal.
This setting assigns the function of the programmable Output Function Assigned data location to 1 of the functions listed in the Input Setting field of Table 7 on pg. 190.

Settings:
0 - 3099
See the My Function Instruction Manual (P/N E6581335) and F977 for more information on this parameter.

Input Function Target 1
Program $\Rightarrow$ My Function Unit 6
This parameter plays a role in the setup of the My Function feature by selecting the functionality of the programmable Input Function Target 1 terminal.
This setting assigns the function of the programmable Input Function Target 1 terminal to any of the user-selectable functions listed in Table 5 on pg. 188, Table 7 on pg. 190, or Table 8 on pg. 192.
See F977 for more information on this parameter.

Direct Access Number - F947
Parameter Type - Selection List
Factory Default - 0 (Disabled)
Changeable During Run - Yes

## Input Function Command 1 <br> Program $\Rightarrow$ My Function Unit 6

This parameter is used to assign a user-selected logical operator to two userselected Input Function Target variables, enable a counter/timer function, or perform a hold/reset function.
Table 9 on pg. 194 lists the available selections. Their use and selection requirements are described in an example at F977.

Direct Access Number - F944
Parameter Type - Selection List
Factory Default - 0 (NOP)

## Direct Access Number - F945

Parameter Type - Selection List
Factory Default - 0 (Disabled)
Changeable During Run - Yes

## Direct Access Number - F946

Parameter Type - Selection List
Factory Default - $\mathbf{0}$ (Disabled)
Changeable During Run - Yes

## Input Function Target 2

Program $\Rightarrow$ My Function Unit 6
This parameter plays a role in the setup of the My Function feature by selecting the functionality of the programmable Input Function Target 2 terminal.

This setting assigns the function of the programmable Input Function Target 2 terminal to any of the user-selectable functions listed in Table 5 on pg. 188, Table 7 on pg. 190, or Table 8 on pg. 192.
See F977 for more information on this parameter.

## Input Function Command 2

Program $\Rightarrow$ My Function Unit 6
This parameter is used to assign a user-selected logical operator to two userselected Input Function Target variables, enable a counter/timer function, or perform a hold/reset function.
Table 9 on pg. 194 lists the available selections. Their use and selection requirements are described in an example at F977.
Input Function Target 3
Program $\Rightarrow$ My Function Unit 6
This parameter plays a role in the setup of the My Function feature by selecting the functionality of the programmable Input Function Target $\mathbf{3}$ terminal.
This setting assigns the function of the programmable Input Function Target 3 terminal to any of the user-selectable functions listed in Table 5 on pg. 188, Table 7 on pg. 190, or Table 8 on pg. 192.
See F977 for more information on this parameter.

## Output Function Assigned

Program $\Rightarrow$ My Function Unit 6
This parameter plays a role in the setup of the My Function feature by selecting the functionality of the Output Function Assigned terminal.

This setting assigns the function of the programmable Output Function Assigned data location to 1 of the functions listed in the Input Setting field of Table 7 on pg. 190.

Settings:

$$
0-3099
$$

See the My Function Instruction Manual (P/N E6581335) and F977 for more information on this parameter.

## Input Function Target 1 <br> Program $\Rightarrow$ My Function Unit 7

This parameter plays a role in the setup of the My Function feature by selecting the functionality of the programmable Input Function Target 1 terminal.
This setting assigns the function of the programmable Input Function Target 1 terminal to any of the user-selectable functions listed in Table 5 on pg. 188, Table 7 on pg. 190, or Table 8 on pg. 192.
See F977 for more information on this parameter.

Direct Access Number - F949
Parameter Type - Selection List
Factory Default - $\mathbf{0}$ (Disabled)
Changeable During Run - Yes

Direct Access Number - F950
Parameter Type - Selection List
Factory Default - 0 (NOP)

Direct Access Number - F951
Parameter Type - Selection List
Factory Default - $\mathbf{0}$ (Disabled)
Changeable During Run - Yes

## Direct Access Number - F952

Parameter Type - Selection List
Factory Default - $\mathbf{0}$ (Disabled)
Changeable During Run - Yes

Direct Access Number - F953
Parameter Type - Selection List
Factory Default - 0 (Disabled)
Changeable During Run - Yes

## Input Function Command 1

Direct Access Number - F954
Program $\Rightarrow$ My Function Unit 7
Parameter Type - Selection List
Factory Default - 0 (NOP)
This parameter is used to assign a user-selected logical operator to two userselected Input Function Target variables, enable a counter/timer function, or perform a hold/reset function.
Table 9 on pg. 194 lists the available selections. Their use and selection requirements are described in an example at F977.

| Input Function Target 2 | Direct Access Number — F955 |
| :--- | :--- |
| Program $\Rightarrow$ My Function Unit 7 | Parameter Type — Selection List |
| This parameter plays a role in the setup of the My Function feature by selecting | Factory Default — 0 (Disabled) | the functionality of the programmable Input Function Target 2 terminal.

This setting assigns the function of the programmable Input Function Target 2 terminal to any of the user-selectable functions listed in Table 5 on pg. 188, Table 7 on pg. 190, or Table 8 on pg. 192.
See F977 for more information on this parameter.
Input Function Command 2
Program $\Rightarrow$ My Function Unit 7
This parameter is used to assign a user-selected logical operator to two userselected Input Function Target variables, enable a counter/timer function, or perform a hold/reset function.
Table 9 on pg. 194 lists the available selections. Their use and selection requirements are described in an example at F977.

Input Function Target 3
Program $\Rightarrow$ My Function Unit 7
This parameter plays a role in the setup of the My Function feature by selecting the functionality of the programmable Input Function Target 3 terminal.
This setting assigns the function of the programmable Input Function Target 3 terminal to any of the user-selectable functions listed in Table 5 on pg. 188, Table 7 on pg. 190, or Table 8 on pg. 192.
See F977 for more information on this parameter.

## Output Function Assigned <br> Program $\Rightarrow$ My Function Unit 7

This parameter plays a role in the setup of the My Function feature by selecting the functionality of the Output Function Assigned terminal.
This setting assigns the function of the programmable Output Function Assigned data location to 1 of the functions listed in the Input Setting field of Table 7 on pg. 190.

Settings:

$$
0-3099
$$

See the My Function Instruction Manual (P/N E6581335) and F977 for more information on this parameter.

Direct Access Number - F957
Parameter Type - Selection List
Factory Default - 0 (Disabled)
Changeable During Run - Yes

Direct Access Number - F958
Parameter Type - Selection List
Factory Default - 0 (Disabled)
Changeable During Run - Yes

## Analog Input Function Target 11

Program $\Rightarrow$ My Function Analog
This parameter plays a role in the setup of the My Function feature by selecting the functionality of the programmable Analog Input Function Target 11 terminal.

The function selected at F961 may be adjusted using the input analog control signal selected here.

Settings:
0 - None (Disabled)
1 - V/I
2 - RR
3 - RX
4 - Optional RX2+, RX2-
5 - Optional V/I

## Analog Function Assigned Object 11

Program $\Rightarrow$ My Function Analog
This parameter plays a role in the setup of the My Function feature by selecting the functionality to which the adjustment of F959 is applied.

## Settings:

0 - None (Disabled)
1 - Acceleration Rate
2 - Upper-Limit Frequency
3 - Acceleration Multiplication Factor
4 - Deceleration Multiplication Factor
5 - Manual Torque Boost
6 - Over Current Stall (F601)
7 - Thermal Protection
8 - Speed Loop Proportional Gain (F460)
9 - Drooping Gain (F320)
10 - PID Proportional Gain (F362)
See the My Function Instruction Manual (P/N E6581335) for a complete description of the setup requirements and operational information of the Analog Function Assigned Object parameter.

## Analog Input Function Target 21

Program $\Rightarrow$ My Function Analog
This parameter plays a role in the setup of the My Function feature by selecting the functionality of the programmable Analog Input Function Target 21 terminal.

The function selected at F964 may be adjusted using the input analog control signal selected here.

Settings:
0 - None (Disabled)
1 - V/I
2 -RR
3 - RX
4 - Optional RX2+, RX2-
5 - Option V/I

Direct Access Number - F959
Parameter Type - Selection List
Factory Default - Disabled
Changeable During Run - Yes

Direct Access Number - F961
Parameter Type - Selection List
Factory Default - Disabled
Changeable During Run - Yes

Direct Access Number - F962
Parameter Type - Selection List
Factory Default - Disabled
Changeable During Run - Yes

## Analog Function Assigned Object 21

Program $\Rightarrow$ My Function Analog
This parameter plays a role in the setup of the My Function feature by selecting the functionality to which the adjustment of F962 is applied.

## Settings:

0 — None (Disabled)
1 - Acceleration Rate
2 - Upper-Limit Frequency
3 - Acceleration Multiplication Factor
4 - Deceleration Multiplication Factor
5 - Manual Torque Boost
6 - Over Current Stall (F601)
7 - Thermal Protection
8 - Speed Loop Proportional Gain (F460)
9 - Drooping Gain (F320)
10 - PID Proportional Gain (F362)
See the My Function Instruction Manual (P/N E6581335) for a complete description of the setup requirements and operational information of the Analog Function Assigned Object parameter.

## Monitor Output Function 11

Program $\Rightarrow$ My Function Monitor
This parameter plays a role in the setup of the My Function feature by establishing the function that is to be recorded and output as the Peak, Minimum, or Average value as selected at parameter F966.

Select the Monitor Display Input Setting number from Table 8 on pg. 192 to output the corresponding function.

Use the Communication Number if operating using communications.
See the My Function Instruction Manual (P/N E6581335) for a complete description of the setup requirements and operational information of the Monitor Output Function parameter.

## Monitor Output Function Command 11

Program $\Rightarrow$ My Function Monitor
This parameter plays a role in the setup of the My Function feature by allowing the user to select the Peak, Minimum, or Normal (Avg.) value of the parameter F965 selection to be recorded and output as a monitored function.

Settings:
0 - Normal
1 - Peak
2-Minimum
See the My Function Instruction Manual (P/N E6581335) for a complete description of the setup requirements and operational information of the Monitor Output Function parameter.

Direct Access Number - F964
Parameter Type - Selection List
Factory Default - Disabled
Changeable During Run - Yes

## Direct Access Number - F965

Parameter Type - Selection List
Factory Default - 2000
Changeable During Run - Yes

Direct Access Number - F966
Parameter Type - Selection List
Factory Default - Normal
Changeable During Run - Yes

## Monitor Output Function 21

Program $\Rightarrow$ My Function Monitor

This parameter plays a role in the setup of the My Function feature by establishing the function that is to be recorded and output as the Peak, Minimum, or Average value as selected at parameter F968.

Select the Monitor Display Input Setting number from Table 8 on pg. 192 to output the corresponding function.

Use the Communication Number if operating using communications.
See the My Function Instruction Manual (P/N E6581335) for a complete description of the setup requirements and operational information of the Monitor Output Function parameter.

## Monitor Output Function Command 21

Program $\Rightarrow$ My Function Monitor
This parameter plays a role in the setup of the My Function feature by allowing the user to select the Peak, Minimum, or Normal (Avg.) value of the parameter F967 selection to be recorded and output as a monitored function.

Settings:
0 - Normal
1 - Peak
2 - Minimum
See the My Function Instruction Manual (P/N E6581335) for a complete description of the setup requirements and operational information of the Monitor Output Function parameter.
Monitor Output Function 31
Program $\Rightarrow$ My Function Monitor
This parameter plays a role in the setup of the My Function feature by establishing the function that is to be recorded and output as the Peak, Minimum, or Average value as selected at parameter F970.

Select the Monitor Display Input Setting number from Table 8 on pg. 192 to output the corresponding function.

Use the Communication Number if operating using communications.
See the My Function Instruction Manual (P/N E6581335) for a complete description of the setup requirements and operational information of the Monitor Output Function parameter.

Direct Access Number - F967
Parameter Type - Selection List
Factory Default - 2000
Changeable During Run - Yes

Direct Access Number - F968
Parameter Type - Selection List
Factory Default - Normal
Changeable During Run - Yes

Direct Access Number - F969
Parameter Type - Selection List
Factory Default - 2000
Changeable During Run - Yes

## Monitor Output Function Command 31

Program $\Rightarrow$ My Function Monitor
This parameter plays a role in the setup of the My Function feature by allowing the user to select the Peak, Minimum, or Normal (Avg.) value of the parameter F969 selection to be recorded and output as a monitored function.

See the My Function Instruction Manual (P/N E6581335) for a complete description of the setup requirements and operational information of the Monitor Output Function parameter.

Settings:
0 - Normal
1 - Peak
2-Minimum

## Monitor Output Function 41

Program $\Rightarrow$ My Function Monitor
This parameter plays a role in the setup of the My Function feature by allowing the user to select the Peak, Minimum, or Normal (Avg.) value of the parameter F972 selection to be recorded and output as a monitored function.

Settings:
0 - Normal
1 - Peak
2-Minimum
See the My Function Instruction Manual (P/N E6581335) for a complete description of the setup requirements and operational information of the Monitor Output Function parameter.

## Monitor Output Function Command 41

Program $\Rightarrow$ My Function Monitor
This parameter plays a role in the setup of the My Function feature by establishing the function that is to be recorded and output as the Peak, Minimum, or Average value as selected at parameter F971.

Select the Monitor Display Input Setting number from Table 8 on pg. 192 to output the corresponding function.

Use the Communication Number if operating using communications.
See the My Function Instruction Manual (P/N E6581335) for a complete description of the setup requirements and operational information of the Monitor Output Function parameter.

Direct Access Number - F970
Parameter Type - Selection List
Factory Default - Normal
Changeable During Run - Yes

Direct Access Number - F971
Parameter Type - Selection List
Factory Default - Normal
Changeable During Run - Yes

Direct Access Number - F972
Parameter Type - Selection List
Factory Default - 2000
Changeable During Run - Yes

## Virtual Input Terminal 1 Selection

No Path — Direct Access Only
This parameter is used to set the functionality of the Virtual Input Terminal 1. As a virtual terminal, it exists only in memory and is considered to always be in its True (or connected to CC) state.

It is often practical to assign a function to this terminal that the user desires to be maintained regardless of external conditions or operations.
This parameter sets the programmable Virtual Input Terminal 1 terminal to 1 of the functions that are listed in Table 4 on pg. 186.

In addition, the input terminal must be specified as Normally Open or Normally Closed.
Virtual Input Terminal 2 Selection
No Path — Direct Access Only
This parameter is used to set the functionality of the Virtual Input Terminal 2. As a virtual terminal, it exists only in memory and is considered to always be in its True (or connected to CC) state.
It is often practical to assign a function to this terminal that the user desires to be maintained regardless of external conditions or operations.

This parameter sets the programmable Virtual Input Terminal 2 terminal to 1 of the functions that are listed in Table 4 on pg. 186.

In addition, the input terminal must be specified as Normally Open or Normally Closed.

## Virtual Input Terminal 3 Selection

No Path — Direct Access Only
This parameter is used to set the functionality of the Virtual Input Terminal 3. As a virtual terminal, it exists only in memory and is considered to always be in its True (or connected to CC) state.
It is often practical to assign a function to this terminal that the user desires to be maintained regardless of external conditions or operations.
This parameter sets the programmable Virtual Input Terminal 3 terminal to 1 of the functions that are listed in Table 4 on pg. 186.

In addition, the input terminal must be specified as Normally Open or Normally Closed.

## Virtual Input Terminal 4 Selection

No Path — Direct Access Only
This parameter is used to set the functionality of the Virtual Input Terminal 4. As a virtual terminal, it exists only in memory and is considered to always be in its True (or connected to CC) state.

It is often practical to assign a function to this terminal that the user desires to be maintained regardless of external conditions or operations.

This parameter sets the programmable Virtual Input Terminal 4 terminal to 1 of the functions that are listed in Table 4 on pg. 186.

In addition, the input terminal must be specified as Normally Open or Normally Closed.

## Direct Access Number - F973

Parameter Type - Selection List
Factory Default - Unassigned
Changeable During Run - No

## Direct Access Number - F974

Parameter Type - Selection List
Factory Default - Unassigned
Changeable During Run - No

## Direct Access Number - F975 <br> Parameter Type - Selection List <br> Factory Default - Unassigned <br> Changeable During Run - No

## Direct Access Number - F976

Parameter Type - Selection List
Factory Default - Unassigned
Changeable During Run - No

## My Function Selection

Program $\Rightarrow$ My Function
This parameter Enables/Disables the configured My Function feature of the Q9 ASD.

## Settings:

0 - None (Disabled)
1 - My Function with Terminal Board Signal (Discrete Terminal Activation)
2 - My Function Always On

## My Function

The My Function feature is configured using the settings of F900 to F977 and is used to enhance the programmability of the Q9 ASD by performing two programmable functions: 1) the Combined Terminal Function, and 2) Logic Operations.

## Combined Input Terminal Function

Assigning more than one function to a discrete output terminal provides two advantages: it effectively expands the number of input terminals, and reduces the number of cables required to support the input/output functions (e.g., assigning ST and F to one terminal). Using Virtual Terminals 1 - 4 (F973 - F976) are required to use this function.
In the example below, the ST terminal assignment and the $\mathbf{F}$ terminal assignment will be combined as one terminal to illustrate this feature. However, any two of the discrete output terminal assignments listed in Table 7 on pg. 190 may be combined in this manner.

## Setup (Example)

1. Disable the My Function parameter at F977 to prevent the system from starting upon completion of the setup.
2. Assign the $\mathbf{S T}$ function to the $\mathbf{S} 1$ terminal (F115).
3. Assign the $\mathbf{F}$ function to Virtual Input Terminal 1 (F973).
4. Set Input Function Target $\mathbf{1}$ to $\mathbf{5}$ (F900). This setting assigns $\mathbf{S} \mathbf{1}$ as the control input terminal.
5. Set Output Function Assigned to 21 (F905). This setting is a command that writes the $\mathbf{F 1 1 5}$ selection (S1) to Virtual Input Terminal 1, activating both.
6. Enable the My Function parameter at F977 by selecting My Function Always On or selecting My Function With TB Signal.
If set to My Function Always On, the combination of ST and F are always On (both are connected to CC only during the S1 activation).

If set to My Function With TB Signal, set a discrete input terminal to My Function Run Signal and connect it to $\mathbf{C C}$ to enable My Function. Connect $\mathbf{S} 1$ to $\mathbf{C C}$ to activate the $\mathbf{S T}+\mathbf{F}$ function. A disconnection at either terminal will terminate the My Function programming (discrete input terminal My Function Run Signal is Anded with discrete input terminal S1).

Connect $\mathbf{S 1}$ to $\mathbf{C C}$ and the $\mathbf{F}$-to- $\mathbf{C C}+$ the $\mathbf{S T}$-to- $\mathbf{C C}$ functions will be carried out using only S1.

With the aforementioned setup completed, provide a Frequency Command (F004) and the motor will run at the commanded frequency.

Continued on next page.

Direct Access Number - F977
Parameter Type - Selection List
Factory Default — None (Disabled)
Changeable During Run - No

## . DANGER

This parameter must always be set to None at the start of the My Function setup and remain set to None until all of the My Function parameter settings have been confirmed as being correct.

If enabled for normal operation using settings 1 or 2, the motor may start and engage the driven equipment unexpectedly upon receiving a Run signal during the My Function setup.

## Combined Output Terminal Function

Output terminals may also be combined to produce one output response to multiple conditions using the computational operators of Table 9 on pg. 194. Assigning more than one function to a discrete output terminal provides two advantages: it effectively expands the number of input terminals, and reduces the number of cables required to support the input/output functions (e.g., assigning Low-Speed Detection and Low-Current Detection to one output terminal). Using Virtual Terminals 1-4 (F973-F976) are required to use this function.
In the example below, the Low-Speed Signal (detection) terminal assignment and the Low-Current Detection terminal assignment will be combined as one terminal output to illustrate this feature. However, any two of the discrete output terminal assignments may listed in Table 7 on pg. 190 may be combined in this manner.

## Setup (Example)

1. Disable the My Function parameter at F977 to prevent the system from starting upon completion of the setup.
2. From Program $\Rightarrow$ Direct Access $\Rightarrow$ Unknown Numbers, select Enabled.
3. Set the OUT1 terminal (F130) to My Function Output 1 (222).
4. Set Input Function Target $\mathbf{1}$ (F900) to $\mathbf{1 0 0 4}$ (Low-Speed Signal detection). See Table 7 on pg. 190 for a complete listing of available settings.
5. Set Input Function Target 2 (F902) to $\mathbf{1 0 2 6}$ (Low-Current Alarm). See Table 7 on pg. 190 for a complete listing of available settings.
6. Set Input Function Command 1 (F901) to AND (3). This setting assigns an operator to the Input Function Target 1 and the Input Function Target 2 settings.
7. Set Output Function Assigned (F905) to 1222. This setting will transfer the results of the logical AND to My Function Output 1 (OUT1).
8. Enable the My Function parameter at F977 by selecting My Function Always On.

With the aforementioned setup completed in the example, once the Low-Speed Signal AND the Low-Current Alarm are active, the OUT1 terminal is activated for the duration of the Low-Speed/Low-Current condition.

See the My Function Instruction Manual (P/N E6581335) for a complete description of the setup requirements and operational information of the My Function parameter.

Direct Access Number - F977
Parameter Type - Selection List
Factory Default - None (Disabled)
Changeable During Run - No

## . DANGER

This parameter must always be set to None at the start of the My Function setup and remain set to None until all of the My Function parameter settings have been confirmed as being correct.

If enabled for normal operation using settings 1 or 2 , the motor may start and engage the driven equipment unexpectedly upon receiving a Run signal during the My Function setup.

Table 4. Discrete Input Terminal Assignment Selections and Descriptions.

| Sel. No. |  | Terminal Selection Descriptions |
| :---: | :---: | :---: |
| NO | NC |  |
| 0 | 1 | Unassigned - No operation. |
| 2 | 3 | Forward - Provides a Forward run command. |
| 4 | 5 | Reverse - Provides a Reverse run command. |
| 6 | 7 | Standby - Enables the Forward and Reverse operation commands. |
| 8 | 9 | Reset - Resets the device and any active faults. |
| 10 | 11 | (Pre)Set Speed 1 -Preset Speed 1 is used as the LSB of the 4-bit nibble that is used to select a Preset Speed. |
| 12 | 13 | (Pre)Set Speed 2 - Preset Speed 2 is used as the second bit of the 4-bit nibble that is used to select a Preset Speed. |
| 14 | 15 | (Pre)Set Speed 3 - Preset Speed 3 is used as the third bit of the 4-bit nibble that is used to select a Preset Speed. |
| 16 | 17 | (Pre)Set Speed 4 - Preset Speed 4 is used as the MSB of the 4-bit nibble that is used to select a Preset Speed. |
| 18 | 19 | $\mathbf{J o g}$ - Jog is the term used to describe turning on the motor for discrete increments of time and is used when precise positioning of motor-driven equipment is required. This terminal activates a Jog for the duration of the activation. The Jog settings may be configured at F260 - F262. |
| 20 | 21 | Emergency Off - Terminates the output signal from the drive and may apply a brake if so configured. The braking method may be selected at F603. |
| 22 | 23 | DC Braking - The drive outputs a DC current that is injected into the windings of the motor to quickly brake the motor. |
| 24 | 25 | A/D 1/2 - Accel/Decel Switching 1 and 2 - Activate or deactivate this terminal to toggle to and from the Accel/ Decel profile 1 and 2. <br> Accel/Decel profiles are comprised of the Accel/Decel settings, Pattern, and Switching Frequency, respectively. See F504 for more information on this terminal setting. |
| 28 | 29 | Motor 1/2 - Motor Profile 1 and $\mathbf{2}$ - Activate or deactivate this terminal to select Motor profile 1 or 2, respectively. Motor profiles are comprised of Frequency Mode 1 and 2, Base Frequency/Base Frequency Voltage, Torque Boost, and Electronic Thermal Protection Level settings. |
| 36 | 37 | PID Off - Turns off PID control. |
| 46 | 47 | External Over-heat - Causes an Over-Heat Trip (OH). |
| 48 | 49 | Local Priority (Cancels Serial Priority) - Overrides any serial control and returns the Command and Frequency control to F003 and F004. |
| 50 | 51 | Hold (3-Wire Stop) - Decelerates the motor to a stop. |
| 52 | 53 | PID Differentiation/Integration Clear - Clears the PID value. |
| 54 | 55 | PID Forward/Reverse Switching - Toggles the gradient characteristic of the feedback response of the V/I terminal during PID-controlled operation. |
| 56 | 57 | Forced Run - PID control is ignored for the duration of activation. |
| 58 | 59 | Fire Speed - Run Preset Speed 15 for the duration of the activation (see F294 for more information on this setting). |
| 60 | 61 | My Function Run - Activates the configured My Function feature. See F977 for more information on this parameter. |
| 66 | 67 | Autotuning - Initiates the Autotune function. Set F400 to Autotuning by Input Terminal Signal to use this function. |
| 70 | 71 | Servo Lock - Holds the motor at 0 Hz until a Run command is received. |
| 74 | 75 | kWH Clear - Clears the kWH Meter display. |
| 76 | 77 | Trace Back - Initiates the data Read/Store function of the Trace Selection parameter. See F740 for more information on this feature. |
| 80 | 81 | Damper Feedback - Activation of this terminal indicates an open damper and enables the system for normal operation. This terminal connects to a Damper Open/Damper Closed switch. |
| 86 | 87 | Binary Write - Writes the status of the discrete input terminals to the control board during binary input speed control. |
| Note: $\quad$ NO/NC = Normally Open/Normally Closed. |  |  |

Table 4. (Continued) Discrete Input Terminal Assignment Selections and Descriptions.

| Sel. No. | Terminal Selection Descriptions |  |
| :--- | :--- | :--- | :--- |
| NO | NC |  |
| 88 | 89 | UP/DOWN Frequency (UP) - Increases the speed of the motor for the duration of activation until reaching the <br> Upper-Limit setting or increases the speed of the motor in steps (see F264 for more information on this feature). |
| 90 | 91 | UP/DOWN Frequency (DOWN) - Decreases the speed of the motor for the duration of activation until reaching the <br> Lower-Limit setting or decreases the speed of the motor in steps (see F264 for more information on this feature). |
| 92 | 93 | UP/DOWN Frequency (CLEAR) - While operating in the Up/Down Frequency speed control mode this terminal <br> initiates a 0 Hz output command. If operating with an activated UP/DOWN Frequency (UP or DOWN) terminal, the <br> output goes to the Lower-Limit (F013) setting. |
| 98 | 99 | Forward/Reverse - This setting operates in conjunction with another terminal being set to the Run/Stop function. <br> When configured to Run (Run/Stop to CC), the make or break of this connection to CC changes the direction of the <br> motor. |
| 100 | 101 | Run/Stop - This terminal enables the motor to run when activated and disables the motor when deactivated. |
| 102 | 103 | Line Bypass - Initiates the ASD-to-Commercial Power switching function. <br> See parameter F354 for more information on this feature. |
| 104 | 105 | Frequency Priority - Toggles frequency control to and from the settings of F004 and F207 with each activation/ <br> deactivation. |
| 106 | 107 | V/I Terminal Priority - Assigns Speed control to the V/I Terminal and overrides the F004 setting. |
| 108 | 109 | Terminal Priority - Assigns Command control to the Terminal Board and overrides the F003 setting. |
| 110 | 111 | Edit Enable - Allows for the override of the lockout parameter setting (F700) allowing for parameter editing. |
| 122 | 123 | Fast Deceleration - Using dynamic braking (if enabled and supported), stops the motor at the fastest rate allowed <br> by the load. |
| 124 | 125 | Pre-Excitation - Applies an excitation current to the motor (holds shaft stationary) for the duration of the activation. |
|  | Note: | NO/NC = Normally Open/Normally Closed. |

Table 5. My Function — Input Function Target Selections.

| Communications Number | Terminal Assignment (Physical or Internal/Virtual Terminal) | Communications Number | Terminal Assignment (Physical or Internal/Virtual Terminal) |
| :---: | :---: | :---: | :---: |
| 0 | Unassigned | 17 | B12 |
| 1 | Forward | 18 | B13 |
| 2 | Reverse | 19 | B14 |
| 3 | Standby | 20 | B15 |
| 4 | Reset | 21 | Virtual Input Terminal 1 |
| 5 | S1 | 22 | Virtual Input Terminal 2 |
| 6 | S2 | 23 | Virtual Input Terminal 3 |
| 7 | S3 | 24 | Virtual Input Terminal 4 |
| 8 | S4 | 25 | Internal Terminal 1 |
| 9 | LI1 | 26 | Internal Terminal 2 |
| 10 | LI2 | 27 | Internal Terminal 3 |
| 11 | LI3 | 28 | Internal Terminal 4 |
| 12 | LI4 | 29 | Internal Terminal 5 |
| 13 | LI5 | 30 | Internal Terminal 6 |
| 14 | LI6 | 31 | Internal Terminal 7 |
| 15 | LI7 | 32 | Internal Terminal 8 |
| 16 | LI8 |  |  |

Table 6. Output Terminal Assignments for the AM, FM, FP, MON1, and MON2 Output Terminals.
Output Meter Terminal Assignments and Display Item Selections

| Output Frequency | Option V/I Input |
| :--- | :--- |
| Frequency Reference | RR Input |
| Output Current | V/I Input |
| DC Bus Voltage | RX Input |
| Output Voltage | RX2 (AI1) Input |
| Compensated Frequency | FM Output |
| Speed Feedback (Realtime) | AM Output |
| Speed Feedback (1 Sec Filter) | $100 \%$ Meter Adjust Value |
| Torque | Data from Communications |
| Torque Command | $185 \%$ Meter Adjust Value |
| Torque Current | $250 \%$ Meter Adjust Value |
| Excitation Current | Input Watt Hour |
| PID Feedback Value | Output Watt Hour |
| Motor Overload Ratio | Gain Display |
| ASD Overload Ratio | My Function Monitor 1 Without Sign |
| DBR Overload Ratio (Not Used) | My Function Monitor 2 Without Sign |
| DBR Load Ratio (Not Used) | My Function Monitor 3 With Sign |
| Input Power | My Function Monitor 4 With Sign |
| Output Power |  |

Table 7. Terminal Assignments With the Associated My Function Input Setting (Input Function Target) and Parameter Setting Numbers for the FL, O1A/O1B (OUT1), O2A/O2B (OUT2), OUT3-OUT6, R1-R4 Terminals.

| Discrete Output Terminal Assignment Selections |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Input Setting | Param Setting | Function | Input Setting | Param Setting | Function |
| 1000 | 0 | Lower-Limit (LL) Frequency | 1088 | 88 | Error Code Output 5 |
| 1002 | 2 | Upper-Limit (UL) Frequency | 1090 | 90 | Error Code Output 6 |
| 1004 | 4 | Low (Speed Signal) | 1092 | 92 | Data Output 1 |
| 1006 | 6 | Acceleration/Deceleration Complete | 1094 | 94 | Data Output 2 |
| 1008 | 8 | Reach Speed Signal | 1096 | 96 | Data Output 3 |
| 1010 | 10 | Fault (Any) | 1098 | 98 | Data Output 4 |
| 1012 | 12 | Fault 2 (Except EF, OCL, EPHO, OL2) | 1100 | 100 | Data Output 5 |
| 1014 | 14 | Over-Current (OC) Alarm | 1102 | 102 | Data Output 6 |
| 1016 | 16 | ASD Overload (OL1) Alarm | 1104 | 104 | Data Output 7 |
| 1018 | 18 | Motor Overload (OL2) Alarm | 1106 | 106 | Light Load Detected |
| 1020 | 20 | Over-Heat ( OH ) Alarm | 1108 | 108 | Heavy Load Detected |
| 1022 | 22 | Over-Voltage (OP) Alarm | 1110 | 110 | Positive Torque Limit |
| 1024 | 24 | DC Under-Voltage Alarm | 1112 | 112 | Negative Torque Limit |
| 1026 | 26 | Low-Current Alarm | 1114 | 114 | Rush Suppression Relay Activated |
| 1028 | 28 | Over-Torque (OT) Alarm | 1118 | 118 | Completion of Positioning (Not Used) |
| 1030 | 30 | DBR Overload (OL) Alarm (Not Used) | 1120 | 120 | L-STOP |
| 1032 | 32 | Emergency Off (E-Off) Active | 1122 | 122 | Power Fail Synchronize Op. (Not Used) |
| 1034 | 34 | Retry Active | 1124 | 124 | Traverse in Progress (Not Used) |
| 1036 | 36 | Pattern Operation Switching Output (Not Used) | 1126 | 126 | Traverse Deceleration in Progress (Not Used) |
| 1038 | 38 | PID Deviation Limit | 1128 | 128 | Maintenance Alarm |
| 1040 | 40 | Start/Stop | 1130 | 130 | Over-Torque (OT) Alarm |
| 1042 | 42 | Hard Fault (OCA, OCL, EF, Phase Failure, etc.) | 1132 | 132 | Frequency Command $1 / 2$ Selection |
| 1044 | 44 | Soft Fault (OL, OC, OV) | 1134 | 134 | Fault (Except Emergency Off) |
| 1046 | 46 | Bypass 1 (Comm. Power/ASD Switching Output 1) | 1135 | 136 | Local/Remote |
| 1048 | 48 | Bypass 2 (Comm. Power/ASD Switching Output 2) | 1138 | 138 | Forced Run |
| 1050 | 50 | ASD Fan ON/OFF | 1140 | 140 | Fire Speed |
| 1052 | 52 | Jogging (Jog Run Active) | 1142 | 142 | Low Torque |
| 1054 | 54 | (Panel/Terminal Board Operation Switching | 1144 | 144 | Frequency Control $=$ RR |
| 1056 | 56 | Run-Time Alarm | 1146 | 146 | Frequency Control = RX |
| 1058 | 58 | Comm. Alarm (ProfiBus/DeviceNet/CC-Link) | 1148 | 148 | Frequency Control = VI |
| 1060 | 60 | Forward/Reverse Switching | 1150 | 150 | PTC Alarm |
| 1062 | 62 | Ready for Operation 1 (Includes ST and Run) | 1152 | 152 | Power Loss |
| 1064 | 64 | Ready for Operation 2 | 1154 | 154 | 4-20 mA Loss |
| 1066 | 66 | POFF Alarm (Control Power Out Of Spec.) | 1156 | 156 | Damper Command |
| 1068 | 68 | Brake Release (BR) (Not Used) | 1222 | 222 | My Function Output 1 |
| 1070 | 70 | Alarm Status Active | 1224 | 224 | My Function Output 2 |
| 1072 | 72 | Forward Speed Limit (Torque Control) | 1226 | 226 | My Function Output 3 |
| 1074 | 74 | Reverse Speed Limit (Torque Control) | 1228 | 228 | My Function Output 4 |
| 1076 | 76 | ASD Healthy Output | 1230 | 230 | My Function Output 5 |
| 1078 | 78 | External Communication Error | 1232 | 232 | My Function Output 6 |
| 1080 | 80 | Error Code Output 1 | 1234 | 234 | My Function Output 7 |
| 1082 | 82 | Error Code Output 2 | 1236 | 236 | My Function Output 8 |
| 1084 | 84 | Error Code Output 3 | 1238 | 238 | My Function Output 9 |

Table 7. (Continued) Terminal Assignments With the Associated My Function Input Setting (Input Function Target) and Parameter Setting Numbers for the FL, O1A/O1B (OUT1), O2A/O2B (OUT2), OUT3-OUT6, R1-R4 Terminals.

| Discrete Output Terminal Assignment Selections |  |  |  |  |  |  |  |
| :---: | :---: | :--- | ---: | ---: | :--- | :---: | :---: |
| Input <br> Setting | Param <br> Setting | Function | Input <br> Setting | Param <br> Setting | Function |  |  |
| 1086 | 86 | Error Code Output 4 | 1240 | 240 | My Function Output 10 |  |  |
| 1242 | 242 | My Function Output 11 | 1250 | 250 | My Function Output 15 |  |  |
| 1244 | 244 | My Function Output 12 | 1252 | 252 | My Function Output 16 |  |  |
| 1246 | 246 | My Function Output 13 | 1254 | 254 | Always OFF |  |  |
| 1248 | 248 | My Function Output 14 |  |  |  |  |  |

Note: $\quad$ Only positive logic is available for the listed parameters.

Table 8. My Function - Input Function Target and Monitor Output Function Selections.

| Input Setting/Communication Number |  |  |  | Function | Resolution |
| :---: | :---: | :---: | :---: | :---: | :---: |
| FM/AM/FP Input Setting | Comm. <br> Number | Monitor Display Input Setting | Comm. <br> Number |  |  |
| 2000 | FD00 | 3000 | FE00 | Output Frequency | 0.01 Hz |
| 2002 | FD02 | 3002 | FE02 | Frequency Reference | 0.01 Hz |
| 2003 | FD03 | 3003 | FE03 | Output Current | 0.01\% |
| 2004 | FD04 | 3004 | FE04 | DC Bus Voltage | 0.01\% |
| 2005 | FD05 | 3005 | FE05 | Output Voltage | 0.01\% |
| 2015 | FD15 | 3015 | FE15 | Compensated Frequency | 0.01 Hz |
| 2016 | FD16 | 3016 | FE16 | Speed Feedback (Realtime) (See Note 1) | 0.01 Hz |
| 2017 | FD17 | 3017 | FE17 | Speed Feedback (1 Sec Filter) (See Note 1) | 0.01 Hz |
| 2018 | FD18 | 3018 | FE18 | Torque (See Note 2) | 0.01\% |
| 2019 | FD19 | 3019 | FE19 | Torque Command (See Note 2) | 0.01\% |
| 2020 | FD20 | 3020 | FE20 | Torque Current (See Note 2) | 0.01\% |
| 2021 | FD21 | 3021 | FE21 | Excitation Current | 0.01\% |
| 2022 | FD22 | 3022 | FE22 | PID Feedback Value | 0.01 Hz |
| 2023 | FD23 | 3023 | FE23 | Motor Overload Ratio | 0.01\% |
| 2024 | FD24 | 3024 | FE24 | ASD Overload Ratio | 0.01\% |
| 2025 | FD25 | 3025 | FE25 | DBR Overload Ratio (Not Used) | 1\% |
| 2028 | FD28 | 3028 | FE28 | DBR Load Ratio (Not Used) | 1\% |
| 2029 | FD29 | 3029 | FE29 | Input Power | 0.01 kW |
| 2030 | FD30 | 3030 | FE30 | Output Power | 0.01 kW |
| 2050 | FD50 |  |  | Light-Load High-Speed Load Torque Monitor 1 | 0.01\% |
| 2051 | FD51 |  |  | Light-Load High-Speed Load Torque Monitor 2 | 0.01\% |
|  |  | 3035 | FE35 | RR Input | 1\% |
|  |  | 3036 | FE36 | V/I Input | 1\% |
|  |  | 3037 | FE37 | RX Input (See Note 2) | 1\% |
|  |  | 3038 | FE38 | RX2 (AI1) Input (See Note 2) | 1\% |
|  |  | 3039 | FE39 | RX2 (AI2) Input | 1\% |
|  |  | 3040 | FE40 | FM Output | 1 |
|  |  | 3041 | FE41 | AM Output | 1 |
| Note 1: If no PG feedback is used an estimated speed value is displayed. <br> Note 2: My Function cannot process negative values - A negative value is processed by My Function as an absolute value. |  |  |  |  |  |

Table 8. (Continued)My Function - Input Function Target and Monitor Output Function Selections.

| Input Setting/Communication Number |  |  |  | Function | Resolution |
| :---: | :---: | :---: | :---: | :---: | :---: |
| FM/AM/FP Input Setting | Comm. <br> Number | Monitor Display Input Setting | Comm. <br> Number |  |  |
| 3050 | FE50 |  |  | Communication Data Output 2 |  |
| 3051 | FE51 |  |  | Communication Data Output 1 |  |
| 3052 | FE52 |  |  | Communication Data Output 3 |  |
| 3060 | FE60 |  |  | My Function Monitor 1 (Output of Unsigned Value) |  |
| 3061 | FE61 |  |  | My Function Monitor 2 (Output of Unsigned Value) |  |
| 3062 | FE62 |  |  | My Function Monitor 3 (Output of Signed Value) |  |
| 3063 | FE63 |  |  | My Function Monitor 4 (Output of Signed Value) |  |
|  |  | 3066 | FE66 | Expansion I/O Card 1 CPU Version |  |
|  |  | 3067 | FE67 | Expansion I/O Card 2 CPU Version |  |
|  |  | 3076 | FE76 | Integral Input Power | 0.01 kW |
|  |  | 3077 | FE77 | Integral Output Power | 0.01 kW |
|  |  | 3084 | FE84 | 16-Bit BIN/BCD Input Value | 1 |

Table 9. My Function - Input Function Command Operators.

| My Function Computational Selections |  |  |
| :---: | :---: | :---: |
|  | Function Name | Function Description |
| 0 | NOP (No Operation) | Disables the My Function feature. |
| 1 | ST | Execute data read/ransfer. |
| 2 | STN | Execute inverted data read/ransfer. |
| 3 | AND | Logical product of A AND B. |
| 4 | ANDN | Logical product of A AND $\overline{\mathrm{B}}$. |
| 5 | OR | Logical sum of A OR B. |
| 6 | ORN | Logical sum of A OR $\overline{\mathrm{B}}$. |
| 7 | EQ | Compares data - Outputs 1 if Equal; 0 if not Equal. |
| 8 | NE | Compares data - Outputs 0 if Equal; 1 if not Equal. |
| 9 | GT | Compares data - Outputs 1 if $\mathrm{A}>\mathrm{B} ; 0$ if $\mathrm{A} \leq \mathrm{B}$. |
| 10 | GE | Compares data - Outputs 1 if $\mathrm{A} \geq \mathrm{B} ; 0$ if $\mathrm{A}<\mathrm{B}$. |
| 11 | LT | Compares data-Outputs 1 if $\mathrm{A}<\mathrm{B} ; 0$ if $\mathrm{A} \geq \mathrm{B}$. |
| 12 | LE | Compares data - Outputs 1 if $\mathrm{A} \leq \mathrm{B} ; 0$ if $\mathrm{A}>\mathrm{B}$. |
| 13 | ASUB | Outputs absolute difference between A and $\mathrm{B}-\|\mathrm{A}-\mathrm{B}\|$ |
| 14 | ON (Timer) | Enables the On response time delay settings of My Function Time Data 1 - $\mathbf{5}$ (F928 - F932) for My Function Data. |
| 15 | OFF (Timer) | Enables the Off response time delay settings of My Function Time Data 1 - 5 (F928 - F932) for My Function Data. |
| 16 | COUNT1 (Timer) | Outputs a 1 upon reaching the pulse count setting of F933. |
| 17 | COUNT2 (Timer) | Outputs a 1 upon reaching the pulse count setting of F934. |
| 18 | HOLD | Outputs the peak output value since powering up or since the last reset. |
| 19 | SET | Sets data. |
| 20 | RESET | Resets data. |

## Alarms, Trips, and Troubleshooting

An Alarms notifies the user via the EOI display and ASD output terminal that a system operating limit is being exceeded and that appropriate action is required to rectify the condition or a Fault will be incurred (in most cases; e.g., a Part Replacement alarm will not cause the system to trip).
User Notification Codes are used to alert the user to active system functions (e.g., ETN, ETN2, Emergency Off, etc.).

If a user setting or an ASD operating parameter has been exceeded, or if a data transfer function produces an unexpected result, a condition that is referred to as a Fault is incurred.
Some Faults have an associated Alarm that provides a warning that the normal operating condition of the system is not within specifications and that a Trips may be imminent.

In some cases, if the event that caused the Alarm does not return to its normal operating range within a specified time (some alarms are for notification only and do not result in a trip), the ASD Faults and a Trip is incurred (Fault and Trip are sometimes used interchangeably).

A Trip is a safety feature, and is the result of a Fault, that disables the ASD system in the event that a subsystem of the ASD is malfunctioning, or if one or more of the variables listed below exceeds its normal range in time and/or magnitude.

- Current,
- Voltage,
- Speed,
- Temperature,
- Torque, or
- Load.


## User Notification Codes

The User Notification codes are displayed as an indication that a system function or system condition is active. Table 10 lists the user-notification codes of the Q9 ASD. The code is displayed on the EOI for the duration of the activation.

Table 10. User Notification Codes.

| EOI Display | Fault Description | Possible Cause |
| :---: | :---: | :---: |
| ASD Type Error | ASD Type Error. | - Firmware information (typeform) loaded into the Application Board is inconsistent with the typeform information loaded into the Motor Control Board. <br> - Application Board or Motor Control Board is defective. |
| Autotune Active | Autotune Active. |  |
| Autotuning Err | Autotuning Error Except Etn1, Etn2, or Etn3. | - Autotune readings are inconsistent with the configuration information. <br> - Non-3-phase motor is being used. <br> - Improper settings at F400 or F410 - F413. <br> - Using a motor that has a significantly smaller rating than the ASD. <br> - ASD output cabling is too small, too long, or is being housed in a cable tray with other cables that are producing an interfering EMF. <br> - Motor is running during the Autotune function. |
| Leak Inductance Err | Autotuning Error - Leak Inductance Error. | - Improper setting at F412. |
| Motor Rating Err | Autotuning Error - Motor Rating Error. | - Improper setting at F405, F406, or F407. |
| No error | No Error. |  |
| Torque Boost Err | Autotuning Error - Torque Boost Error. | - Improper setting at F410. |

## Alarms and Trips Alarms

An Alarm is an indication that there is a system operating limit that is being exceeded and that a Fault may be imminent (not all ongoing alarms result in a fault) or to provide an indication that an operator error has occurred. An Alarm may be associated with an output terminal to notify the operator of the condition remotely, close a contact, or to engage a brake. At the least, an Alarm will cause an alarm code to appear on the EOI display

The active alarm may be displayed on the Alarm screen - some alarms are displayed on the Frequency Command screen. Press the Mode key if the alarm is displayed on the Frequency Command screen to scroll to the Alarm screen.

Table lists the Alarm codes that may be displayed during operation of the Q9 ASD. Each alarm code listed is accompanied by a description and a possible cause. In the event that the source of the malfunction cannot be determined, contact your Toshiba Sales Representative for further information on the condition and for an appropriate course of action.

In the event that multiple alarms are activated only the first to be detected will be displayed.
Table 11. Alarms

| EOI Display | Fault Description | Possible Cause |
| :---: | :---: | :---: |
| 4-20 mA | 4-20 Signal Loss. | - Misconnection, poor connection, or broken wire. <br> - Improper programming at F201 and associated parameters. |
| *ASD Overload | Load Requirement in Excess of the Capability of the ASD. | - Carrier frequency is too high. <br> - Excessive load. <br> - Acceleration time is too short. <br> - DC damping rate is too high. <br> - Motor is starting into a spinning load after a momentary power failure. <br> - ASD is improperly matched to the application. |
| Comm Error | Communication Error Interruption. | - Improperly programmed ASD. |
| Comm Error 2 | Communication Error. | - Improperly connected cables. |
| Damp | Damper Closed. | - Improper configuration/programming for Damper Control at discrete input terminals. |
| Note: * Reset ignored if active. |  |  |

Table 11. Alarms (Continued)

| EOI Display | Fault Description | Possible Cause |
| :---: | :--- | :--- |
| *DC Over-Volts | DC Bus Voltage Exceeds Specifications. | - ASD is attempting to start into a spinning motor <br> after a momentary power loss. <br> - Incoming commercial power voltage level is <br> above the specified range. <br> - Deceleration time is too short. <br> Voltage spikes at the 3-phase input; install <br> inductive filter. |
| - Over-Voltage Stall feature is turned off. |  |  |
| - System is regenerating. |  |  |
| - Load fluctuations. |  |  |

Table 11. Alarms (Continued)

| EOI Display | Fault Description | Possible Cause |
| :---: | :---: | :---: |
| Over-Current | ASD Output Current Greater than F601 Setting. | - Phase-to-phase short (U/T1, V/T2, or W/T3). <br> - Defective IGBT (U/T1, V/T2, or W/T3). <br> - ASD output to the motor is connected incorrectly <br> - ASD is attempting to start into a spinning motor after a momentary power loss. <br> - Motor/machine jammed. <br> - Mechanical brake engaged while the ASD is starting or while running. <br> - Acceleration/deceleration time is too short. <br> - Voltage Boost setting is too high. <br> - V/f setting adjustment required. <br> - Load fluctuations. <br> - ASD is operating at an elevated temperature. <br> - ASD/Motor improperly matched. <br> - ASD current exceeds $320 \%$ or $340 \%$ of the rated FLA on ASDs that are greater than 100 HP or that are 100 HP or less, respectively, during acceleration. |
| *Over-Heat | Over-Heating. | - ASD is operating at an elevated temperature. <br> - ASD is too close to heat-generating equipment. <br> - Cooling fan vent is obstructed. <br> - Cooling fan is inoperative. <br> - Internal thermistor is disconnected. |
| Over-Torque | Torque Requirement in Excess of the Setting of F616 or F617 for a Time Longer than the Setting of F618. | - ASD is improperly matched to the application. <br> - Parameter F616 or F617 setting is too low. <br> - Obstructed load. |
| Part Replace | Part Replacement Alarm. | - Part Replacement Alarm at F634 timed out. |
| Run-Time Counter | User-Set Run-Time Counter Exceeded. | - Type Reset required; select Clear run timer. |
| Soft Stall | Overload Soft Stall Active. | - Soft Stall selection adjustment required (F017). |
| Thermal Err | Option Thermal Sensor Threshold Exceeded. | - User-set thermal threshold setting of F646 exceeded. |
| Under-Current | Output Current of the ASD is Below the Level Defined at F611. | - Disable detection at F610. <br> - Parameter F611 adjustment required. |
| Note: * Reset ignored if active. |  |  |

## Trips

A Trip is an ASD response to a Fault (though, Fault and Trip are sometimes used interchangeably). A Trip is a safety feature that terminates the ASD output and disables the ASD system from processing a Run command in the event that the ASD or a subsystem of the ASD is malfunctioning.

Listed in Table 12 are Faults that may be displayed at the EOI and the possible causes. When a Trip is incurred the system displays the Fault screen. The Fault screen displays the active Fault or the first of several until all cleared.

## Note: $\quad$ See FC90 of the Q9 ASD for the Communications Error Code number of the active fault.

The operating conditions at the time of the trip may be used to help determine the cause of the trip. Listed below are operating conditions that may be used to assist the operator in correcting the problem or that the ASD operator should be prepared to discuss when contacting Toshiba's Customer Support for assistance.

- What trip information is displayed?
- Is this a new installation?
- Has the system ever worked properly and what are the recent modifications (if any)?
- What is the ASD/Motor size?
- What is the CPU version and revision level?
- What is the EOI version?
- Does the ASD trip when accelerating, running, decelerating, or when not running?
- Does the ASD reach the commanded frequency?
- Does the ASD trip without the motor attached?
- Does ASD trip with an unloaded motor?

Table 12. Fault Codes

| EOI Display | Fault Description | Possible Cause |
| :---: | :---: | :---: |
| Abnormal CPU2 | Abnormal CPU2 Communication. | - Service call required. |
| Add-On Option 1 | Add-On Option 1 Error. | - Service call required. |
| Add-On Option 2 | Add-On Option 2 Error. | - Service call required. |
| Analog in Loss | Analog Input Loss. | - V/I input terminal configured for operation but the voltage/current input is either missing or low. <br> - Over-current at P24. |
| Analog in OV | Analog Input Terminal Over-Voltage. | - Mis-wire at the ASD input terminals. |
| ASD Overload | ASD Overload. | - Acceleration time is too short. <br> - DC Injection current is too high. <br> - V/f setting needs to be adjusted. <br> - Motor running during restart. <br> - ASD/motor improperly matched to the application. |
| ASD RAM Fault | ASD RAM Fault. | - Service call required. |
| ASD ROM Fault | ASD ROM Fault. | - Service call required. |
| CPU Fault | CPU Fault. | - Service call required. |
| Ctrl Read Err | Initial Read Error (Parameter Initialization). | - Service call required. |
| Current Err | Current Detection Hardware Error. | - Improper low-current detection level setting. <br> - Motor (phase) is disconnected. |
| Discrete in Volts | Improper Input Voltage Level at Discrete Input Terminal. | - Discrete input terminal configured for operation and the input activation voltage level is out of specification. |
| EEPROM Write Err | EEPROM Fault (Writing Error). | - Service call required. |
| Emergency Off | Emergency Off Command Received Via Keypad or Remotely. Output Signal From the ASD is Terminated. | - Stop-Reset pressed twice at the EOI. <br> - E-Off command received remotely. <br> - Select stopped method at F603. |
| Encoder Loss | Encoder Loss. | - Encoder signal not received. |
| Gate Array Fault | Gate Array Fault. | - Defective gate array or gate array malfunction. <br> - Service call required. |
| Ground Fault | Ground Fault. | - Mis-wired ground. <br> - Loose ground connection. |
| Input Phase | Input Phase Failure. | - Mis-wired input phase. <br> - Loose input phase connection. |
| Low-Current | Low-Current Operation. | - Improper low-current detection level setting. |
| Main Read Err | Initial Read Error (Parameter Initialization). | - Service call required. |

Table 12. Fault Codes (Continued)

| EOI Display | Fault Description | Possible Cause |
| :---: | :---: | :---: |
| Net Card Err | Network Option Card Error. | - Optional device malfunction. <br> - Improper system settings (at ASD or optional device). <br> - Loose or improper connection. |
| OC Detect Error | Output Current Detector Error. | - Service call required. |
| Option Over-Heat | Over temperature error at PTC1 or PTC2 (see F637 and F638). | - Over temperature condition detected by option board. |
| Output Phase | Output Phase Failure. | - Mis-wired output phase. <br> - Loose output phase connection. |
| Output Short | Output Short Circuit at U-V-W Phases. | - ASD is starting into a rotating motor. <br> - ASD/Motor improperly matched to the application. <br> - Phase-to-phase short (U/T1, V/T2, or W/T3). <br> - Acceleration time is too short. <br> - Voltage Boost setting is too high. <br> - Motor/machine jammed. <br> - Mechanical brake engaged while the ASD is running. <br> - Short Circuit Detection adjustment required (F613). <br> - ASD current exceeds $320 \%$ or $340 \%$ of the rated FLA on ASDs that are greater than 100 HP or that are 100 HP or less, respectively, during acceleration. |
| Over-Current Acc | Over-Current During Acceleration. | - V/f setting needs to be adjusted. <br> - Restart from a momentary power outage. <br> - The ASD is starting into a rotating motor. <br> - ASD/Motor is improperly matched to the application. <br> - Phase-to-phase short (U/T1, V/T2, or W/T3). <br> - Acceleration time is too short. <br> - Voltage Boost setting is too high. <br> - Motor/machine jammed. <br> - Mechanical brake engaged while the ASD is running. <br> - ASD current exceeds $320 \%$ or $340 \%$ of the rated FLA on ASDs that are greater than 100 HP or that are 100 HP or less, respectively, during acceleration. |

Table 12. Fault Codes (Continued)

| EOI Display | Fault Description | Possible Cause |
| :---: | :---: | :---: |
| Over-Current Dec | Over-Current During Deceleration. | - Phase-to phase short (U/T1, V/T2, or W/T3). <br> - Deceleration time is too short. <br> - Motor/machine jammed. <br> - Mechanical brake engaged while the ASD is running. <br> - ASD current exceeds $320 \%$ or $340 \%$ of the rated FLA on ASDs that are great than 100 HP or that are 100 HP or less, respectively, during acceleration. |
| Over-Current Run | Over-Current During Fixed Speed Operation. | - ASD/Motor improperly matched to the application. <br> - Load fluctuations. <br> - ASD is operating at an elevated temperature. <br> - ASD current exceeds $320 \%$ or $340 \%$ of the rated FLA on ASDs that are greater than 100 HP or that are 100 HP or less, respectively, during acceleration. |
| Over-Speed | Speed Error (Over-Speed). | - Result of a motor speed that is greater than the commanded speed when using an encoder for speed control. <br> - Improper encoder connection or setup information. <br> - Defective encoder. |
| Over-Torque | Over-Torque. | - Output torque requirement in excess of the F616 or F617 settings for a time longer than the F618 setting. |
| Over-Voltage Acc | Over-Voltage During Acceleration. | - Motor running during restart. |
| Over-Voltage Dec | Over-Voltage During Deceleration. | - Deceleration time is too short. <br> - Stall prevention is disabled. <br> - 3-phase input voltage is out of specification. <br> - Input reactance required. |
| Over-Voltage Run | Over-Voltage During Fixed Speed Operation. | - Load fluctuations. <br> - 3-phase input voltage out of specification. |
| Stack Err | Stack Overflow Error. | - Service call required. |
| Step-Out (PM) | Step-Out (For PM Motors Only). | - Service call required. |
| U-Phase OC | U-Phase Over-Current. | - Low impedance at the U/T1 phase. |
| V/f Control Err | V/f Control Error. | - Service call required. |
| V-Phase OC | V-Phase Over-Current. | - Low impedance at the V/T2 phase. |
| W-Phase OC | W-Phase Over-Current. | - Low impedance at the W/T3 phase. |
| Note: The event that caused the Trip(s) must be corrected or must decrease to less than the threshold value required to cause the trip to allow for a a Reset to be recognized. In the event of multiple active trips, the trip displayed will remain until all faults are corrected and cleared. |  |  |

## Enclosure Dimensions

The part numbering convention and the enclosure dimensions for the available models (typeforms) are listed below.

Use the part numbering convention to identify the ASD typeform and for placing orders.
Q9 Part Numbering Convention.


Note: $\quad$ The Type 1 enclosed versions of these drives meet or exceed the specification UL 501995, the Standard for Heating and Cooling Equipment, and complies with the applicable requirements for installation in a compartment handling conditioned air.

Note: All Toshiba ASD enclosures carry an IP20 rating.

## Enclosure Dimensions

Table 13. 230-Volt Q9 ASD Systems.

| Frame | ASD HP Rating | Model No. VT130Q9U | Enclosure Figure Number |  | B Height (in/mm) | C Depth (in/mm) | Mounting Hole Dimensions (in/mm) |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  | D | E | F | G | H | R1 | R2 |
| 2 | 1 | 2015 | Figure 28 | 5.1/130 | 10.0/254 | 6.0/152 | 8.7/220 | 4.5/114 | N/A |  |  | 0.098/2.5 | 0.217/5.5 |
|  | 2 | 2025 |  |  |  |  |  |  |  |  |  |  |  |
| 3 | 3 | 2035 |  | 6.1/155 | 11.1/281 | 6.5/164 | 9.8/249 | 5.4/138 |  |  |  |  |  |
|  | 5 | 2055 |  |  |  |  |  |  |  |  |  |  |  |
| 4 | 7.5 | 2080 |  | 6.9/175 |  |  |  | 6.2/158 |  |  |  | 0.236/6.0 |  |
| 5A | 10 | 2110 |  | 8.3/210 |  | 7.6/194 |  | 7.5/190 |  |  |  | 0.118/3.0 | 0.276/7.0 |
| 5B | 15 | 2160 |  | 9.1/230 | 16.7/425 | 7.5/191 | 15.2/386 | 8.3/210 |  |  |  |  |  |
|  | 20 | 2220 |  |  |  |  |  |  |  |  |  |  |  |
| 6 | 25 | 2270 | Figure 29 | 9.4/240 | 16.5/420 | 8.3/212 | 15.9/403 | 8.1/206 |  |  |  | 0.295/7.5 |  |
|  | 30 | 2330 |  |  |  |  |  |  |  |  |  |  |  |
| 7B | 40 | 2400 |  | 12.6/320 | 21.7/550 | 9.5/242 | 20.7/525 | 11.0/280 |  |  |  | 0.177/4.5 | 0.394/10 |
|  | 50 | 2500 |  |  |  |  |  |  |  |  |  |  |  |
|  | 60 | 2600 |  |  |  |  |  |  |  |  |  |  |  |
| 9 | 75 | 2750 | Figure 31 | 12.2/310 | 26.7/680 | 14.6/370 | 25.6/650 | 9.8/250 |  |  |  | 0.224/5.7 | 0.472/12 |
|  | 100 | 210K |  |  |  |  |  |  |  |  |  |  |  |
| 10 | 125 | 212K |  | 13.8/350 | 30.8/782 |  | 29.8/758 | 11.7/298 |  |  |  |  |  |
| 9 | 75 | 2750RD |  | 12.2/310 | 36.2/920 |  | 25.6/650 | 9.8/250 | 5.9/150 | 3.0/75 | 9.5/240 |  |  |
|  | 100 | 210KRD |  |  |  |  |  |  |  |  |  |  |  |
| 10 | 125 | 212KRD |  | 13.8/350 | 40.2/1022 |  | 29.8/758 | 11.7/298 |  | 2.8/72 |  |  |  |
| RD suffix = DCL included. |  |  |  |  |  |  |  |  |  |  |  |  |  |

Table 14. 460-Volt Q9 ASD Systems.


Figure 28. See Table 13 and 14 for Actual Dimensions.


Figure 29. See Table 13 and 14 for Actual Dimensions.


Figure 30. See Table 14 for Actual Dimensions.


Figure 31. See Table 13 and 14 for Actual Dimensions.


## Current/Voltage Specifications

Table 15. 230-Volt UL Type-1/IP-20 Chassis Standard Ratings Table.

| Model Number VT130Q9U | 100\% Output Current Continuous | Overload Current 110\% for 60 Seconds | $\begin{gathered} \text { Input Voltage } \\ 3-\mathrm{Ph} 50 / 60 \\ \pm 2 \mathrm{~Hz} \end{gathered}$ | Output Voltage <br> 3-Ph Variable Frequency | Typical Motor HP |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 2010 | 3.7 A | 4.1 A | $\begin{gathered} 200-240 \mathrm{VAC} \\ ( \pm 10 \%) \end{gathered}$ | Input Voltage <br> Level (Max.) | 0.75 |
| 2015 | 4.8 A | 5.3 A |  |  | 1.0 |
| 2025 | 7.8 A | 8.6 A |  |  | 2.0 |
| 2035 | 11.0 A | 12.1 A |  |  | 3.0 |
| 2055 | 17.5 A | 19.3 A |  |  | 5.0 |
| 2080 | 25.3 A | 27.8 A |  |  | 7.5 |
| 2110 | 32.2 A | 35.4 A |  |  | 10 |
| 2160 | 48.3 A | 53.1 A |  |  | 15 |
| 2220 | 62.1 A | 68.3 A |  |  | 20 |
| 2270 | 78.2 A | 86.0 A |  |  | 25 |
| 2330 | 92.0 A | 101 A |  |  | 30 |
| 2400 | 120 A | 132 A |  |  | 40 |
| 2500 | 150 A | 165 A |  |  | 50 |
| 2600 | 177 A | 195 A |  |  | 60 |

Table 16. 460-Volt UL Type-1/IP-20 Chassis Standard Ratings Table.

| Model Number VT130Q9U | 100\% Output Current Continuous | Overload Current 110\% for 60 Seconds | $\begin{gathered} \text { Input Voltage } \\ 3-\mathrm{Ph} 50 / 60 \\ \pm 2 \mathrm{~Hz} \end{gathered}$ | Output Voltage 3-Ph Variable Frequency | Typical Motor HP |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 4015 | 2.1 A | 2.3 A | $\begin{gathered} 380-480 \text { VAC } \\ ( \pm 10 \%) \end{gathered}$ | Input Voltage <br> Level (Max.) | 1.0 |
| 4025 | 3.4 A | 3.7 A |  |  | 2.0 |
| 4035 | 4.8 A | 5.3 A |  |  | 3.0 |
| 4055 | 7.6 A | 8.4 A |  |  | 5.0 |
| 4080 | 11.0 A | 12.1 A |  |  | 7.5 |
| 4110 | 14.0 A | 15.4 A |  |  | 10 |
| 4160 | 21.0 A | 23.1 A |  |  | 15 |
| 4220 | 27.0 A | 29.7 A |  |  | 20 |
| 4270 | 34.0 A | 37.4 A |  |  | 25 |
| 4330 | 40.0 A | 44.0 A |  |  | 30 |
| 4400 | 52.0 A | 57.2 A |  |  | 40 |
| 4500 | 65.0 A | 71.5 A |  |  | 50 |
| 4600 | 77.0 A | 84.7 A |  |  | 60 |
| 4750 | 96.0 A | 106 A |  |  | 75 |
| 410K | 124 A | 136 A |  |  | 100 |
| 412K | 156 A | 172 A |  |  | 125 |
| 415K | 180 A | 198 A |  |  | 150 |
| 420K | 240 A | 264 A |  |  | 200 |
| 425K | 302 A | 332 A |  |  | 250 |
| 430K | 361 A | 397 A |  |  | 300 |
| 435K | 414 A | 455 A |  |  | 350 |
| 440K | 477 A | 525 A |  |  | 400 |

## Cable/Terminal Specifications

Installation should conform to the 2008 National Electrical Code Article 110 (NEC) (Requirements for Electrical Installations), all regulations of the Occupational Safety and Health Administration, and any other applicable national, regional, or industry codes and standards.

Note: $\quad$ The following ratings are guidelines and shall not be the sole determining factor of the lug or wire size used with the Q9 ASD. Application-specific applicables, wire insulation type, conductor material, and local and regional regulations are but a few of the considerations when selecting the actual lug and wire type to be used with the Q9 ASD.

Note: Cable/Terminal specifications are based on the rated current of the Q9 ASD and Do Not include the 10\% Service Factor.

Note: Use only $75^{\circ}$ C copper wire/cable for motor and power connections.
Table 17. 230-Volt Q9 ASD Cable/Terminal/Torque Specifications.

| Model Number VT130Q9U | Wire/Cable Size |  | Lug Size Range |  | Terminal Board Wire Size | Torque |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | AWG or kcmil |  |  |  |  |  |  |
|  | Input/Output Power |  | Wire-Size/Lug-Capacity for Input/Output Power |  | In-Lbs./N•m |  |  |
|  | Recommended | Maximum | 3Ø-Input | 3Ø-Output | TB1-4 <br> Terminals | 3Ø-Input | 3Ø-Output |
| 2010 | 14 | 10 | 14 to 10 |  | $\begin{gathered} 20 \\ \text { (3-core shield) } \end{gathered}$ | 12.4/1.4 |  |
| 2015 | 14 | 10 |  |  |  |  |  |
| 2025 | 14 | 10 |  |  |  |  |  |
| 2035 | 14 | 10 |  |  |  |  |  |
| 2055 | 10 | 10 |  |  |  |  |  |
| 2080 | 8 | 8 | 12 to 8 |  |  | 26.6/3 |  |
| 2110 | 8 | 8 | 10 to 4 |  |  |  |  |
| 2160 | 6 | 3 | 8 to 2 |  |  | 47.8/5.4 |  |
| 2220 | 4 | 3 |  |  | Torque to 5.3/0.6 |  |  |
| 2270 | 3 | 3 | 4 to $1 / 0$ |  |  | 212/24 |  |
| 2330 | 2 | 2 |  |  |  |  |  |
| 2400 | 1/0 | 4/0 | 2 to 300 |  |  | 360/41 |  |
| 2500 | 2/0 | 4/0 |  |  |  |  |  |
| 2600 | 4/0 | 4/0 |  |  |  |  |  |

Table 18. 460-Volt Q9 ASD Cable/Terminal/Torque Specifications.


Note: (*) Indicates that the item is one of a set of two (listed type) parallel cables.
Note: (**) Indicates that the item is one of a set of three (listed type) parallel cables.

## Short Circuit Protection Recommendations

Table 19. 230/240 and 400/480-Volt ASD Recommended Circuit Breaker Selection.

| Model Number VT130Q9U | HP | Continuous Output Current (Amps) | Circuit Breaker Part Number |
| :---: | :---: | :---: | :---: |
| 2010 | 0.75 | 3.7 | Contact Toshiba Customer Service |
| 2015 | 1.0 | 4.8 | Contact Toshiba Customer Service |
| 2025 | 2.0 | 7.8 | Contact Toshiba Customer Service |
| 2035 | 3.0 | 11.0 | HLL36025 |
| 2055 | 5.0 | 17.5 | HLL36025 |
| 2080 | 7.5 | 25.3 | HLL36040 |
| 2110 | 10 | 32.2 | HLL36050 |
| 2160 | 15 | 48.3 | HLL36070 |
| 2220 | 20 | 62.1 | HLL36090 |
| 2270 | 25 | 78.2 | HLL36100 |
| 2330 | 30 | 92.0 | HLL36100 |
| 2400 | 40 | 120 | HLL36125 |
| 2500 | 50 | 150 | HLL36150 |
| 2600 | 60 | 177 | JLL36200 |
| 4015 | 1.0 | 2.1 | Contact Toshiba Customer Service |
| 4025 | 2.0 | 3.4 | Contact Toshiba Customer Service |
| 4035 | 3.0 | 4.8 | Contact Toshiba Customer Service |
| 4055 | 5.0 | 7.6 | HLL36025 |
| 4080 | 7.5 | 11 | HLL36040 |
| 4110 | 10 | 14 | HLL36050 |
| 4160 | 15 | 21 | HLL36070 |
| 4220 | 20 | 27 | HLL36090 |
| 4270 | 25 | 34 | HLL36100 |
| 4330 | 30 | 40 | HLL36100 |
| 4400 | 40 | 52 | HLL36125 |
| 4500 | 50 | 65 | HLL36150 |
| 4600 | 60 | 77 | JLL36200 |
| 4750 | 75 | 96 | JLL36225 |
| 410K | 100 | 124 | JLL36250 |
| 412K | 125 | 156 | LIL36300 |
| 415K | 150 | 180 | LIL36300 |
| 420K | 200 | 240 | LIL36400 |
| 425K | 250 | 302 | LIL36400 |
| 430K | 300 | 361 | Contact Toshiba Customer Service |
| 435K | 350 | 414 | Contact Toshiba Customer Service |
| 440K | 400 | 477 | Contact Toshiba Customer Service |

## Index

## Numerics

0 Hz Command Output, 100
0 Hz Dead Band Signal, 98

## A

Abnormal Speed Lower Band, 134
Abnormal Speed Time, 134
Abnormal Speed Upper Band, 134
Acc/Dec Pattern 1, 128
Acc/Dec Pattern 2, 129
Accel/Decel Switching Frequency 1, 129
Acceleration, 63
Acceleration Time 1, 41, 63
Acceleration Time 2, 127
Adding Input Selection, 140
AI2, 70
AI2 (Option V/I) Input Bias, 126
AI2 (Option V/I) Input Gain, 127
Alarm, 197
Always ON 1 Terminal 1, 71
AM, 19, 21
AM Bias Adjustment, 145
AM Output, 40
AM Output Gradient Characteristic, 144
AM Output Terminal Assignment, 141
AM Terminal Adjustment, 141
AM/FM Output, 23
Analog Function Assigned Object 11, 179
Analog Function Assigned Object 21, 180
Analog Input Filter, 86
Analog Input Function Target 11, 179
Analog Input Function Target 21, 179
Annual Average Ambient Temperature, 136
ASD Characteristics, 11
ASD Input Phase Failure Detection, 131
ASD Load, 39
ASD Number, 153
ASD Operation at Disconnect, 161
ASD Overload, 39, 135
ASD Switching Wait Time, 116
ASD/Motor Connection Diagram, 15
ASD-to-ASD Communications (2-Wire), 155, 158
Automatic Acceleration/Deceleration, 59
Automatic Function Selection, 68
Automatic Torque Boost, 59

Autotuning, 10
Autotuning 2, 121
Autotuning Control, 120

## B

Backup Option Selection, 139
Base Frequency 1, 64
Base Frequency 2, 78
Base Frequency Voltage 1, 122
Base Frequency Voltage 2, 78
Baud Rate (2-Wire RS485), 152
Baud Rate (4-Wire RS485), 157
Block Read Data 1, 164
Block Write Data 1, 163
Block Write Data 2, 163
Braking Resistance Overload Time
(10x Rated Torque), 137
Breaker Part Number, 215

## C

Cable/Terminal Specifications, 213
Carrier Frequency Control Mode, 113
CC, 19
CCA, 19
Change Step Selection 1, 147
Change Step Selection 2, 147
Charge LED, 9, 14
Circuit Breaker Configuration, 13
CMOD/FMOD Change Lockout, 149
Command Control Selections, 35
Command Mode, 60
Command Mode and Frequency Mode Control, 32
Commercial Power Switching Freq. Hold Time, 116
Commercial Power Switching Wait Time, 116
Communications Frequency 1, 156
Communications Frequency 2, 157
Communications Option (DeviceNet/Profibus) Setting 1, 158
Communications Option (DeviceNet/Profibus) Setting 2, 159
Communications Option (DeviceNet/Profibus)
Setting 8, 160
Communications Option Speed Switch Monitor DeviceNet/CC-Link, 162

Communications Option Station Address Monitor, 162
Communications Reference 1, 156
Communications Reference 2, 156
Communications Reference Selection, 155
Communications Time Out Time (2- and 4-Wire RS485), 153
Communications Time-Out Action (2- and 4-Wire RS485), 154
Compensation Frequency, 39
Connecting the ASD, 14
Connection Diagram, 24
Contrast, 152
Cooling Fan Control, 134
Current/Voltage, 211
Current/Voltage Specifications, 211

## D

DBR Function, 8
DC Bus Voltage, 39
DC Injection Braking Current, 99
DC Injection Braking Start Frequency, 99
DC Injection Braking Time, 99
DC Injection On During Direction Change, 99
Decel Time 1, 41
Deceleration Time 1, 63
Deceleration Time 2, 127
Default Setting Changes, 57
Direction, 39
Direction Priority, 70
Disable Forward Run/Reverse Run, 113
Disconnection Detection Extended Time, 161
Discrete Input, 19, 23
Discrete Input Terminals, 39, 40
Discrete Output, 19
Display Bias, 147
Display Units for Voltage and Current, 146
Disposal, 3
Drooping, 114
Drooping Gain, 114
Drooping Insensitive Torque, 114
Drooping Output Filter, 115
Dynamic Braking, 8, 111
Dynamic Braking Capacity, 112
Dynamic Braking Resistance, 112

## E

Electronic Operator Interface, 26
Electronic Operator Interface Features, 27
Emergency Off, 27
Emergency Off DC Injection Time, 131

Emergency Off Mode Selection, 130
Enclosure Dimensions, 204
End Frequency, 98
EOI Features, 27
EOI Operation, 26
EOI Remote Mounting, 26
Equipment Inspection, 3
Exciting Strengthening Coefficient, 122
Ext. Comm. Cfg. 1, 165
Ext. Comm. Cfg. 2, 166
Ext. Comm. Cfg. 3, 166
Ext. Comm. Cfg. 4, 167
Ext. Comm. Cfg. $5-8,167$

## F

F, 19, 20
F Terminal, 71
Fan Control, 134
Fault, 40, 195
Fault Relay, 23
Feedback Reach Detection Band, 119
Feedback Selection, 117
FL Terminal, 75
FLA, 19, 22
FLB, 19, 22
FLC, 19, 22
FM, 19, 21
FM Bias Adjustment, 144
FM Output, 40
FM Output Filtering, 144
FM Output Gradient Characteristic, 144
FM Output Terminal Adjustment, 61
FM Output Terminal Assignment, 61
FM Voltage/Current Output Switching, 143
FMOD, 82
Forced Fire Speed, 139
Forward/Reverse Run Selection, 62
FP, 19, 21, 45
FP Output, 23
FP Terminal Assignment, 143
FP Terminal Scaling, 143
Free Notes, 165
Freq Mode 1/Freq Mode 2 Switching Frequency, 86
Freq Mode 2 Switching Frequency, 86
Frequency at Trip, 39
Frequency Command Mode, 37
Frequency Command Screen, 57
Frequency Control Selections, 35
Frequency Display Multiplier, 146
Frequency Mode 1, 60
Frequency Mode 2, 86
Frequency Mode Control, 32

Frequency Priority Selection, 82
Frequency Reference, 39
Frequency Setting, 37
Fundamental 1, 42
Fundamental 2, 43

## G

General Safety Information, 1
Grounding Capacitor Switch, 14

## H

Handling and Storage, 3

## I

I, 40
I/O and Control, 19
I/O Circuit Configurations, 23
IICC, 19, 24, 83, 85
Important Notice, 2
Initial UP/DOWN Frequency, 104
Initial UP/DOWN Frequency Rewriting, 104
Input Function Command 1, 167
Input Function Command 2, 168
Input Function Target 1, 167
Input Function Target 2, 168
Input Function Target 3, 168
Input kWH, 39
Input Phase Failure Detection, 131
Input Power, 39
Input Terminal Priority, 70
Installation and Connections, 12
Installation Notes, 12
Installation Precautions, 4

## J

Jog Run Frequency, 101
Jog Stop Control, 102
Jump Frequency 1, 105
Jump Frequency 1 Bandwidth, 106
Jump Frequency 2, 106
Jump Frequency 2 Bandwidth, 106
Jump Frequency 3, 106
Jump Frequency 3 Bandwidth, 106
kWH Memory Selection, 152
kWH Memory Set, 151

LCD Contrast, 45
LCD Screen, 27
Lead Length Specifications, 18
LI1 Terminal, 72
LI2 Terminal, 73
LI3 Terminal, 73
LI4 Terminal, 73
LI5 Terminal, 74
LI6 Terminal, 74
LI7 Terminal, 74
LI8 Terminal, 75
Light Load Conditions, 11
Linear Acceleration, 128
Load Moment of Inertia 1, 124
Local Mode, 27
Local/Remote Key, 27
Lockout All Keys, 149
Low Output Disable Time, 100
Low Speed Operation, 10
Low-Current Detection Hysteresis Width, 132
Low-Current Detection Threshold, 132
Low-Current Trip, 132
Low-Current Trip Threshold Time, 132
Lower-Limit Frequency, 41, 64
Low-Speed Signal Output Frequency, 69
Lug Size, 213, 214

## M

Manual Torque Boost 1, 65
Manual Torque Boost 2, 78
Maximum Frequency, 63
Menu Navigation, 37
Menu Options, 37
Mode Key, 27
MON 1 Bias Adjustment, 145
MON 1 Output Gradient Characteristic, 145
MON 1 Voltage/Current Output Switching, 145
MON 2 Bias Adjustment, 146
MON 2 Output Gradient Characteristic, 146
MON 2 Voltage/Current Output Switching, 145
MON1 Terminal Adjustment, 142
MON1 Terminal Meter Selection, 142
MON2 Terminal Meter Adjustment, 143
MON2 Terminal Meter Assignment, 142
Monitor, 56

Monitor Mode, 39
Monitor Output Function 11, 180
Monitor Output Function 21, 181
Monitor Output Function 31, 181
Monitor Output Function 41, 182
Monitor Output Function Command 11, 180
Monitor Output Function Command 21, 181
Monitor Output Function Command 31, 182
Monitor Output Function Command 41, 182
Motor Braking, 11
Motor Characteristics, 10
Motor Connection Diagram, 15
Motor Constant 1, 122
Motor Constant 2, 122
Motor Constant 3, 122
Motor Constant 4, 122
Motor Load, 39
Motor Overload Protection Level 2, 79
Motor Overload Real, 39
Motor Rated Capacity, 121
Motor Rated Current, 121
Motor Rated RPM, 121
Motor Slip Gain, 121
Motor/Load Combinations, 11
Mounting the ASD, 13
Multiplying Input Selection, 141
My Function Count Data, 174
My Function Frequency Data, 172
My Function Percent Data, 171
My Function Selection, 184
My Function Time Data, 173

## N

Network Option Reset Settings, 167
Number of PG Input Phases, 120
Number of PG Input Pulses, 119
Number of Poles of Motor, 162
Number of Retries, 110

## 0

O1A/B, 19
O2A/B, 21
Operation (Local), 57
Operation Above $60 \mathrm{~Hz}, 10$
Operational and Maintenance Precautions, 9
Option V/I Terminal Voltage/Current Selection, 70
OTF Switching, 108
OUT1, 19, 21
Out1 Out2 FL, 39, 40
OUT1 Terminal, 75

OUT1/OUT2 Output, 23
OUT2, 21
OUT2 Terminal, 75
OUT3 Terminal, 76
OUT4 Terminal, 76
OUT5 Terminal, 77
OUT6 Terminal, 77
Output Current, 39
Output Disconnect, 8
Output Function Assigned, 168
Output kWH, 39
Output Phase Failure Detection, 131
Output Power, 39
Output Terminal 10 (R3) Function, 77
Output Terminal 11 (R4) Function, 78
Output Terminals, 44, 45
Output Voltage, 39
Over-Current Stall Level, 130
Overload Protection, 10
Overload Reduction Starting Frequency, 131
Override Operation, 33
Over-Torque Detection Hysteresis, 133
Over-Torque Detection Level (Negative Torque), 133
Over-Torque Detection Level (Positive Torque), 133
Over-Torque Detection Time, 133
Over-Torque Trip, 133
Over-Voltage Stall Enable, 111
Over-Voltage Stall Level, 135

## P

P24, 21
P24 Output, 23
PA/+, 14
Panel Emergency Off Lockout, 148
Panel Frequency Lockout, 148
Panel Operation Jog Mode, 102
Panel Reset Lockout, 148
Panel Stop Pattern, 148
Parameter Write Lockout, 146
Parity (2- and 4-Wire RS485), 153
Past Trip 1, 40
Past Trip 2, 40
Past Trip 3, 40
Past Trip 4, 40
Permanent Magnet (PM) Motor Constant 1, 127
Permanent Magnet (PM) Motor Constant 2, 127
Personnel Protection, 7
PG Disconnection Detection, 120
PG Reference 2, 97
Phase Failure Detection, 131
PID Control Switching, 116
PID Control Wait Time, 118

PID Deviation Lower-Limit, 118
PID Deviation Upper-Limit, 117
PID Feedback, 39
PID Feedback Delay Filter, 117
PID Feedback Differential (D) Gain, 118
PID Feedback Integral (I) Gain, 117
PID Feedback Proportional (P) Gain, 117
PID Feedback Selection, 117
PID Output Lower-Limit, 119
PID Output Upper-Limit, 118
PID SETUP, 41
PID Setup, 41
PID Setup Mode, 38
PM Motor, 127
PO, 14
Power Connections, 6, 14
Power Factor Correction, 11
Power Running Torque Limit, 123
Power Running Torque Limit Level, 123
Power Switching, 115
Power Switching Frequency, 116
PP, 19, 21
PP Output, 23
Preset Speed, 46
Preset Speed 1, 66
Preset Speed 10, 107
Preset Speed 11, 107
Preset Speed 12, 107
Preset Speed 13, 107
Preset Speed 14, 107
Preset Speed 15, 108
Preset Speed 2, 66
Preset Speed 3, 67
Preset Speed 4, 67
Preset Speed 5, 67
Preset Speed 6, 67
Preset Speed 7, 67
Preset Speed 8, 106
Preset Speed 9, 107
Preset Speed Operation Selection, 162
Process Decreasing Rate, 119
Process Increasing Rate, 119
Process Lower-Limit, 118
Process Upper-Limit, 118
Program, 42
Program Mode Menu Navigation, 41
PTC Thermal Detection Disposition, 138
PTC Thermal Detection Level, 138
PTC1 Thermal Selection, 136
PTC2 Thermal Selection, 137
Pulse Width Modulation, 10
PWM Carrier Frequency, 108

## Q

Q9 Part Numbering Convention, 204
Qualified Personnel, 2

## R

R, 19, 20
R Terminal, 71
R/L1, 14
R1 Terminal, 76
R2 Terminal, 77
Random Mode, 113
Regenerative Braking Torque Limit, 123
Regenerative Braking Torque Limit Level, 124
Remote Mode, 27
Remote/Local OTF Switching, 108
RES, 19, 20
RES Terminal, 71
Reset, 62
Restart Wait Time, 138
Retry, 110
Ridethrough Mode, 109
Ridethrough Time, 112
Root Menu Items, 37
Rotary Encoder, 27
RR, 19, 21, 39
RR Input, 23
RR Input Bias, 125
RR Input Gain, 125
RS485 4-Wire Protocol Selection (TSB/ModBus), 158
RS485 Protocol Selection, 155
RS485 Send Wait Time (RS485 4-Wire), 157
Run Frequency, 98
Run Frequency Hysteresis, 98
Run Key, 27
Run Time, 39
Run-Time Alarm Setting, 134
Rush Relay Current Activation Time, 136
RX, 21, 40
RX Input, 23
RX Input Bias, 125
RX Input Gain, 126
RX2, 40
RX2 (AI1) Input Bias, 126
RX2 (AI1) Input Gain, 126

## S

S/L2, 14
S1, 19, 20
S1 Terminal, 72
S2, 19, 20

S2 Terminal, 72
S3, 19, 20
S3 Terminal, 72
S4, 19, 20
S4 Terminal, 72
Safety Information, 1
Search (For Default Setting Changes), 58
Send Wait Time (2-Wire), 154
Setup, 41
Setup Mode, 37
Shaft Stationary, 100
Short Circuit Detection At Start, 132
Short Circuit Protection, 215
Sink, 22
Soft Stall Selection, 65
Source, 22
S-Pattern 1, 128
S-Pattern 2, 128
Speed at 0\% Drooping Gain, 114
Speed at F320 Drooping Gain, 114
Speed Loop Proportional Gain, 124
Speed Loop Stabilization Coefficient, 124
Speed Reach Detection Band, 69
Speed Reach Frequency, 69
Speed Search Selection, 108
ST, 19, 20
ST Terminal, 71
Stall Level, 47
Stall Prevention Factor 1, 123
Startup and Test, 25
Startup Frequency, 97
Stepout Current Detection Level, 137
Stepout Current Detection Time, 137
Stop-Reset Key, 27
SU+, 21
Supply Voltage Correction, 112
System Configuration and Menu Options, 37
System Grounding, 16
System Integration Precautions, 7
System Operation, 57

## T

T/L3, 14
TB1, 22
TB2, 22
TB3, 22
TB4, 22
Terminal Board, 12, 19, 22
Terminal Descriptions, 20
Torque Boost, 65
Trace Cycle, 151
Trace Data 1, 151

Trace Data 2, 151
Trace Data 3, 151
Trace Data 4, 151
Trace Selection, 150
Trip Save at Power Down, 130
Type Reset, 62

## U

U/T1, 14
UL 1995, 204
Under-Torque at Constant Speed Disposition, 139
Under-Torque Detection Time, 140
Under-Torque Hysteresis, 140
Under-Torque Level During Regeneration, 139
Under-Torque Level While ASD-Driven, 139
Under-Voltage Trip, 135
UP/DOWN Frequency (down) Frequency Step, 104
UP/DOWN Frequency (down) Response Time, 104
UP/DOWN Frequency (up) Frequency Step, 104
UP/DOWN Frequency (up) Response Time, 103
Up/Down Frequency Operation, 105
Upper Limit Frequency, 63
Upper-Limit Frequency, 41
User Notification codes, 196
User Unit Type, 147
User Units Selection, 69

## V

V/f 5-Point Setting Frequency 1, 79
V/f 5-Point Setting Frequency 2, 80
V/f 5-Point Setting Frequency 3, 81
V/f 5-Point Setting Frequency 4, 81
V/f 5-Point Setting Frequency 5, 82
V/f 5-Point Setting Voltage 1, 80
V/f 5-Point Setting Voltage 2, 81
V/f 5-Point Setting Voltage 3, 81
V/f 5-Point Setting Voltage 4, 81
V/f 5-Point Setting Voltage 5, 82
V/f Pattern, 64
V/I, 40
V/I (I), 21
V/I Frequency, 41
V/I Frequency 1, 83
V/I Frequency 2, 84
V/I Input Bias, 124
V/I Input Broken-Wire Detection Level, 135, 138
V/I Input Gain, 125
V/I Input Point 1 Rate, 85
V/I Input Point 2 Rate, 85
V/I Reference, 41

V/I Speed Reference 1, 83
V/I Speed Reference 2, 84
V/T2, 14
Virtual Input Terminal 1 Selection, 183
Virtual Input Terminal 2 Selection, 183
Virtual Input Terminal 3 Selection, 183
Virtual Input Terminal 4 Selection, 183

W/T3, 14
Warranty Card, 2

## TOSHIBA

TOSHIBA INTERNATIONAL CORPORATION
INDUSTRIAL DIVISION
13131 West Little York Road, Houston, TX 77041
TEL: (713) 466-0277 — FAX: (713) 937-9349
Printed in the U.S.A.


[^0]:    Direct Access Number - F192
    Parameter Type - Numerical
    Factory Default - $\mathbf{0 . 0 0}$
    Changeable During Run - No
    Minimum — 0.00
    Maximum - Max. Freq. (F011)
    Units - Hz

[^1]:    0 — PID Off
    1 - Process PID
    2 - Speed PID

[^2]:    Power Running Torque Limit
    No Path — Direct Access Only
    This parameter determines the source of the control signal for the positive torque limit setting.

[^3]:    Same as F831. See F831 for information on this parameter

